CN109790558A - Method - Google Patents

Method Download PDF

Info

Publication number
CN109790558A
CN109790558A CN201780023087.6A CN201780023087A CN109790558A CN 109790558 A CN109790558 A CN 109790558A CN 201780023087 A CN201780023087 A CN 201780023087A CN 109790558 A CN109790558 A CN 109790558A
Authority
CN
China
Prior art keywords
leu
ala
val
ile
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780023087.6A
Other languages
Chinese (zh)
Inventor
R·科尔曼
B·尼兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Australian New South Innovation Co Ltd
Bergen Teknologioverforing AS
Original Assignee
Australian New South Innovation Co Ltd
Bergen Teknologioverforing AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Australian New South Innovation Co Ltd, Bergen Teknologioverforing AS filed Critical Australian New South Innovation Co Ltd
Publication of CN109790558A publication Critical patent/CN109790558A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/32Amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/42Organic phosphate, e.g. beta glycerophosphate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08007Holo-[acyl-carrier-protein] synthase (2.7.8.7)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to the methods that N-STX and the like and variant and the intermediate in production N-STX are prepared in recombinant host cell.N-STX and the like and variant can be used for producing pharmaceutical composition.

Description

Method
Technical field
The present invention relates to the preparation methods of N-STX and the like, and generate newly in recombinant host cell The intermediate of saxitoxin.N-STX can be used for producing pharmaceutical composition.
Background technique
Voltage-gated sodium channel (VGSC) is complete memebrane protein, forms ion channel, conducts sodium by cytoplasma membrane Ion (Na+).They play an important role in the starting of action potential.
People are early known that the transmitting for blocking these channels to potentially contribute to prevention pain impulses;It sufficiently verifies now VGSC is the target for treating pain.Particularly, currently to study many VGSC in the production of antalgesic and anesthetic short of money Anti-agent.
Both saxitoxin and N-STX are used as the specific inhibition agent of VGSC.Therefore, these compounds It may be useful in treatment pain.Saxitoxin (SXT) is also referred to as paralytic shellfish poisoning (PSP) (PST), is by many indigo plants Algae (such as anabena (Anabaena), Aphanizomenon (Aphanizomenon), quasi- column spore Trentepohlia (Cylindrospermopsis), sheath Ulothrix (Lyngbya), floating Ulothrix (Planktothrix), tip Trentepohlia (Raphidiopsis), Scytonema (Scytonema)) and dinoflagellate (Alexandrium (Alexandrium), unarmored dinoflagellate (Gymnodinium) and pears dinoflagellate (Pyrodinium)) generate neurotoxin.Saxitoxin is hitherto known most fatal One of non-protein neurotoxin, and reversibly combine VGSC to cause to paralyse.It leads to many human foods poisonings, Because having taken in contaminated filter-feeding aquatic animal (such as shellfish, mollusk, shellfish), these animals can be to poison Element carries out bioaccumulation.
However, include N-STX (it is the N1- hydroxylated analog of SXT) there are many SXT analogs, although They have high specific toxicity, but they do not have general toxicity when being applied with low dosage.Therefore they possibly serve for the mankind Therapeutic agent.
In June, 2015, German pharmaceutical quotient Grunenthal and Chile company Proteus S.A. and boston, U.S.A children Hospital cooperation is to develop the Novel anesthetic for using N-STX as local anaesthesia and postoperative pain management.
There is also the markets of other saxitoxin analogs, such as Gonyautoxin (gonyautoxin), have faced Bed test is muscle relaxant.
Proteus S.A. had submitted with from naturally-produced N-STX and saxitoxin cell (such as Cells of Blue-green Algae) production patent application relevant with harvest N-STX and saxitoxin (such as US2015/ 0099879)。
Shimizu etc. be put forward for the first time generate saxitoxin biosynthesis pathway (J.Am.Chem.Soc. (1984), 106,6433–6434).However, until ability first identified saxitoxin (sxt) gene cluster in 2008;This is to intend column in cyanobacteria (Kellmann etc. in spore algae (Cylindrospermopsis raciborskii) T3 Appl.Environ.Microbiol.2008,74,4044–4053).Sxt gene cluster is by 34 genes or open reading frame (ORF) it forms.Theoretical function based on Sxt albumen, this (10 step) for causing the propositions such as Kellmann to be revised is for generating stone room The biosynthesis pathway of clam toxin (referring to Fig. 1 of this paper).
Other four sxt gene clusters are accredited in different categories: curling anabena (Anabaena Circinalis) 131C and Aphanizomenon (Aphanizomenon sp.) NH-5 (BMC such as Mihali Biochem.10,8 (2009));Sheath silk algae (Lyngbyawollei) (PloS such as Mihali One 6, e14657 (2011));With tip algae (Raphidiopsis brookii) D9 (PLoS such as Stucken, K. ONE 5, e9235 (2010)).However it is noticeable It is that there are some differences for these gene clusters, including lack certain genes and other Duplications.In addition, the structure of sxt cluster is one It is rearranged in a little genomes, leads to the biosynthesis of saxitoxin analog.This make for generate saxitoxin and Illustrating for the biosynthesis pathway of N-STX is especially difficult, therefore prevents saxitoxin and neolite by recombination approach The generation of Saxitoxin.
In the approach that Kellmann (2008) propose, propose that the first step is related to sxtA gene product.SxtA gene coding Multidomain albumen relevant to polyketide synthase (PKS).Kellmann proposes SxtA catalysis arginine and a methyl Change the condensation of acetate unit to generate 4- amino -3- oxo-guanidine radicals heptane (AOGH) intermediate.It is proposed this method with gradually into Row, and be catalyzed by four structural domains of SxtA.It is said that acetyl coenzyme A is selectively connected to full acyl by transacetylase structural domain In the general acetyl base arm of base load body protein.It is said that the SAM dependence methyl of the acetyl group part by the catalysis of first SxA structural domain Change the formation for leading to propionate.It is said that the final step of AOGH biosynthesis is propionate and arginic condensation, by II class ammonia The catalysis of based transferase structural domain.AOGH is used as the downstream enzyme biosynthesis Saxidomus poison encoded by other members of sxt gene cluster The substrate of element.However, the structure of AOGH is confirmed due to lacking chemical standard.
Although Tsuchiya and its colleague have illustrated route of synthesis (Tsuchiya, S. etc. of AOGH recently Org.Biomol.Chem.12,3016–3020(2014);The Chem.Eur.J.21,7835-7840 such as Tsuchiya, S. (2015)).There is no the productions that research SxtA or any other Sxt albumen participate in AOGH for the research.The step is Saxidomus poison Committed step in element and N-STX production.
Therefore, it is presently available for preparing unique commercially available height of saxitoxin and N-STX in a word Yield approach is to separate it with its naturally-produced cell (such as cyanobacteria).
Method currently used for producing N-STX cannot be produced newly with manufacturing amount needed for required pharmaceutical composition Saxitoxin.Accordingly, there exist the needs of the method to improved production N-STX.
The biosynthesis pathway for producing N-STX has been illustrated in detail enough now so as to logical Cross recombination approach production N-STX.Particularly, in the 34 sxt genes or ORF of Kellmann (2008) identification, It is identified for producing those necessary to N-STX.
It has now been found that the biosynthesis pathway that Kellmann (2008) is proposed is incorrect, and Kellmann Approach refers to some genes unnecessary for recombinant production N-STX;Kellmann (2008) approach also fails to refer to Sxt gene necessary to some production N-STXs.
Therefore, the present invention provides the recombination approach for producing N-STX and the like, Yi Jiyong for the first time The recombination approach of various intermediates is produced in the production in N-STX and the like.
The present invention additionally aids production saxitoxin and its other analogs, such as Gonyautoxin.
Summary of the invention
In one embodiment, the present invention provides the methods for producing N-STX or its analog, should Method the following steps are included:
(A) following substrate is contacted with SxtA, B, D, G, H, I, S, T, U, V, W and X polypeptide in reaction medium:
(i) S-adenosylmethionine,
(ii) arginine,
(iii) acetyl coenzyme A, malonyl coenzyme A or propionyl coenzyme A, and
(iv) carbamyl phosphate ester
And optionally
(B) N-STX or its analog are separated and/or purified from reaction medium.
Preferably, this method carries out in host cell, and the host cell includes the nucleic acid point for encoding the Sxt polypeptide Son.
The present invention also provides the method for producing saxitoxin or its analog in host cell, this method include with Lower step:
(A) in the presence of following substrate, in the medium culture comprising coding Sxt polypeptide A, B, D, G, H, I, S, T, U, V, the host cell of the nucleic acid molecules of W and X:
(i) S-adenosylmethionine,
(ii) arginine,
(iii) acetyl coenzyme A, malonyl coenzyme A or propionyl coenzyme A, and
(iv) carbamyl phosphate ester
It is preferred that under conditions of being suitble to production N-STX or its analog.Preferably, host cell additionally comprises Encode the nucleic acid molecules of PPT enzyme.
Preferably, this method further include from host cell or culture medium separate and/or purify N-STX or its The step of analog.
As used herein, term " N-STX " refers to the compound having following structure or its stereoisomer:
Host cell can be any cell that can express the nucleic acid molecules for encoding all specific Sxt polypeptides.Host is thin Born of the same parents are preferably recombinant host cell.
As used herein, term " recombination " refers to host cell not the fact that be wild-type host cells, such as they are Nucleic acid molecules by introducing one or more one or more specific Sxt polypeptides of coding are modified.
