CN109792211B - 电能系统中的部分功率转换器(ppc) - Google Patents

电能系统中的部分功率转换器(ppc) Download PDF

Info

Publication number
CN109792211B
CN109792211B CN201780060168.3A CN201780060168A CN109792211B CN 109792211 B CN109792211 B CN 109792211B CN 201780060168 A CN201780060168 A CN 201780060168A CN 109792211 B CN109792211 B CN 109792211B
Authority
CN
China
Prior art keywords
power converter
partial power
voltage
converter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780060168.3A
Other languages
English (en)
Other versions
CN109792211A (zh
Inventor
马塞洛·亚历杭德罗·佩雷斯·莱瓦
雅伊梅·弗拉迪米尔·萨帕塔·阿莫雷斯
萨米尔·库鲁·雷纳尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad Tecnica Federico Santa Maria USM
Original Assignee
Universidad Tecnica Federico Santa Maria USM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Tecnica Federico Santa Maria USM filed Critical Universidad Tecnica Federico Santa Maria USM
Publication of CN109792211A publication Critical patent/CN109792211A/zh
Application granted granted Critical
Publication of CN109792211B publication Critical patent/CN109792211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种电能系统中的部分功率转换器(PPC),其包括与能源vpv并联连接并且与变压器的初级绕组连接的输入电容器,该初级绕组与金属氧化物半导体场效应晶体管(MOSFET)M1串联连接。根据本发明,具有相同匝数的两个次级绕组Ns1和Ns2各自通过一端子与相应的二极管D1和D2串联连接,所述二极管D1和D2与输出电容器Cdc的相应端部连接。变压器的次级绕组Ns1的另一端子与初级绕组的端子中的一个连接,而次级绕组Ns2的另一端子与晶体管M1的端子中的一个连接,输出电容器Cdc用作用于连接下一级的链接器。