Host cell can be prokaryotic cell or eukaryocyte.For example, host cell can be bacterial cell.Bacterium can be with It is Gram-positive or gramnegative bacterium.Gram-positive bacterium can selected from by actinomyces (Actinobacteria), The group of Firmicutes (Firmicutes) and soft film bacterium door (Tenericutes) composition.Gramnegative bacterium can selected from by Produce water bacterium door (Aquificae), Bacteroidetes/cellulomonas door-green bacterium door (Bacteroidetes/Fibrobacteres- Chlorobi) (FCB group), abnormal cocci-Thermus door (Deinococcus-Thermus), Fusobacterium door (Fusobacteria), bud monad door (Gemmatimonadetes), nitrification spirillum door (Nitrospirae), floating mould Door-wart germ door/Chlamydia door (Planctomycetes-Verrucomicrobia/Chlamydiae) (PVC group), mycetozoan The group of door (Proteobacteria), conveyor screw door (Spirochaetes) and mutual bacteria door (Synergistetes) composition.
Preferably, host cell is bacteriode door (Phylum Proteobacteria);More preferably γ-mycetozoan Class (Gammaproteobacteria);More preferably enterobacteria (Enterobacteriaceae) section;It is even more preferably angstrom uncommon Salmonella (Escherichia) belongs to.Most preferably, host cell is Escherichia coli (E.coli) kind.In some embodiments, place Chief cell is that pseudomonad (Pseudomonas) belongs to.
Also eukaryocyte, such as yeast cells and mammalian cell can be used.Since N-STX is to many Eukaryocyte is toxic, therefore eukaryotic host cell is preferably the host cell insensitive to N-STX toxicity.These are thin Born of the same parents, which can be natural not susceptible (such as yeast cells) or they, can be engineered to that not susceptible (such as coexpression is new The mammalian cell of saxitoxin antagonist).
Alternatively, host cell can be the host cell for not secreting N-STX, that is, any new Saxidomus generated Toxin retains in the cell (thus preventing it from playing its toxic effect).Host cell is also possible to plant cell.
In some embodiments, host cell is heterotrophic organism.Host cell can be photoheterotroph or chemistry Heterotrophic organism.Heterotrophic organism is a kind of biology for being unable to fixed carbon and being grown using organic carbon.Heterotrophic organism can be based on them How to obtain energy and further division: if heterotrophic organism utilizes laser energy supply, it is exactly photoheterotroph;If different Health object uses chemical energy, then it is exactly chemoheterotroph.In some embodiments, host cell is not from health Object.Autotroph can be photoautotroph or chemoautotroph.
N-STX is spontaneous by several marine dinoflagellates and Fresh Watcr Blue Algae.The present invention is not related to by this open country The raw naturally-produced N-STX of type host cell species.Therefore, in certain embodiments of the present invention, host cell is not It is dinoflagellate or cyanobacteria.
Particularly, host cell, which is not preferably selected from, intends column spore algae (Cylindrospermopsis by cyanobacteria Raciborskii), aphanizomenon flos aquae (Anphanizomenon flos-aquae), synnema algae (APh) are according to husky synnema algae (Aphanizomenon) (APh), (issatschenkoi (usaceb) Proskina-Lavrenco), soft and fine synnema algae (Aphanizomenon gracile (Lemm) Lemm), curling anabena (Anabaena circinalis), sheath silk algae The group of (Lyngbya wollei) and Alexandrium tamarense (Alexandrium tamarens) composition.
Particularly, host cell preferably selected from by anabena (Anabaena), Aphanizomenon (Aphanizomenon), Quasi- column spore Trentepohlia (Cylindrospermopsis), sheath Ulothrix (Lyngbya), floating Ulothrix (Planktothrix), tip Trentepohlia (Raphidiopsis), Scytonema (Scytonema) and dinoflagellate (Alexandrium (Alexandrium), unarmored dinoflagellate (Gymnodinium) and pears dinoflagellate (Pyrodinium)) composition group.
However, host cell can be recombination dinoflagellate or recombined blue algae, such as compared with wild type dinoflagellate or cyanobacteria The dinoflagellate being modified or cyanobacteria (such as by adding one or more genes, preferably passing through addition one or more sxt gene). Host cell includes and/or expression encodes the nucleic acid molecules of specific Sxt albumen.
Preferably, Sxt polypeptide and sxt gene are obtained from cyanobacteria or dinoflagellate.It is highly preferred that Sxt polypeptide and sxt gene are obtained from fish Raw meat algae (Anabaena), Aphanizomenon (Aphanizomenon) intend column spore Trentepohlia (Cylindrospermopsis), sheath silk algae Belong to (Lyngbya), floats Ulothrix (Planktothrix), tip Trentepohlia (Raphidiopsis), Scytonema (Scytonema), Alexandrium (Alexandrium), unarmored dinoflagellate (Gymnodinium) or pears dinoflagellate (Pyrodinium). Even further preferably, Sxt polypeptide and sxt gene, which are obtained from cyanobacteria, intends column spore algae (Cylindrospermopsis Raciborskii), aphanizomenon flos aquae (Anphanizomenon flos-aquae), synnema algae (APh) is according to husky synnema algae (Aphanizomenon) (APh), (issatschenkoi (usaceb) Proskina-Lavrenco), soft and fine synnema algae (Aphanizomenon gracile (Lemm) Lemm) is crimped anabena (Anabaena circinalis), sheath silk algae (Lyngbya wollei) or Alexandrium tamarense (Alexandrium tamarens).Most preferably, Sxt polypeptide and sxt Gene is obtained from cyanobacteria and intends column spore algae (C.raciborskii) T3 bacterial strain.In some embodiments, Sxt polypeptide and sxt gene can To be obtained from long spore anabena (Dolichosporum circinale) 134C or Alexandrium mimutum Halim (A.minutum).
The nucleic acid molecules for encoding specific Sxt albumen can be heterologous molecule, i.e., does not deposit naturally in wild-type host cells Molecule.
As used herein, term SxtA preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:10 or Have the function of at least 50% amino acid sequence identity with it and there is the polyketide synthase GAP-associated protein GAP containing four catalyst structure domains Sequence: sxtA1: transmethylase;SxtA2:GNAT transacetylase;SxtA3: acyl carrier protein and sxtA4:II class ammonia Based transferase.
As used herein, term sxtA preferably refers to the core with the nucleotide sequence provided in SEQ ID NO:11 or 12 Acid molecule has at least 50% nucleotide sequence homology to it and encodes related containing the polyketide synthase of four catalyst structure domains The sequence of albumen: sxtA1: transmethylase;SxtA2:GNAT transacetylase;SxtA3: acyl carrier protein and sxtA4:II Class aminopherase.
As used herein, term SxtB preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:7 or With it at least 50% amino acid sequence identity and with the sequence of cytidine deaminase function.
As used herein, term sxtB preferably refers to the nucleic acid with the nucleotide sequence provided in SEQ ID NO:8 or 9 Molecule has at least 50% nucleotide sequence homology with it and encodes the sequence of cytidine deaminase.SxtB polypeptide can also energy Enough cyclisation.
As used herein, term SxtC preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:4 or There is at least 50% amino acid sequence identity with it and encode the sequence of adjusting subunit.As used herein, term SxtC is preferred Refer to the nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:5 or 6 or there is at least 50% nucleotides sequence with it Column identity simultaneously encodes the sequence for adjusting subunit.SxtC polypeptide can also being capable of decarbamylation.
As used herein, term SxtD preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:1 or With it at least 50% amino acid sequence identity and with the sequence of desaturase function.As used herein, term sxtD It is preferred that referring to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:2 or 3 or there is at least 50% nucleosides with it Acid sequence identity and the sequence for encoding desaturase.
As used herein, term SxtE preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:13 or With it at least 50% amino acid sequence identity and with the sequence of companion's sample protein function.As used herein, term SxtE preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:14 or 15 or has at least with it 50% nucleotide sequence homology and the sequence for encoding companion's sample albumen.
As used herein, term SxtF preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:16 or The sequence of protein function is squeezed out with it at least 50% amino acid sequence identity and with sodium driving multiple medicine and toxic chemical Column.As used herein, term sxtF preferably refers to the nucleic acid with the nucleotide sequence provided in SEQ ID NO:17 or 18 point Son has at least 50% nucleotide sequence homology with it and encodes the sequence of sodium driving multiple medicine and toxic chemical extrusion albumen Column.
As used herein, term SxtG preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:19 or With it at least 50% amino acid sequence identity and with the sequence of amidinotransferase function.As used herein, term SxtG preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:20 or 21 or has at least with it 50% nucleotide sequence homology and the sequence for encoding amidinotransferase.
As used herein, term SxtH preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:22 or With it at least 50% amino acid sequence identity and with the sequence of dioxygenase function.As used herein, term sxtH It is preferred that referring to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:23 or 24 or there is at least 50% core with it Nucleotide sequence identity and the sequence for encoding dioxygenase.SxtH polypeptide can also being capable of C12 hydroxylating.
As used herein, term SxtI preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:25 or With it at least 50% amino acid sequence identity and with the sequence of O- carbamyl based transferase function.Such as this paper institute Preferably refer to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:26 or 27 with, term sxtI or has with it At least 50% nucleotide sequence homology and the sequence for encoding O- carbamyl based transferase.
As used herein, term SxtJ preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:28 or There is the sequence of at least 50% amino acid sequence identity with it.As used herein, term sxtJ preferably refers to SEQ ID The nucleic acid molecules of the nucleotide sequence provided in NO:29 or 30 or the sequence with it at least 50% nucleotide sequence homology Column.
As used herein, term SxtK preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:31 or There is the sequence of at least 50% amino acid sequence identity with it.As used herein, term sxtK preferably refers to SEQ ID The nucleic acid molecules of the nucleotide sequence provided in NO:32 or 33 or the sequence with it at least 50% nucleotide sequence homology Column.SxtJ and sxtK is usually related to O- carbamyl based transferase.They, which can be, adjusts subunit and/or mediation SxtI and its The combination of its albumen or film.
As used herein, term SxtL preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:34 or With it at least 50% amino acid sequence identity and with the sequence of GDSL- lipase function.As used herein, term SxtL preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:35 or 36 or has at least with it 50% nucleotide sequence homology and the sequence for encoding GDSL- lipase.SxtL polypeptide can also being capable of decarbamylation.
As used herein, term SxtM preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:37 or Protein function is squeezed out with it at least 50% amino acid sequence identity and with sodium driving multiple medicine and toxic chemical Sequence.As used herein, term sxtM preferably refers to the nucleic acid with the nucleotide sequence provided in SEQ ID NO:38 or 39 Molecule has at least 50% nucleotide sequence homology with it and encodes sodium driving multiple medicine and toxic chemical squeezes out albumen Sequence.
As used herein, term SxtN preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:40 or With it at least 50% amino acid sequence identity and with the sequence of sulfotransferase function.As used herein, term SxtN preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:41 or has at least 50% core with it The sequence of nucleotide sequence identity and encoding sulfotransferase.
As used herein, term SxtO preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:72 or With it at least 50% amino acid sequence identity and with the sequence of adenylylsulfate kinase function.As used herein, art Language sxtO preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:73 or has at least 50% with it Nucleotide sequence homology and the sequence for encoding adenylylsulfate kinase.SxtO polypeptide can also being capable of PAPS biosynthesis.
As used herein, term SxtP preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:69 or With the sequence of its saxitoxin binding protein function at least 50% amino acid sequence identity and with presumption.Such as this Used in text, term sxtP preferably refer to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:70 or 71 or and its With at least 50% nucleotide sequence homology and encode the protein-bonded sequence of saxitoxin of presumption.
As used herein, term SxtQ preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:66 or There is the sequence of at least 50% amino acid sequence identity with it.As used herein, term sxtQ preferably refers to SEQ ID The nucleic acid molecules of the nucleotide sequence provided in NO:67 or 68 or the sequence with it at least 50% nucleotide sequence homology Column.
As used herein, term SxtR preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:63 or With it at least 50% amino acid sequence identity and with the sequence of acyl-CoA N- acyltransferase function.As herein Used, term sxtR preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:64 or 65 or has with it There is the sequence of at least 50% nucleotide sequence homology and encoding acyl coacetylase N- acyltransferase.
As used herein, term SxtS preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:57 or There is at least 50% amino acid sequence identity with it and be capable of the sequence of epoxidation and ring formation N-STX precursor. As used herein, term sxtS preferably refer to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:58 or 59 or There is at least 50% nucleotide sequence homology with it and be capable of the sequence of epoxidation and ring formation N-STX precursor.
As used herein, term SxtT preferably refer to polypeptide with the amino acid sequence provided in SEQ ID N:54 or There is at least 50% amino acid sequence identity with it and the hydroxylated sequence of N-STX precursor C-11 can be made.Such as It is used herein, term sxtT preferably refer to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:55 or 56 or with It has at least 50% nucleotide sequence homology and can make the hydroxylated sequence of N-STX precursor C-11.
As used herein, term SxtU preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:51 or With it at least 50% amino acid sequence identity and with the sequence of short-chain alcohol dehydrogenase function.As used herein, term SxtU preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:52 or 53 or has at least with it The sequence of 50% nucleotide sequence homology and encoding short-chain alcohol dehydrogenase.SxtU polypeptide can also can C1 reduction.
As used herein, term SxtV preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:48 or Have the function of at least 50% amino acid sequence identity with it and there is FAD dependence succinate dehydrogenase/fumaric reductase Sequence.As used herein, term sxtV preferably refers to the core with the nucleotide sequence provided in SEQ ID NO:49 or 50 Acid molecule has at least 50% nucleotide sequence homology with it and encodes FAD dependence succinate dehydrogenase/fumaric acid also The sequence of protoenzyme.SxtV polypeptide can also encode dioxygenase reductase.
As used herein, term SxtW preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:45 or With it at least 50% amino acid sequence identity and with the sequence of ferredoxin function.As used herein, term SxtW preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:46 or 47 or has at least with it The sequence of 50% nucleotide sequence homology and encoding ferredoxin.SxtW polypeptide can also be with coded electronic carrier.
As used herein, term SxtX preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:42 or There is at least 50% amino acid sequence identity with it and the hydroxylated sequence of N-STX N-1 can be made.As herein Used, term sxtX preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:43 or 44 or has with it There is at least 50% nucleotide sequence homology and the hydroxylated sequence of N-STX N-1 can be made.
As used herein, term SxtY preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:74 or The sequence of subfunction is adjusted with it at least 50% amino acid sequence identity and with phosphoric acid dependent transcription.Such as this paper institute Preferably refer to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:75 with, term sxtY or has at least with it 50% nucleotide sequence homology and the sequence for encoding phosphoric acid dependent transcription regulator.SxtY polypeptide can also can signal turn It leads.
As used herein, term SxtZ preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:76 or With it at least 50% amino acid sequence identity and with the sequence of histidine kinase function.As used herein, term SxtZ preferably refers to nucleic acid molecules with the nucleotide sequence provided in SEQ ID NO:77 or has at least 50% core with it The sequence of nucleotide sequence identity and encoding histidine kinases.
The function and ability of some sxt genes further illustrate in Fig. 2, Fig. 3, Fig. 4 A, Fig. 4 B, in which it can be seen that one A bit intermediate X can be converted to intermediate Y (the wherein structure that X and Y is determining intermediate).
As used herein, term ORF5 preferably refer to polypeptide with the amino acid sequence provided in SEQ ID NO:60 or With it at least 50% amino acid sequence identity and with the sequence of cyanophage S-PM2 PROTEIN C AF34141 sample protein function Column.ORF5 is also referred to as ORF24 in the art.As used herein, term orf5 preferably refers to SEQ ID NO:61 or 62 In the nucleic acid molecules of nucleotide sequence that provide or there is at least 50% nucleotide sequence homology and encode with it bite algae phagocytosis The sequence of body S-PM2 PROTEIN C AF34141 sample albumen.
Preferably, host cell, which is additionally comprised and/or expressed, encodes 4'-phosphopantetheine based transferase (PPT Enzyme) nucleic acid molecules.As used herein, term PPT enzyme preferably refers to the amino acid provided in SEQ ID NO:78 or 90 The polypeptide of sequence at least 50% amino acid sequence identity and has Phosphopantetheinyl transferase function with it The sequence of energy.As used herein, term PPT enzyme gene preferably refers to the nucleosides provided in SEQ ID NO:79,80 or 89 The nucleic acid molecules of acid sequence have at least 50% nucleotide sequence homology with it and encode phosphopantetheine base turn Move the sequence of enzyme.Preferably, PPT enzyme is encoded by bacillus subtilis sfp gene (SEQ ID NO:89).Most preferably, PPT enzyme Intend column spore algae (C.raciborskii) T3 bacterial strain from cyanobacteria.In some embodiments, first 20 of PPT enzyme can be removed The 1-20 (such as 20) of amino acid is to increase the solubility of PPT enzyme.Furthermore it is possible to which first V in amino acid sequence is changed For M.
Preferably, the nucleotide sequence of nucleic acid molecules carries out codon optimization for host cell.
Sxt polypeptide, ORF and PPT enzyme are preferably defined herein as the ammonia for having at least 50% with reference amino acid sequence Base acid sequence identity.Preferably, Sxt, ORF and PPT enzyme polypeptide and specific reference polypeptide have at least 60%, 70%, 80%, 90%, 95%, 98% or 99% amino acid sequence identity.Sxt nucleic acid molecules, orf and PPT enzymatic nucleic acid molecule exist The nucleotide sequence homology preferred herein for being defined as having at least 50% with reference nucleotide sequence.Preferably, sxt, orf With PPT enzymatic nucleic acid molecule and specific reference nucleic acid molecule have at least 60%, 70%, 80%, 90%, 95%, 98% or 99% nucleotide sequence homology.
Nucleic acid molecules can be DNA or RNA.It is same that percent amino acid sequence can be obtained using BLAST comparison method Property and nucleotide sequence homology (Altschul etc. (1997), " Gapped BLAST and PSI-BLAST:a new generation of protein database search programs",Nucleic Acids Res.25:3389- 3402;and http://www.ncbi.nlm.nih.gov/BLAST).Preferably, using standard or default alignment parameters.Mark Quasi- protein-protein BLAST (blastp) can be used for finding similar sequence in albumen database.With other blast programs Equally, blastp is intended to find similar regional area.When sequence similarity crosses over entire sequence, blastp will also report complete Office compares, this is the preferred result of Identification of Fusion Protein purpose.Preferably, using standard or default alignment parameters.In some cases, " low complex degree filter " can be cancelled.BLAST protein searches can also be carried out with BLASTX program, score=50, and word length= 3.It is compared to obtain vacancy for comparative purposes, it can such as Altschul (1997) Nucleic Acids Res.25: 3389 uses Gapped BLAST (in BLAST 2.0).Alternatively, PSI-BLAST (in BLAST 2.0) can be used for holding The iterative search (ibid referring to Altschul etc. (1997)) of remote relationship between row detection molecules.When using BLAST, When Gapped BLAST, PSI-BLAST, the default parameters of each program can be used.About nucleotide sequence comparison, can make The target is realized with MEGABLAST, discontinuous megablast and blastn.Preferably, ginseng is compared using standard or default Number.MEGABLAST is specially designed for effectively finding the long alignment between closely similar sequence.Discontinuous MEGABLAST It can be used for finding nucleotide sequence similar but different to nucleic acid of the invention.BLAST nucleotide algorithm will be by that will inquire The short subsequence of referred to as word is decomposed into find similar sequence.The program identifies that (word is ordered with the accurate match of query word first In).Then, blast program extends the hit of these words with multiple steps and is compared with generating final vacancy.In some embodiments In, BLAST nucleotide search can be carried out with BLASTN program, score=100, word length=12.Control blast search sensitivity Important parameter first is that word size.More sensitive most important of blastn ratio MEGABLAST is the reason is that it uses shorter default Word size (11).Therefore, blastn is better than in terms of finding the comparison with the related nucleotide sequences of other biologies MEGABLAST.Word size can adjust in blastn, and can be reduced to minimum value 7 from default value to improve search spirit Sensitivity.By using the discontinuous megablast page (www.ncbi.nlm.nih.gov/Web/Newsltr/ newly introduced FallWinter02/blastlab.html it) may be implemented more sensitively to search for.The algorithm that the page uses is similar to the report such as Ma Algorithm (the Bioinformatics.2002Mar in road;18(3):440-5).Expand compared to requiring accurate word matching to be used as to compare The origin of exhibition, discontinuous megablast use discrete word in longer template window.In coding mode, pass through It concentrates on the discovery matching at the first and second codon positions and ignores the mispairing in the third place to consider that third basis is put It is dynamic.It is searched in discontinuous MEGABLAST than using the standard blastn of same words size quicker using identical word size Feel and effective.The discontinuous unique parameter of megablast is: word size: 11 or 12;Template: 16,18 or 21;Template type: Encode (0), non-coding (1) or both (2).