Description

电能系统中的部分功率转换器(PPC)
技术领域
本发明涉及静态DC-DC转换器,其提高输入电压并且还处理由作为功率源的能量系统输送的功率的减少部分。更具体地,其是指电功率系统的升降式部分功率转换器(PPC)。
背景技术
Chen Yu-Kai的日期为2011年9月8日的题目为“Convertidor de potencia solarcon múltiples salidas(具有多个输出的太阳能功率转换器)”的专利申请US2011215778描述了一种具有多个输出的太阳能功率转换器及其转换电路,其中,太阳能功率转换器包括:功率输入端子、太阳能功率单元和具有多个输出的太阳能功率转换电路,该太阳能功率转换电路包括初级电路、第一输出电路、第二输出电路以及具有第一辅助绕组和第二辅助绕组的变压器。第二输出电路的输出端子与功率输入端子串联连接,以用于向负载单元提供第三输出电压。第三输出电压是由太阳能功率单元生成的输入电压和由第二输出电路生成的第二输出电压的总和。
Luo Yuhao的日期为2011年10月13日的题目为“Método y aparato para laconversión de potencia con un convertidor flyback(使用回扫转换器进行功率转换的方法和装置)”的专利申请US2011249474描述了使用具有交替的主支路和从支路的交错回扫转换器来进行功率转换的方法和装置。该装置包括:多个并联连接的回扫电路;控制器,该控制器与回扫电路内的开关耦合,以导通和关断该多个回扫电路;在输出端与控制器连接的电流监测元件;与控制器连接的电压监测元件;基于所监测的电流和电压,该控制器控制回扫电路的运行。
Martin Fornage等人的日期为2009年4月2日的题目为“Conversor de potenciatipo flyback(回扫型功率转换器)”的专利申请US2009086514描述了一种用于将DC输入功率转换为DC输出功率的方法和装置。该装置包括多个并联连接的回扫电路。控制器与回扫电路内的开关耦合,以在多个回扫电路之间提供准确的记时和自动电流平衡。
所引用的文献都没有描述或教导提高输入电压、处理由作为功率源的能量系统输送的功率的减少部分的静态DC-DC转换器。
发明内容
本发明的目的是开发一种在电能系统中的部分功率转换器(PPC),该部分功率转换器包括与能源vpv并联连接并与变压器的初级绕组连接的输入电容器,其中,初级绕组与MOSFET(金属氧化物半导体场效应晶体管)类型的晶体管M1串联连接,其中,二者具有相同匝数的两个次级绕组Ns1和Ns2各自通过一端子分别与二极管D1和D2串联连接,并且所述二极管D1和D2与输出电容器Cdc的相应端部连接;变压器的次级绕组Ns1的另一端子与初级绕组的端子中的一个连接,而次级绕组Ns2的另一端子与晶体管M1的端子中的一个连接,其中,输出电容器Cdc用作连接下一级的链接器;此外,变压器中存在磁化电感Lm,该磁化电感没有物理连接,但它允许表示变压器储存磁能的能力并将其转换为电压和电流,其中,能源vpv是太阳能量,并且功率转换器是部分的并且是升降式的,因为它处理总功率的一部分。
附图说明
图1描述了光伏太阳能应用中的部分功率转换器。
图2描述了取决于输出电压和输入电压之间的关系的部分功率比率曲线。
图3描述了根据太阳能辐射变化的功率和电压的变化。
图4描述了与半导体的切换对应的时间间隔。
图5描述了当MOSFET M1被启动并且二极管D1和D2被关断时功率转换器的运行原理。
图6描述了当MOSFET M1关断并且二极管D1和D2被启动时功率转换器的运行原理。
图7示出了对于经分析的切换时刻上文详述的点的波形,以及在MOSFET M1中和在二极管D1和D2中的电流的平均值。
图8描述了部分功率转换器(PPC)和传统回扫转换器(FPC)中输入电流ipv的纹波。
图9描述了基于输入功率的部分功率转换器(PPC)和传统回扫转换器(FPC)的整体效率。
具体实施方式
本发明涉及静态DC-DC转换器,其提高输入电压并且还处理由功率源输送的功率的减少的部分。通过管理功率的仅一部分,可以提高能量系统的效率,这是因为半导体中的损耗减少了。由于该配置,可以在输入源的层级改善电压和电流的质量,因为两个变量的纹波都减小了。更具体地,其是指电功率系统的升降式部分功率转换器(PPC)。
本发明的应用扩及需要直流电压调节的那些情况。对于优选实施方式的描述,描述了光伏行业的应用。图1所示的部分功率转换器(PPC)主要由MOSFET(金属氧化物半导体场效应晶体管)型的晶体管M1和两个二极管D1和D2组成,其根据待执行的操作进行工作,要么允许电流通过,要么阻止电流通过。此外,使用在初级侧具有匝数为Np的绕组并且在次级侧具有两个绕组Ns1和Ns2——二者具有相同匝数——的变压器。通过在变压器中具有两个次级绕组,可以得到第一感应电压v21和第二感应电压v22。另外,可以认为变压器中存在磁化电感Lm,该磁化电感没有物理连接,但是允许表示变压器储存磁能的能力并将磁能转换为电压和电流。与初级绕组直接连接的次级绕组允许有用于输入电流iin的一部分的旁路通路,其中,所述电流的一部分io被直接注入到逆变器级中,该逆变器级用于定期地将系统与电力网络连接。进入部分功率转换器的电流ipc是电流iin减去电流io的差值。该电流小于总电流,使得转换器处理功率的仅一部分。此外,由于绕组的串联连接,可以增加在转换器的输出端处的电压,防止逆变器执行提高输入电压vpv的整个过程,这意味着半导体与变压器二者的压力减小。从所呈现的配置得到的另一个优点是减小输入电流ipv以及输入电压vpv的纹波。
为了限定功率部分化的概念,限定了变量Ppr,该变量是一比率,该比率涉及由Ppc转换器处理的功率除以由Ppv系统输送的功率。如果该比率小于一,则转换器被限定为部分功率转换器。该比率越接近零,则转换器处理可能最小量的功率。由Ppv系统输送的功率表达为输入电压vpv乘以输入电流ipv,而由Ppc转换器处理的功率表示为输入电压vpv乘以进入转换器的电流ipc。转换器的输出功率Po表达为输出电压vdc乘以输出电流idc。考虑到系统的效率η等于输出功率Po除以输入功率Pin的比率,并且所述效率是一元的,用下面的等式(1)表达部分化比率,