The Sxt polypeptide sequence that cyanobacteria intends column spore algae (Cylindrospermopsis raciborskii) T3sxt gene can To obtain (http://www.ncbi.nlm.nih.gov/nuccore/ at registration number DQ787200 from GenBank DQ787200).The amino acid sequence that cyanobacteria intends column spore algae (Cylindrospermopsis raciborskii) T3Sxt polypeptide exists It is provided in annex " sequence " part of this paper.However, the present invention is not limited to the sequences of those polypeptides;The present invention covers from other The polypeptide of species has identical as quasi- column spore algae (Cylindrospermopsis raciborskii) the T3 polypeptide of the cyanobacteria Function.
In the method for the invention, make that substrate is contacted with Sxt polypeptide A, B, D, G, H, I, S, T, U, V, W and X or host is thin Born of the same parents include the nucleic acid molecules of one or more such polypeptides of coding.In certain embodiments of the present invention, substrate is not more with Sxt One of peptide A, B, D, G, H, I, S, T, U, V, W and X or a variety of contacts or host cell do not include one or more codings this The nucleic acid molecules of class polypeptide.In some embodiments of the method for the present invention, it can be used or without using the such polypeptide of coding Other Sxt polypeptides or nucleic acid molecules.
If method of the invention uses specific Sxt polypeptide really, substrate will be contacted with the Sxt polypeptide and/or place Chief cell is by the nucleic acid molecules comprising encoding this polypeptide.If method of the invention does not use specific Sxt polypeptide, substrate It will not be contacted with the Sxt polypeptide and/or host cell will not include the nucleic acid molecules for encoding this polypeptide.
In some embodiments, method of the invention can in addition with or without the use of independently selected from by Sxt C, E, J, one of group of K, L and R composition or a variety of Sxt polypeptides, or the nucleic acid molecules of the such polypeptide of coding.Preferably, of the invention Method in addition using selected from by one of Sxt C, E, J, K, L and R (preferably C and/or E) group formed or a variety of Sxt it is more Peptide, or the nucleic acid molecules of the such polypeptide of coding.
In some embodiments, in addition method of the invention uses Sxt E or the such polypeptide of coding nucleic acid molecules.? In other embodiment, in addition method of the invention does not use the nucleic acid molecules of Sxt E or this polypeptide of coding.
In some embodiments, method of the invention can be used or without using Sxt Q polypeptide or this polypeptide of coding Nucleic acid molecules.
In some embodiments, method of the invention can be used or without using Sxt R polypeptide or this polypeptide of coding Nucleic acid molecules.
In some embodiments, method of the invention can be used or without using ORF24 polypeptide or this polypeptide of coding Nucleic acid molecules.
In other embodiments, method of the invention can be used or without using independently selected from by Sxt F, M, N, O, P, one of group of Y, Z, ORF3, ORF4, ORF29, ORF34, OMPR or HISA composition or a variety of Sxt polypeptides, or encode this The nucleic acid molecules of class polypeptide.Preferably, method of the invention do not use selected from by Sxt F, M, N, O, P, Y, Z, ORF3, ORF4, One of group of ORF29, ORF34, OMPR or HISA composition or a variety of Sxt polypeptides, or the nucleic acid molecules of the such polypeptide of coding.
In certain embodiments of the present invention, method of the invention can be used or without using independently selected from by following One of group of composition or a variety of Sxt polypeptides (or nucleic acid molecules of the such polypeptide of coding):
It is special to prepare the sheath silk algae (Lyngbya wollei) of saxitoxin (LWTX-1 to -6) to need Sxt ACT Anisotropic " weird " analog.They carry methyl-acetyl ester side chain rather than carbamyl base side chain.
May need Sxt DIOX and Sxt SUL to prepare C-11 sulphation toxin analog, for example, Gonyautoxin 1 to 4 and C-1 is to C-4 toxin.
SxtN1 and SxtN2 may be needed to prepare various N- sulfocarbamoyl analogs (C- toxin).From cyanobacteria The SxtN of quasi- column spore algae (C.raciborskii) T3 may due to catalytic site mutation and inactivate.
In other embodiments, method of the invention can be used or without using independently selected from by ORF24, P and Q group At one of group or a variety of Sxt polypeptides, or nucleic acid molecules of the such polypeptide of coding.Preferably, method of the invention does not make With selected from one or more Sxt polypeptides by ORF24, P and Q group formed, or the nucleic acid molecules of the such polypeptide of coding.
Host cell of the invention can be used standard molecular biological technique (such as Green&Sambrook, " Molecular Cloning:A Laboratory Manual ", Fourth Edition, 2012) and with reference to disclosed herein Embodiment produces.
The coded sequence of every kind of particular polypeptide will be operably associated with suitable regulating element, and the regulating element helps In generating specific polypeptide in host cell.For example, each coded sequence will with suitable promoter and terminate subcomponent can It is operatively connected.Preferably, these regulating elements are optimized for host cell.For example, if host cell is Escherichia coli, Then it is preferable to use Escherichia coli regulating element (such as promoter, terminator, ribosome binding sequences).
One or more nucleic acid molecules can be integrated into the genome of host cell.One or more nucleic acid molecules can It is present in host cell by the form of plasmid or carrier.Preferably, all specific nucleic acids are all integrated into the base of host cell Because in group.It can will be in the sugared operon in one or more specific nucleic acid Insertion Into Host Cell genomes.
Nucleic acid molecules can exist in the form of operon or gene cluster segment, that is, encode more than one required polypeptide. These can independently be transformed into host cell.For example, the first nucleic acid molecules may include coding sxtA, sxtB and sxtC's Open reading frame;Second nucleic acid molecules may include coding sxtD, sxtE, sxtG, sxtH, sxtI, sxtJ, sxtK and sxtL's Open reading frame;Third nucleic acid molecules may include coding sxtQ, sxtR, orf24, sxtS, sxtT, sxtU, sxtV, sxtW and The open reading frame of sxtX;And/or the 4th nucleic acid molecules may include coding sxtF, sxtP and sxtM open reading frame.? In some embodiments, third nucleic acid molecules may include coding sxtQ, sxtR, sxtS, sxtT, sxtU, sxtV, sxtW and sxtX;Or the open reading frame of sxtS, sxtT, sxtU, sxtV, sxtW and sxtX.
Nucleic acid molecules can also include suitable selected marker (such as gene of coding antibiotic resistance).Nucleic acid molecules are also It may include other control elements, so that the expression of one or more polypeptides is derivable.In some preferred embodiments In, the expression of SxtA is derivable.
In certain embodiments of the present invention, the nucleic acid of one or more nucleic acid molecules or encoding function equivalent polypeptide point Son may endogenously be present in host cell (in host cell gene group or in indigenous plasmid).
The present invention also extends to all host cells as defined herein.Particularly, the present invention provides host cell, Comprising encoding the core independently selected from one of group being made of A, B, D, G, H, I, S, T, U, V, W and X or a variety of Sxt polypeptides Acid molecule.Host cell can additionally comprise or not comprising coding independently selected from being made of Sxt C, E, J, K, L and/or R The nucleic acid molecules of one of group or a variety of Sxt polypeptides.Host cell can additionally comprise or the nucleic acid not comprising coding Sxt Q Molecule.
Host cell can additionally comprise or do not include coding independently selected from by Sxt F, M, N, O, P, Y, Z, ORF3, One or more cores of a variety of or all Sxt polypeptides of one of the group of ORF4, ORF29, ORF34, OMPR or HISA composition Acid molecule.Preferably, host cell do not include coding selected from by Sxt F, M, N, O, P, Y, Z, ORF3, ORF4, ORF29, The nucleic acid molecules of a variety of or all Sxt polypeptides of one of the group of ORF34, OMPR or HISA composition.
Reaction medium and culture medium provide suitable condition for production N-STX or its analog.Condition will be wrapped also Suitable pH and temperature are included, this can be readily determined by technical staff.It is being suitable for production N-STX or its analog Under conditions of cultivate host cell in the medium.Suitable culture medium is well known in the art.These will be according to being used Host cell selected.Preferably, culture medium will be aqueous medium.
Starting material for producing N-STX or its analog or variant is:
(i) S-adenosylmethionine,
(ii) arginine,
(iii) acetyl coenzyme A, malonyl coenzyme A or propionyl coenzyme A, and
(iv) carbamyl phosphate ester.
Therefore, when this method starts, need to obtain the above-mentioned substrate of suitable concentration in reaction medium and culture medium.This Field technical staff can readily determine that the above-mentioned substrate of suitable concentration.It can be by arginine easily from the culture medium of surrounding It is middle to take in as substrate into host cell.Other substrate (i.e. S-adenosylmethionine, acetyl coenzyme A, malonyl coenzyme A, third Acyl coenzyme A and carbamyl phosphate ester) it is unstable.Preferably, these substrates are produced with enough amounts in host cell (they are present in all living cells).Increase in such a way that this field is conventional if desired, host cell can be modified easily Add the yield of these substrates.
In certain embodiments of the present invention, this method is carried out in 14-24 DEG C of temperature;It is preferred that being carried out at 16-22 DEG C; Even preferably carried out at about 17,18,19,20 or 21 DEG C;Most preferably carried out at about 19 DEG C.
Preferably, N-STX is separated and/or purified from reaction or culture medium.This separation/purifying can lead to Any suitable method is crossed to carry out.
In embodiments of the present invention, wherein the method carries out in host cell, and N-STX will be in place It is produced in chief cell.Therefore host cell can be separated with culture medium (such as by filtering or being centrifuged);Then it can crack Host cell;With harvest N-STX.
Can be separated from reaction or culture medium by the Solid Phase Extraction on C-18 reversed-phase resin N-STX with Remove hydrophobic compound;N-STX will occur with flow type (flow-through).Also it can be used in active carbon On using cation exchange resin Solid Phase Extraction.For further purification technique, US2015/0099879 can be referred to.
The present invention also provides the methods of the production such as various intermediates of undefined N-STX.These methods can To be carried out in cell-free medium or in the host cell of the nucleic acid molecules comprising encoding suitable Sxt polypeptide.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 4]:
Wherein, R is OH, method includes the following steps:
(A) Formula II compound [intermediate 3] and Sxt S and optional α-ketoglutaric acid and optional molecular oxygen are connect Touching,
Wherein R is OH;And (B) isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 4]:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt S and Formula II compound is converted compound of formula I by Sxt S, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt S in the medium in the presence of compound (intermediate 3):
Wherein R is OH.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 4']:
Wherein R is OH, method includes the following steps:
(A) Formula II compound [intermediate 3] and Sxt S and optional α-ketoglutaric acid and optional molecular oxygen are connect Touching,
Wherein R is OH;And (B) isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 4']:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt S and Formula II compound is converted compound of formula I by Sxt S, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt S in the medium in the presence of compound (intermediate 3):
Wherein R is OH.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 5]:
Wherein R is OH, method includes the following steps:
(A) Formula II compound [intermediate 4] and Sxt D and optional NADH and optional NADPH are contacted:
Wherein R is OH;And
(B) the isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 5]:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt D and Sxt D converts Formula II compound to the compound of Formulas I, in formula Culture includes the host cell of the nucleic acid molecules of coding Sxt D in the medium in the presence of II compound [intermediate 4]:
Wherein R is OH.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 5']:
Wherein R is OH, method includes the following steps:
(A) Formula II compound [intermediate 4'] and Sxt D and optional NADH and optional NADPH are contacted:
Wherein R is OH;And
(B) the isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 5']:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt D and Formula II compound is converted compound of formula I by Sxt D, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt D in the medium in the presence of compound [intermediate 4']:
Wherein R is OH.
In other embodiments, the present invention provides production compound of formula I [intermediate 6] method,
Wherein R is OH, method includes the following steps:
(A) Formula II compound [intermediate 5] and Sxt S and optional α-ketoglutaric acid and optional molecular oxygen are connect Touching:
Wherein R is OH;And (B) isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 6]:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt S and Formula II compound is converted compound of formula I by Sxt S, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt S in the medium in the presence of compound [intermediate 5]:
Wherein R is OH.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 6']:
Wherein R is OH, method includes the following steps:
(A) make Formula II compound [intermediate 5'] and Sxt S and optional α-ketoglutaric acid and optional molecular oxygen Contact:
Wherein R is OH;And (B) isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 6']:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt S and Formula II compound is converted compound of formula I by Sxt S, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt S in the medium in the presence of compound [intermediate 5']:
Wherein R is OH.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 7]:
Wherein R is OH, method includes the following steps:
(A) Formula II compound [intermediate 6] and Sxt S and optional α-ketoglutaric acid and optional molecular oxygen are connect Touching:
Wherein R is OH;And (B) isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 7]:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt S and Formula II compound is converted compound of formula I by Sxt S, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt S in the medium in the presence of compound [intermediate 6]:
Wherein R is OH.
In other embodiments, the present invention provides the methods of production compound of formula I [intermediate 7']:
Wherein R is OH, method includes the following steps:
(A) make Formula II compound [intermediate 6'] and Sxt S and optional α-ketoglutaric acid and optional molecular oxygen Contact:
Wherein R is OH;And (B) isolated or purified compound of formula I from reaction medium.
The present invention also provides the methods of production compound of formula I [intermediate 7']:
Wherein R is OH, method includes the following steps:
(A) under conditions of to produce Sxt S and Formula II compound is converted compound of formula I by Sxt S, in Formula II Culture includes the host cell of the nucleic acid molecules of coding Sxt S in the medium in the presence of compound [intermediate 6']:
Wherein R is OH.
Present invention also contemplates that the above method, wherein R is H.
The term as used herein " N-STX analog " covers the analog and variant of N-STX, such as Compound (preferably saxitoxin) those of is mentioned below.
Saxitoxin as disclosed herein and illustrating for N-STX biosynthesis pathway also allow for giving birth to Various saxitoxins, N-STX and Gonyautoxin variant, such as variant shown below are produced (with reference to Saxidomus poison The structure of element):
Saxitoxin as disclosed herein and illustrating for N-STX biosynthesis pathway also allow for giving birth to Produce following N-STX analog and variant (structure with reference to saxitoxin is as follows):
The molecular structure of saxitoxin.
The natural derivative (Oshima 1995) of paralytic shellfish poisoning (PSP).The abbreviation used is STX: saxitoxin; GTX: Gonyautoxin;C:C- toxin;Dc: deaminizating formyl;Do: deoxidation.
The substituent group of uncommon saxitoxin derivative.
(abbreviation used is LTX: sheath silk algae (Lyngbya wollei) toxin;GC: unarmored dinoflagellate (Gymnodinium Catenatum) toxin).
Zeteki toxin AB from the golden frog (Atelopus zeteki) molecular structure (Yotsu-Yamashita etc., 2004)。
Therefore, on the other hand, the present invention provides produce saxitoxin variant defined in table as above or its production In intermediate method, this method include it is disclosed herein for produce N-STX or N-STX production in Intermediate method, wherein improved this method with produce saxitoxin variant or its production in intermediate.
For example, in the production of saxitoxin, the use of Sxt X polypeptide or sxt X gene may be it is unnecessary, because Being responsible for the N1- hydroxylation steps in N-STX production for SxtX polypeptide, (and saxitoxin is non-N1- hydroxylating ).
Before C-11 sulfonation is to produce C-11 sulphation toxin (such as GTX-1 to -4), need carbon C-11 hydroxylating. This is by the estimated progress of SxtDIOX.
Sulfotransferase SxtN presumption catalysis N- sulfonation to produce N- sulfocarbamoyl toxin, such as GTX5/6 and C1-4 toxin.Do not know that these where of reaction in approach occur.However, they are likely to occur before STX is formed, i.e., Occur on intermediate rather than on the final product of approach.
On the other hand, the present invention provides the method for producing N-STX or its analog or variant, In, the method also comprises the step for contacting N-STX or its analog or variant with SxtN or SxtDIOX polypeptide Suddenly.For example, host cell can be the host cell for additionally comprising the gene of coding sxtN and/or sxtDIOX.
In this way it is possible to be converted saxitoxin to by SxtN (passing through the sulphation of carbamyl base side chain) GTX-5.Similarly, 11- hydroxystone etoxin can be converted for saxitoxin by SxtDIOX.The step will be in C- GTX-2/3 (or converting GTX-4/1 for N-STX) is converted by saxitoxin before 11 sulphations.
The toxin array produced in given bacterial strain is likely to different dynamic (reaction speed) and by each The result of every kind of enzyme combination to the relaxation substrate specificity of intermediate metabolites is modified and changed to kind.
Intermediate 8 is converted into intermediate 9 by O- carbamyl based transferase SxtI.Intermediate 8 and intermediate 9 To be the substrate of dioxygenase SxtH and SxtT, these enzymes convert dcSTX for intermediate 8 and convert STX for intermediate 9. Similar approach may be the production of neoSTX and dcneoSTX.
Conversion and intermediate 9 of the intermediate 8 to intermediate 9 and deaminizating formyl toxin turn to saxitoxin Change.
Conversion and hydroxyl of the hydroxylated intermediate 8 to hydroxylated intermediate 9 and deaminizating formyl N-STX Change conversion of the intermediate 9 to N-STX.
In yet another embodiment, the present invention provides the N-STX produced by means of the present invention or its Analog.The N-STX produced by means of the present invention or its analog can further with inorganic or organic acid or Alkali is converted into salt, especially its pharmaceutically acceptable salt.
Can be used for this purpose acid include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfonic acid, methanesulfonic acid, phosphoric acid, fumaric acid, succinic acid, Lactic acid, citric acid, tartaric acid, maleic acid, acetic acid, trifluoroacetic acid and ascorbic acid.Alkali suitable for this purpose includes alkali metal And alkaline earth metal hydroxide, such as sodium hydroxide, potassium hydroxide or cesium hydroxide, ammonia and organic amine for example diethylamine, triethylamine, Ethanol amine, diethanol amine, cyclohexylamine and dicyclohexyl amine.The program of forming salt is conventional in the art.
By means of the present invention or its salt production N-STX or its analog can further be formulated for Pharmaceutical composition.Therefore, on the other hand, the present invention provides the sides of production N-STX or its analog or its salt Method, this method are additionally included in pharmaceutical composition the step of preparing separation or purifying N-STX or its salt.It is excellent Selection of land, the step include N-STX will separate or purifying or its analog or its salt and it is one or more pharmaceutically Acceptable carrier, adjuvant and/or excipient composition.
It particularly, can be by N-STX or its analog or its salt and one kind according to technology well known in the art Or a variety of conventional carriers, diluent and/or excipient are prepared together.Pharmaceutically acceptable carrier, adjuvant and/or excipient can To be preservative.