Figure BDA0002010156850000041
图2示出了表示功率部分化比率Ppr的图。可以理解,部分功率比率取决于电压增益Gv,该电压增益是输出电压vdc除以输入电压vpv的比率。由于该配置,倘若输出电压大于输入电压,则它被认为是部分功率转换器,因为功率仅在一个方向上流动并且必须是正的。另外,该图表明,只要电压增益降低,功率部分化比率Ppr就会减小。
已知部分功率转换器必须能够提高电压以达到所需的输出值vdc;此外,在太阳能面板层级的输入电压vpv根据太阳能辐射变化,如图3中所示,其中,该电压变化示出为Δvmpp。在这种情况下,目的是将太阳能面板的电压保持在最大功率点mpp。通过改变该值,部分功率转换器必须能够通过修改电压vpc来补偿这种变化。功率部分化的比率Ppr越低,由部分功率转换器处理的功率就越少,这提高了它的效率。而功率部分化的比率Ppr越高,由部分功率转换器处理的功率就越多,这保证了在较大的电压变化范围Δvmpp内的运行。因此,本发明的应用将是由运行点限定的应用,并且其是用作部分功率转换器的设计基础的应用。
为了进行功能分析,假设了部分功率转换器的理想运行。次级绕组Ns1和Ns2中的匝数是相等的;因此,Ns被限定为次级绕组的匝数,这保证了电压v21和v22是相似的,并避免了反映到初级侧的电流不稳定。在这个标准下,限定了等于v21且等于v22的新变量v2。因此,输出电压vdc等于输入电压vpv加上电压v2的两倍之和。另外,变量N被限定为初级绕组的匝数Np除以次级绕组的匝数Ns的匝数比率。
通过半导体M1、D1和D2切换状态推导出部分功率转换器的运行。图4示出了MOSFETM1导通和关断的时间间隔。在时间Ta期间,MOSFET M1被启动,因此允许电流ipc通过并关断二极管D1和D2,而在时间Tb期间,MOSFET M1关断,因此中断电流ipc的通过,并且二极管D1和D2导通。切换时间段表示为T,其表示时间Ta加Tb的总和。工作周期D被限定为Ta被启动的时间除以切换时间段T的比率。工作周期在0至1之间变化。
在[0<t≤DT]之间的时间间隔期间,MOSFET M1被启动,而二极管D1和D2被关断,如图5中所示的;在该间隔期间,磁化电感处的电压v1等于输入源处的电压vpv。通过磁化电感Lm的电流以如下等式(2)中所示的斜率线性增长,
Figure BDA0002010156850000061
MOSFET M1中的电流以等式(2)中描述的相同斜率增长,而电压为零。在此期间,二极管D1和D2关断;因此,电流io为零,而每个二极管中的电压被描述为反映到次级侧的初级电压加上输出电压与输入电压之差的一半(3),
Figure BDA0002010156850000062
在[DT<t≤T]的时间间隔期间,MOSFET M1关断,而二极管D1和D2被启动,如图6中所示的。在该间隔期间,由于绕组的连接,磁化电感中的电压v1等于反映在变压器的初级上的具有负号的在输出源中的电压v2。通过磁化电感Lm的电流以如下等式(4)中所示的斜率线性降低,
Figure BDA0002010156850000063
在切换间隔期间,MOSFET M1中的电流为零,而MOSFET M1中的电压是输入电压vpv与输出电压vdc减去电压vpv的差反映在变压器初级上的一半相加的总和,
Figure BDA0002010156850000064
假设用理想的二极管进行分析,二极管中的电压为零,二极管中的电流io以与等式(4)中所描述的反映在变压器的次级上的相同斜率而降低。
对于两个切换间隔,可以将电感Lm中的电流的动态特性与下面的等式(6)相关联,
Figure BDA0002010156850000065
在稳定状态下,即,当运行点周围没有变化时,电流关于时间的导数值为零。那么等式(6)表达如下:
Figure BDA0002010156850000071
通过对等式(7)进行调整,输出电压vdc和输入电压vpv之间存在等式(8),
Figure BDA0002010156850000072
该等式(8)也称为部分功率转换器的电压增益Gv。
图7示出了上文详述的分析的切换时刻点的理想电流和电压波形,以及在M1中以及在二极管D1和D2中的电流的平均值:(a)MOSFET M1的触发信号;(b)磁化电感Lm中的电压;(c)磁化电感Lm中的电流;(d)MOSFET M1中的电流;(e)MOSFET M1中的电压;(f)二极管D1-D2中的电流;(g)二极管D1-D2中的电压。
除了将所提出的部分功率转换器与传统的回扫转换器进行比较之外,还进行了模拟测试,以便验证部分功率转换器。对于这个实验,两个转换器都被设计为在相同的运行点工作。使用光伏面板作为输入源,并且使用DC-AC转换器与单相网络连接。对于该设计,已经认为工作周期等于换相时间段的一半,D=0.5,这允许变压器中的磁性流对称,并因此减少通过磁性转移造成的损耗。太阳能面板中的电流纹波Δipv和DC-DC转换级的总效率已被视为比较量度。第一参数有关于输入电容器的设计和最大功率点的追踪的效率。通过呈现较低的电流纹波值,可以减小电容器的大小。此外,最大功率点示出了较小幅度的振荡。图8示出了由电流纹波得到的结果,其中,部分功率转换器具有比传统回扫转换器(FPC)小的电流纹波。图9示出了由部分功率转换器的总效率得到的结果,即,与最大功率点的追踪相关联的效率和转换效率。与前一种情况相同,对两个转换器的这些效率进行了比较,且由于上述优点,即,较低的升高比和较小的电流纹波,所提出的部分功率转换器的总体效率更大。
从构造的观点来看,转换器包括:与功率源并联连接的电容器;需要具有初级绕组和两个次级绕组的变压器。初级绕组与MOSFET M1串联连接,并且其与输入电容器并联连接。具有相同匝数的两个次级绕组与二极管和输出电容器串联连接。变压器的次级绕组中的一个的端子与初级绕组的端子中的一个连接,而来自另一个次级绕组的端子中的一个与MOSFET M1的端子中的一个连接。输出电容器用作连接至下一级的链接器,这将取决于应用。