The composition may be adapted to be administered orally or parenteral administration, for example, by intradermal, subcutaneous, peritonaeum, it is intravenous Or intramuscular injection.Therefore, suitable medicament forms include common or coated tablet, capsule, suspension and solution, containing active Component and optionally one or more conventional inert carriers and/or diluent, such as cornstarch, lactose, sucrose, crystallite are fine Dimension element, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethyl alcohol, water/glycerol, water/D-sorbite, water/ The suitable mixing of polyethylene glycol, propylene glycol, stearyl alcohol, carboxymethyl cellulose or fatty material such as tristearin or any of above substance Object.
Alternatively, N-STX or its salt can be formulated for local application, such as with gel, creams, lotion, paste Etc. forms, such as include N-STX or its salt and conventional thinner, carrier or excipient.
In other embodiments, N-STX or its salt can be formulated for transdermal administration.
Detailed description of the invention
Fig. 1: the previous bio-chemical pathway for being used to produce saxitoxin proposed by Kellmann (2008).
The bio-chemical pathway for being used to produce N-STX of-Fig. 3: two kinds of Fig. 2 revisions.In Fig. 2, which is related to And use 6-5-5 member ring intermediate.
In Fig. 3, which is related to being converted into 6-5-5 loop system using 5-5-5 member ring intermediate.
Fig. 4 A- Fig. 4 B: what in approach the bio-chemical pathway of proposition is shown in the generation of N-STX Place introduces N-1 hydroxyl.Hydroxylated position may occur for R group expression.
The SDS-PAGE of SxtA after Fig. 5: IMAC.Swimming lane 1: the protein solution containing SxtA (147kDa);Companion, DnaK and GroES, (respectively 70kDa and 60kDa);Sfp, (27kDa).Swimming lane 2: trapezoidal precision+protein standard is double-colored (BioRad).
The MALDI-TOF-TOF of the phosphopantetheine base of Fig. 6: SxtA-ACP structural domain is analyzed.Pass through The SxtA (a) of the MALDI-TOF-TOF analysis purifying and SxtA co-expressed with Sfp (b), respective quality is respectively 14694Da And 15034Da.The difference of 340Da corresponds to the attachment of phosphopantetheine base arm.
Fig. 7: the liquid chromatography-mass spectrography of Escherichia coli transformant methanolic extract.A) it induces (dotted line) and non-induced (real Line) both extracts total ion chromatogram.B) m/z=of both (dotted line) and non-induced (solid line) extract is induced 187.06 extraction chromatography of ions figure.C) ProgenesisQI is statisticallyd analyze, and compares induction (rectangular) and non-induced (circle) M/z 187.06 punishes the expression of daughter ion between extract.D) mass spectrum of the extract induced.
Fig. 8: by the scheme in the mannitol operon of PPT enzyme gene construct insertion Escherichia coli.
Fig. 9 A and Fig. 9 B:(a) it is integrated into the sxt1 in lactose operon, it is recombinated by flippase and removes kanamycins box. (b) sxt2 being integrated into maltose operon is recombinated by flippase and is removed kanamycins box.(c) it is integrated into xylose manipulation Sxt3 (all genes) in son is recombinated by flippase and is removed kanamycins box.(d) it is integrated into Melibiose operon Sxt4 does not remove kanamycins box.
Figure 10: the detection of the intermediate 8 in the cell extract of e. coli bl21 (DE3) T3PPT enzyme NSX3v1.
Figure 11: the MS/MS spectrum of the intermediate 8 in the cell extract of e. coli bl21 (DE3) T3PPT enzyme NSX3v1.
Figure 12: the accurate mass LC-MS analysis of N-STX standard solution (100nM).m/z 316.13639 The Salbutamol Selected Ion Monitoring chromatogram of (400mmu window) is shown in upper figure, and the MS spectrogram and theoretical spectra of peak value are respectively displayed on In the intermediate and following figure.Retention time (RT), manual integrated peak areas (MA), signal-to-noise ratio (SN) provide in upper figure.The matter of measurement Amount, chemical composition and quality error (ppm) provide in the intermediate and following figure.
Figure 13: the accurate mass LC-MS analysis of the extract from e. coli bl21 (DE3) sfp NSX3v3.m/z The Salbutamol Selected Ion Monitoring chromatogram of 316.13639 (400mmu windows) is shown in upper figure, the MS spectrogram and theoretical spectra of peak value It is respectively displayed in the intermediate and following figure.Retention time (RT), manual integrated peak areas (MA), signal-to-noise ratio (SN) are given in upper figure Out.Quality, chemical composition and the quality error (ppm) of measurement provide in the intermediate and following figure.
Figure 14: intermediate 1 is recycled from e. coli bl21 (DE3) pVB-sxtABC by various cell lysing methods. LC-MS analysis carries out (m/z 187.15534, mass window 400mmu) under SIM mode.Instrument response is (every with peak area Second counts) it provides.
Figure 15: the neoSTX production level percentage relative to Escherichia coli sfp NSX3v4 (sfp sxt123V4).sfp The estimated concentration of neoSTX is 2.8nM in the extract of sxt123V4.
Figure 16: e. coli bl21 (DE3) sfp grown in the diastatochromogenes in leisure 50ml TB culture medium in the future The sodium channel of (negative control bacterial strain) and BL21 (DE3) sfp NSX3v3 block toxin neoSTX concentration.Each represents biology It learns and repeats.Error bars indicate the standard deviation of 4 repetition MNBA measurement of identical extract.It is analyzed from 1.2g cell precipitate Before, all samples are extracted by weak cation exchange Solid Phase Extraction.Concentration is provided with nmol neoSTX/ liter.In extract The mean concentration of neoSTX is 38.74nM (± 7.8 standard deviation).
Figure 17: intermediate 1 is produced by e. coli bl21 (DE3) sfp pVB-sxtA.Sfp pVB: the pVB being not inserted into Carrier.Sfp nat 8: using with natural sxtA codon and the pVB of the 8bp spacer region between RBS and initiation codon is carried Body.Sfp nat 10: using with natural sxtA codon and the pVB of the 10bp spacer region between RBS and initiation codon is carried Body.Sfp syn 8: there is synthesis sxtA gene (by codon using optimization in expression in escherichia coli) and RBS and starting The pVB carrier of 8bp spacer region between codon.Sfp syn 10: have synthesis sxtA gene (by codon using optimization with In expression in escherichia coli) and RBS and initiation codon between 10bp spacer region pVB carrier.
Figure 18: the production of intermediate 8 and neoSTX in coli strain.T3PPT: Escherichia coli T3PPT enzyme NSX3V1. NsPPT: Escherichia coli T3PPT enzyme NSX3V1pET28b-NsPPT, coding tubercle bacterium (Hodularia spumigena) phosphoric acid is general Acyl mercaptoethylmaine based transferase.T3Ala18T3PPT enzyme: Escherichia coli T3PPT enzyme NSX3V1pET30b-Ala18T3PPT enzyme is compiled Code T3PPT enzyme, which removes preceding 18 -terminal amino acids to improve the solubility during expression.With 0.2mM IPTG and 1mM toluic acid Induced cultures, as shown in the figure.
Figure 19: use saxitoxin as the LC chromatogram of the sulfotransferase of the SxtN of substrate measurement, MS spectrum, MS/ MS fragmentation (from top to bottom).
Figure 20: use STX as the LC chromatogram of the dioxygenase of substrate measurement (SxtDIOX), MS spectrum, MS/MS segment Change (from top to bottom).The peak indicated by an arrow for indicating that hydroxyl-STX is generated and is not present in control (left side) in measurement (right side).
Specific embodiment
Embodiment
It is further illustrated by the examples that follow the present invention, unless otherwise indicated, wherein parts and percentages are with weight Meter, degree are degree Celsius.It should be understood that although these embodiments show the preferred embodiment of the present invention, but only with The mode of explanation provides.From described above and these embodiments, those skilled in the art can determine spy substantially of the invention Sign, and in the case of without departing from the spirit and scope, various changes and modification can be carried out to the present invention to adapt it to Various uses and condition.Therefore, of the invention from the foregoing description various to repair in addition to shown and described herein other than those It would have been obvious for a person skilled in the art for decorations.These modifications, which are also intended to, to be fallen within the scope of the appended claims.
The disclosure of every bibliography as described herein is incorporated herein in its entirety by reference.
The production of embodiment 1:SxtA
SxtA and sfp is subcloned in pET28b
It carries out intending column spore algae from cyanobacteria from genomic DNA using Velocity polymerase (Bioline) The sxtA of (Cylindrospermopsis raciborskii) T3 and come from bacillus subtilis (Bacillus subtilis) Sfp PCR amplification.It follows the manufacturer's protocol, annealing temperature is 55 DEG C, and the extension of time of sxtA and sfp are respectively 4 minutes With 1 minute (sxtA primer: positive 5'-GGGCTTTCATATGTTACAAAAGATTAA-3'(SEQ ID NO:81) and reversed 5'- AAAGTATGCGGCCGCATGCTTGAGTAT-3'(SEQ ID NO:82);Sfp primer: positive 5'- GGCATCCATGGGCAAGATTTACGGAA-3'(SEQ ID NO:83) and reversed 5'- GGCATCTCGAGTTATAAAAGCGCTTCG-3'(SEQ ID NO:84)).Purify PCR amplification sub (DNA clean and concentrating agents 5X kit, ZymoResearch) and with NdeI/NotI (sxtA) or NcoI/XhoI (sfp;New England Biolabs) Digestion.It by the product purification of digestion and is connected in pET-28b (Novagen), is cut with identical digestion, and is solidifying by agarose Gel electrophoresis (DNA QIAquick Gel Extraction Kit, ZymoResearch) purifying.After being converted in Electrocompetent Escherichia coli GB2005 cell, It is sieved with universal primer T7 promoter and T7 terminator by the PCR of plasmid purification (PureLink Miniprep, Invitrogen) Select positive colony.(Ramaciotti Center, UNSW, Australia) is sequenced for verifying to insert.