Claims (5)

1.一种在电功率系统中的部分功率转换器(PPC),其特征在于,所述部分功率转换器包括与功率源vpv并联连接并且与变压器的初级绕组连接的输入电容器,其中,所述初级绕组与MOSFET(金属氧化物半导体场效应晶体管)型的M1晶体管串联连接,其中,具有相同匝数的两个次级绕组Ns1和Ns2各自通过一端子分别与二极管D1和D2串联连接,并且所述二极管D1和D2与输出电容器Cdc的相应端部连接;所述变压器的所述次级绕组Ns1的另一端子与所述初级绕组的端子中的一个连接,而所述次级绕组Ns2的另一端子与晶体管M1的端子中的一个连接,并且其中,所述输出电容器Cdc用作连接下一级的链接器。
2.根据权利要求1所述的部分功率转换器,其特征在于,所述部分功率转换器还包括存在于所述变压器中的磁化电感Lm,所述磁化电感Lm没有物理连接但允许表示所述变压器储存磁能的能力并将其转换为电压和电流。
3.根据权利要求1所述的部分功率转换器,其特征在于,所述功率源vpv是太阳能源。
4.根据权利要求1所述的部分功率转换器,其特征在于,所述部分功率转换器是升降式的。
5.根据权利要求1所述的部分功率转换器,其特征在于,所述部分功率转换器处理总功率的一部分。
CN201780060168.3A 2016-08-25 2017-08-25 电能系统中的部分功率转换器(ppc) Active CN109792211B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CL2155-2016 2016-08-25
CL2016002155A CL2016002155A1 (es) 2016-08-25 2016-08-25 Un convertidor de potencia parcial (ppc) en un sistema de energía eléctrica
PCT/CL2017/050044 WO2018035625A1 (es) 2016-08-25 2017-08-25 Un convertidor de potencia parcial (ppc) en un sistema de energía eléctrica

Publications (2)

Publication Number Publication Date
CN109792211A CN109792211A (zh) 2019-05-21
CN109792211B true CN109792211B (zh) 2021-01-26

Family

ID=61245949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780060168.3A Active CN109792211B (zh) 2016-08-25 2017-08-25 电能系统中的部分功率转换器(ppc)

Country Status (5)