In order to co-express with sxtA, sfp gene is expanded from pET28b::sfp using Velocity polymerase (Bioline), For the primer of T7 promoter and T7 terminator be (5'-GGTTAAGATCTGAAATTAATACGACTC-3'(SEQ ID NO: 85), 5'-TTTTAAGATCTTTTCAGCAAAAAACCC-3'(SEQ ID NO:86)).It follows the manufacturer's protocol, annealing temperature Degree is 55 DEG C, and extension of time is 1 minute.Amplicon (DNA purification and concentrating agents 5X kit, ZymoResearch) is purified to be used in combination BglII (New England Biolabs) digestion.It by the product purification of digestion and is connected in pET28b::sxtA, use is identical Digestion cut, and purified as previously described.After converting in Electrocompetent Escherichia coli GB2005 cell, pass through plasmid purification The PCR screening positive clone of (PureLink Miniprep, Invitrogen).(Ramaciotti is sequenced to insert Center, UNSW, Australia) for verifying.
SxtA is expressed with sfp and purifies holo-SxtA
In order to express sxtA, 0.5mL is contained into pET28b::sxtA, sfp and pRARE plasmid (Invitrogen's) stays overnight E. coli bl21 (DE3) transformant in 50mL Lysogeny Broth (LB) culture medium secondary culture and 30 DEG C stir It is incubated under (200rpm) until the optical density at 600nm is 0.8-1.0, the culture medium is supplemented with 50 μ g.mL-1Kanamycins With 30 μ g.mL-1Chloramphenicol.Then it with 200 μM of isopropyl ss-D- thiogalactoside (IPTG) Induced cultures, and is stirred at 18 DEG C Mix and be incubated overnight, and by centrifugation (4000rpm, 4 DEG C 20 minutes, Hitachi CR22GIII centrifuge, R10A5 rotor) it is heavy It forms sediment.Cell precipitation is frozen up to and is further purified.
By the cell of precipitating be resuspended in 10mL lysis buffer (20mM sodium phosphate buffer, pH 7.4,500mM NaCl, 20mM imidazoles) in, and by ultrasound cracking (Branson Digital Sonifier M450,3mm probe, 30% amplitude, 4 DEG C It 3 minutes, is powered within 15 seconds and 59 seconds closes).By the centrifugation of obtained suspension (20000rpm, 60 minutes at 4 DEG C, Hitachi CR22GIII centrifuge, R20A2 rotor), and supernatant is loaded to Ni- affinity column (1mL HiTrap column, is mounted on On AKTApurifier, GE Healthcare), with 20mM sodium phosphate buffer, pH 7.4,500mM NaCl, 20mM imidazoles (buffer solution A) balance.After injection, pillar (35mL buffer solution A, 1mL.min are washed-1) and use 20mM sodium phosphate buffer, pH 7.4,500mM NaCl, 500mM imidazoles (buffer solution B) elute albumen, and in 0% to the 20% gradually buffer solution B of gradient Washing 20 minutes is then washed 10 minutes 20%, is then washed 20 minutes in 20% to 100% linear gradient, Yi Ji 100% last washing 10 minutes.(SDS-PAGE) is collected by 10% Polyacrylamide Gel Electrophoresis under Denaturing Fraction (1mL, at 280nm detect), merge the fraction containing pure protein.By protein solution 50mM HEPES-150mM Then NaCl pH7.4 is added by centrifugal filter (Amicon Ultra-4 centrifugal filter unit 100k) desalination and concentration Glycerol is to final concentration 10% (w/v).Protein concentration is measured by using protein determination kit (Bio-Rad) and is stored in -80 ℃。
The acyl carrier protein domain of clone sxtA is expressed for single expression and together with sfp
Use Velocity polymerase (Bioline) (primer: positive 5'- ATATCCATGGGACCTGGTGATCGCAAAGGA-3'(SEQ ID NO:87) and reversed 5'- TATCTCGAGAGTGTTGATTTCGTTGGCTG-3'(SEQ ID NO:88)) amplification sxtA (sxtA-ACP) encoding gene acyl Base load body protein.Manufacturer's scheme is followed, annealing temperature is 54 DEG C, and extension of time is 1.5 minutes.Using identical as described in sfp Method purifying, digestion PCR amplification son and be connected in pET-28b.It is converted in Electrocompetent Escherichia coli GB2005 cell Afterwards, it with universal primer T7 promoter and T7 terminator screening positive clone, and is sequenced as previously described.It, will in order to be co-expressed with sfp Gene cloning is into pET28b::sxtA-ACP plasmid, as previously described.
The expression and purifying of apo- and holo-sxtA-ACP
In order to express sxtA-ACP, as described above, 10mL is contained pET28b::sxtA-ACP and pET28b::sxtA- Overnight e. coli bl21 (DE3) transformant of ACP, sfp plasmid is cultivated in 1L Lysogeny meat soup (LB) and is stirred at 37 DEG C It mixes and is incubated under (200rpm) until being induced with 100 μM of IPTG, which is supplemented with 50 μ g.mL-1Kanamycins and 30 μ g.mL-1 Chloramphenicol.By centrifugation (4000rpm, 4 DEG C 20 minutes, Hitachi CR22GIII centrifuge, R10A5) collect cell, weight It is suspended from 15mL lysis buffer, and passes through ultrasonication (Branson Digital Sonifier M450,3mm probe, vibration 30%, 4 DEG C of 3min are powered, then 4 seconds circulations closed for 1 second).Obtained suspension is centrifuged (20000g, at 4 DEG C 60 Minute, Hitachi CR22GIII centrifuge, R20A2 rotor), and supernatant is loaded to Ni- affinity column (1mL HiTrap Column, is mounted on AKTApurifier, on GE Healthcare), 20mM sodium phosphate buffer, pH 7.4,500mM are used in advance NaCl, 20mM imidazoles (buffer solution A) balance.After injection, pillar (35mL buffer solution A, 1mL.min are washed-1), with 20mM sodium phosphate Buffer, pH7.4,500mM NaCl, 500mM imidazoles (buffer solution B) elute albumen, wash in the B of 0% to 20% linear gradient It washs 20 minutes, then washs 10 minutes, then washed 20 minutes in 20% to 100% linear gradient, and 100% 20% Finally wash 20 minutes.(SDS-PAGE) passes through the fraction that 15% Polyacrylamide Gel Electrophoresis is collected under Denaturing (1mL is detected at 280nm), merges the fraction containing pure protein.Protein solution is used into centrifugal filtration (Amicon Ultra- 15 centrifugal filter device 3k) and 50mM HEPES-150mM NaCl, pH7.4 desalination and concentration, it freezes and stores in liquid nitrogen At -80 DEG C.Protein concentration is measured by using protein determination kit (Bio-Rad).
It successfully is detected SxtA (Fig. 5) after purification on IMAC and SDS-PAGE.Purify the egg that expected size is 143kDa White, the yield of culture is 0.5mg.L-1, digesting confirmation identity by tryptose is SxtA.
The MALDI-TOF-TOF mass spectral analysis of Apo- and holo-sxtA-ACP
Albumen quality is detected by MALDI-TOF-TOF mass spectrography.It prepared by matrix, by 3, the 5- dimethoxy of 10mg Base -4- hydroxycinnamic acid is added in 80% acetonitrile of 1mL containing 0.1%TFA, and 1mL matrix and 1 μ l protein sample are mixed It closes on the surface of MALDI target plate.Then by Bruker ultrafleXtreme MALDI-TOF/TOF with YAG laser into Row analysis.Data acquisition, and the calibration instrument immediately before each analysis are carried out with positive ion mode.Obtaining 100 averagely It is analyzed in the linear delay extraction mode of spectrum.As a result as shown in Figure 6.
The extraction of 4- amino -3- oxo-guanidine radicals heptane
PRARE and pET28b::sxtA will be contained, BL21 (DE3) transformant of sfp is resuspended in 0.1% sour acetic acid Methanol in.By sonicated cells (Branson Digital Sonifier M450,3mm probe, 30% amplitude, 4 DEG C 2 Minute, be powered the circulation closed with 15 seconds for 5 seconds).By obtained suspension centrifugation (20000rpm, 4 DEG C 30 minutes, Hitachi CR22GIII centrifuge, R20A2 rotor).Supernatant is dried under rotary evaporation and is stored in -20 DEG C until further dividing Analysis.The mass spectral analysis of 4- amino -3- oxo-guanidine radicals heptane
It is in order to determine the biosynthetic products of SxtA, the Escherichia coli containing pET28b::sxtA, sfp and pRARE are thin The endocellular metabolism object chemical extraction of born of the same parents is simultaneously analyzed by LC-MS.
Sample is resuspended in 95:5 acetonitrile: in water (usual 1mL), and being transferred in HPLC bottle and is analyzed by mass spectrometry.Make Pass through heating with the Dionex U3000UHPLC for being connected to Q-Exactive Plus (ThermoFisher Scientific) Electrospray interface carries out LC-MS analysis to 10 μ L samples.Under the conditions of default sources (as proposed by the Tune software of manufacturer) It is ionized with holotype.It will be in sample injection to Waters BEH HILIC column (2.1 × 100mm, 1.9 μm).Chromatographic condition As described in Turner etc., do not modify.
Mass spectrograph collects six MS/MS spectrums with Data dependency analysis mode operation after each full scan mass spectrum.It comes from The detection for being used to pay the utmost attention to them comprising list of the toxin and metabolin of document.
Inducing cell and do not induce control between mass spectrographic comparison be shown in m/z 187.06 [M+H]+1.1 minutes at deposit In molecular ion, correspond to AOGH (C8H18N4O protonation quality).The secondary ion fragmentation of the molecular ion causes and AOGH Closely similar fragmentation mode.The experiment realizes in 8 repetitions, and by Progenesis QI analyze qualitative data with Differential expression between quantization induction and non-induced extraction.Compared with the control not induced, the AOGH compound of presumption is observed Be overexpressed (figure) in the cell of induction, the variation of maximum multiple be equal to infinity (being completely absent in negative control) and ANOVAp value is 1.1 × 10-16
The compound of 187.06Da mass is purified and analyzes, NMR confirms the structure of AOGH.