Country Link
US (1) US10686384B2 (zh)
EP (1) EP3506480B1 (zh)
CN (1) CN109792211B (zh)
CL (1) CL2016002155A1 (zh)
WO (1) WO2018035625A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890155B (zh) * 2021-10-12 2024-02-09 燕山大学 一种面向直流母线的电池管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515439B2 (en) * 2006-07-26 2009-04-07 National Taiwan University Of Science & Technology Low voltage stress power converter
CN102428422A (zh) * 2009-12-23 2012-04-25 控制技术有限公司 电压补偿
CN102857107A (zh) * 2011-06-29 2013-01-02 通用电气公司 Dc至dc功率转换器和控制该功率转换器的方法
CN203056977U (zh) * 2012-12-18 2013-07-10 中科恒源科技股份有限公司 一种升压隔离型dc-dc变换器
CN204013231U (zh) * 2014-08-27 2014-12-10 南京国睿新能电子有限公司 一种升压开关电源
WO2015060644A1 (ko) * 2013-10-22 2015-04-30 한국과학기술원 단권변압기를 이용한 zvzcs 스위칭 컨버터
CN105790588A (zh) * 2015-01-13 2016-07-20 通用电气公司 用于车辆系统的双向dc-dc功率转换器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716596B2 (ja) * 2001-04-05 2011-07-06 新電元工業株式会社 スイッチング電源装置
WO2005091484A1 (en) * 2004-03-19 2005-09-29 Delta Energy Systems (Switzerland) Ag Switching power supply
US8537572B2 (en) 2007-09-28 2013-09-17 Enphase Energy, Inc. Method and apparatus for providing power conversion using an interleaved flyback converter with automatic balancing
PL217306B1 (pl) * 2009-03-25 2014-07-31 Azo Digital Spółka Z Ograniczoną Odpowiedzialnością Prostownik synchroniczny LLC oraz zasilacz komputerowy standardu ATX
CN101741258B (zh) * 2010-01-19 2012-05-09 魏其萃 隔离式电流调节型直流-直流变换器
TWI412200B (zh) 2010-03-03 2013-10-11 Univ Nat Formosa 具多組輸出之太陽能電源轉換系統及其轉換電路
US20150131328A1 (en) * 2013-11-08 2015-05-14 General Eectric Company System and method for power conversion
US9548668B2 (en) * 2014-03-14 2017-01-17 Futurewei Technologies, Inc. Hybrid power converter and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515439B2 (en) * 2006-07-26 2009-04-07 National Taiwan University Of Science & Technology Low voltage stress power converter
CN102428422A (zh) * 2009-12-23 2012-04-25 控制技术有限公司 电压补偿
CN102857107A (zh) * 2011-06-29 2013-01-02 通用电气公司 Dc至dc功率转换器和控制该功率转换器的方法
CN203056977U (zh) * 2012-12-18 2013-07-10 中科恒源科技股份有限公司 一种升压隔离型dc-dc变换器
WO2015060644A1 (ko) * 2013-10-22 2015-04-30 한국과학기술원 단권변압기를 이용한 zvzcs 스위칭 컨버터
CN204013231U (zh) * 2014-08-27 2014-12-10 南京国睿新能电子有限公司 一种升压开关电源
CN105790588A (zh) * 2015-01-13 2016-07-20 通用电气公司 用于车辆系统的双向dc-dc功率转换器

Also Published As

Publication number Publication date
CN109792211A (zh) 2019-05-21
EP3506480A1 (en) 2019-07-03
CL2016002155A1 (es) 2016-11-11
US10686384B2 (en) 2020-06-16
WO2018035625A1 (es) 2018-03-01
EP3506480A4 (en) 2020-04-08
EP3506480B1 (en) 2021-06-30
US20190190392A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
Ardi et al. A novel high step-up DC–DC converter with continuous input current integrating coupled inductor for renewable energy applications
US10211719B2 (en) Power converter
US8098055B2 (en) Step-up converter systems and methods
US20120155139A1 (en) Electrical Energy Conversion Circuit Device
US9385603B2 (en) Control method and control circuit for switching power supply
CN107834887B (zh) 逆变器和操作逆变器的方法
JP2008199808A (ja) 系統連系インバータ装置
CN113330673B (zh) 用于平衡具有可控开关电容器的多相llc功率转换器的方法和系统
Meraj et al. Non-isolated DC–DC power converter with high gain and inverting capability
Hata et al. 48V-to-12V dual-path hybrid DC-DC converter
CN113169680A (zh) 微型太阳能逆变器
TW201919319A (zh) Dc-dc轉換器以及電力調節器
KR101426696B1 (ko) 계통 연계 모듈형 태양광 전력 변환 장치
JP6140007B2 (ja) 電力変換装置
CN109792211B (zh) 电能系统中的部分功率转换器(ppc)
Arshadi et al. Novel grid-connected step-up boost-flyback inverter with ground leakage current elimination for ac-module application
Watanabe et al. Efficiency Improvement of Current-Fed DAB Converter by Triangular Current Mode for Wide Voltage Applications
KR101152359B1 (ko) 공통 인덕터를 이용한 인터리브드 부스트 컨버터
EP2421134A1 (en) Current-fed quadratic buck converter
Renken et al. Novel hybrid buck L converter for wide conversion ratios
Kumar et al. Analysis and design of a current fed non-isolated buck-boost DC-DC converter
JP2008022633A (ja) 電力変換装置
CN112075019A (zh) 具有升压开关的降压矩阵式整流器及其在一相损耗期间的操作
Al Mamun et al. A Novel High Gain DC-DC Step up Converter
Ünlü et al. Two-phase interleaved sepic mppt using coupled inductors in continuous conduction mode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Marcelo Alejandro Perez Leva

Inventor after: Yaime Vladimir Zapata Amores

Inventor after: Samir kuru reinar

Inventor before: Marcelo Alejandro Perez Leva

Inventor before: Yaime Vladimir Zapata Amores

GR01 Patent grant
GR01 Patent grant