Embodiment 2:sxt1 segment
Following three open reading frame (ORF) for intending column spore algae (C.raciborskii) T3 from cyanobacteria are placed in label For " sxt1 ": in the nucleotide fragments of sxtA, sxtB and sxtC.Using GeneArt software, pass through Life Technology couple Each ORF carries out codon optimization in expression in escherichia coli.
EcoRI restriction site is added at the both ends of segment.In addition, the 50bp of lacZ (H1) and lacA (H2) gene is same Source region is respectively added to the end 5'- and 3'-, with the recombination and integration that is mediated by RED ET into genome of E.coli.? Terminator is added to prevent from reading in the downstream of H1, followed by transcription factor gene xylS and its Ps2 promoter.(XylS be with From transcription factor needed for Pm promoter transcription after the combination of its inducer toluic acid.) followed by terminator, followed by Pm starts Son is for transcribing downstream sxt gene.In the upstream of each ORF, add ribosome bind site (RBS).Finally, being added has For the kalamycin resistance label in two sites flank FRT by flippase-recombinase (GeneBridges) excision and same Source arm H2, including terminal EcoRI site.
Embodiment 3:sxt2 segment
Following sxt gene is included in " sxt2 " segment: sxtD, sxtE, sxtG, sxtH, sxtI, sxtJ, sxtK, sxtL.Using GeneArt software, codon optimization is carried out in Escherichia coli to each ORF by Life Technology Expression.
Sxt2 segment is designed with terminal EcoRI site, for the malE (H1) and malG (H2) base with Escherichia coli Because of the homology arm of recombination and the Pm promoter of sxt upstream region of gene.The segment also contains the kanR resistance box with the site FRT, Such as segment sxt1.
Embodiment 4:sxt3 segment
Devise three kinds of variants of sxt3 segment.Following sxt gene is included in " sxt3 " segment, variant 1:sxtQ, sxtR,orf24,sxtS,sxtT,sxtU,sxtV,sxtW,sxtX.Following sxt gene is included in " sxt3 " segment, variant 2: sxtQ,sxtR,sxtS,sxtT,sxtU,sxtV,sxtW,sxtX.Following sxt gene is included in " sxt3 " segment, variant 3: sxtS,sxtT,sxtU,sxtV,sxtW,sxtX.Using GeneArt software, by Life Technology to each ORF into Row codon optimization is in expression in escherichia coli.
Each variant of sxt3 segment is designed with terminal EcoRI site, for Escherichia coli xylF (H1) and The homology arm of xylB (H2) genetic recombination and the Pm promoter of sxt upstream region of gene.Each variant of the segment, which also contains, to be had The kanR resistance box in the site FRT, such as segment sxt1.
Embodiment 5:sxt4 segment
Following sxt gene is included in " sxt4 " segment: sxtF, sxtP, sxtM.Using GeneArt software, pass through Life Technology carries out codon optimization in expression in escherichia coli to each ORF.
Sxt4 segment is designed with terminal EcoRI site, for the melR (H1) and melB (H2) base with Escherichia coli Because of the homology arm of recombination and the Pm promoter of sxt upstream region of gene.The segment also contains the kanR resistance box with the site FRT, Such as segment sxt1.
Embodiment 6: the generation of e. coli bl21 (DE3) PPT enzyme
Preferably use Phosphopantetheinyl transferase (PPT enzyme) by the load rouge shape of polyketide synthase Formula SxtA is converted into its holo- form.
To Raphidiopsis brooki D9 and Cylindrospermopsis racoborskii CS-505's Whole gene group is sequenced, and sequence is stored in GenBank.Each in these bacterial strains only contains single PPT enzyme Gene.Specific PCR primers are designed based on D9 and CS-505PPT enzyme gene, and column spore algae is intended from cyanobacteria with PCR amplification and sequencing (C.raciborskii) the PPT enzyme gene of T3.
Design synthesis gene construct is integrated into greatly so that cyanobacteria is intended column spore algae (C.racicorskii) T3PPT enzyme gene In the maltose operon of enterobacteria BL21 (DE3).Codon optimization is carried out in expression in escherichia coli to PPT enzyme gene, And the construct is equipped with T7 promoter and beta-lactam enzyme gene for selecting amicillin resistance.Initiation codon Also it is changed to ATG.
Then using Quick&Easy bacillus coli gene missing kit according to the explanation (Gene of manufacturer Bridges, catalog number (Cat.No.) K006) gene construct is integrated into the malt of e. coli bl21 (DE3) (Life Technology) In sugared operon, as shown in Figure 8.Pass through the correct integration of the unexpected mutation of sequence verification and missing.
Embodiment 7: 4- amino -3- oxo-guanidine radicals heptane is produced by e. coli bl21 (DE3) PPT enzyme pSxt1
Sxt1 segment is generated in pMA-RQ (ampR) plasmid backbone by Life Technology.The plasmid is herein In be referred to as pSxt1.PSxt1 plasmid is transformed into e. coli bl21 (DE3) PPT enzyme, is carried in its genome Cyanobacteria intend column spore algae (Cylindrospermopsis raciborskii) T3 Phosphopantetheinyl transferase. PPT enzyme gene is under the control of T7 promoter (IPTG induction type), and sxtA, B and C gene on pSxt1 are under the control of Pm promoter (meta-toluic acid is inducible).
The purpose of this experiment is measurement the three of constant inducer concentrations (IPTG (0.5mM) and meta-toluic acid (1mM)) Expression and activity at 5 DEG C, 19 DEG C and 30 DEG C of a different temperatures in sxtA gene Escherichia coli.Experimental strain is Escherichia coli BL21 (DE3) PPT enzyme pSxt1, negative control are e. coli bl21 (DE3) (parent strains).It is expected that the only enzyme product of SxtA, Because the substrate of SxtB and SxtC is the enzyme product of other enzymes, such as SxtG, do not encoded on pSxt1.
The inoculum of BL21 (DE3) (parent strain) and BL21 (DE3) PPT enzyme pSxt1 are respectively at 37 DEG C in LB With overnight growth in LB50 μ g/ml ampicillin and kanamycins.Second day, by the 200ml of 50 μ g/ml containing kanamycin The LB culture medium of volume is inoculated in triplicate, is connect every time with the 2ml inoculum of e. coli bl21 (DE3) PPT enzyme pSxt1 Kind, and incubate at 30 DEG C until culture reaches OD600It is~0.6.
For negative control, it is used to each triplicate inoculation of 2ml inoculum from e. coli bl21 (DE3) The not antibiotic LB of 200ml volume, and OD is incubated at 30 DEG C600It is~0.6.Then all cultures are transferred to phase The temperature answered, and adapt to 30 minutes.Then, IPTG (0.5mM final concentration) and meta-toluic acid are added into every kind of culture (1mM final concentration) is then incubated 48 hours at 5 DEG C, is incubated 18 hours at 19 DEG C, and is incubated 18 hours at 30 DEG C.
Acquisition sample for SDS-PAGE and is used for RT-PCR before induction and at the end of experiment.After induction 18 hours, 12 minutes harvest cultures are centrifuged by 7500rpm.Cell precipitation is frozen up to extraction and is used for LC-MS analysis.
It extracts
Cell precipitation is resuspended in 1ml water and on ice ultrasonic treatment (output control 4, duty ratio 50%, 7 points in total Clock recycles 2-3 minutes).After ultrasonic treatment, 4ml acetonitrile is added, vortex sample is centrifuged off cell fragment and other particles.
LC-MS/MS analysis
LC-MS analysis is carried out on Hikelaboratory, the Waters Xevo TQ-S of Haukeland university hospital, The Waters Xevo TQ-S and the iclass Acquity UPLC equipped with 50 × 2.1mm Acquity BEH amide column are even Connection.Mobile phase A is made of 10mM ammonium formate pH 3.0, and Mobile phase B is made of 95% acetonitrile and 10mM ammonium formate pH 3.0.Flow velocity For 0.4ml per minute, column temperature is maintained at 40 DEG C.Applied in 3 minutes with gradient 85%B to 70%B.Volume injected always 1 μ l.
Analyte is ionized with holotype by electrospray ionisation.According to Tsuchiya etc. (2014) and Tsuchiya etc. (2015), following mrm transition is measured.Arginine 175.05- > 60.00,175- > 70.02,4- amino -3- oxo-guanidine radicals heptan Alkane: 187.1- > 170.1,187.1- > 128.1,187.1- > 110.1,187.1- > 72.08,187.1- > 60.05.
It is detected big arginine peak (data are not shown) in all cultures processing and pure arginine solution, and smart ammonia 4- amino -3- oxo-guanidine radicals heptane signal is not present in acid solution and all controls.In addition, in addition to the culture induced at 19 DEG C Beyond the region of objective existence, all there is no 4- amino -3- oxo-guanidine radicals heptane letters in all e. coli bl21 (DE3) PPT enzyme pSxt1 cultures Number.
This is experiments have shown that can be in e. coli bl21 (DE3) in the form of catalytic activity using the DNA construct of synthesis Express SxtA.In this experiment, after with the induction of 0.5mM IPTG and 1mM toluic acid, expression is only in 19 DEG C of growth temperature Lower generation.
Embodiment 8: segment sxt1 and sxt3 the sugar decomposition metabolism for being integrated into Escherichia coli DE3 (BL21) PPT enzyme are manipulated In son
Sxt1 construct is integrated into the lac operon of e. coli bl21 (DE3) PPT enzyme, as follows:
Using 2 μ l template DNAs, 0.4 μM of primer, Phusion archaeal dna polymerase carries out PCR amplification in 50 μ l reaction volumes The DNA construct sxt1 of synthesis.
PCR cycle is as follows: 98 DEG C 1 minute, 30 circulation: 98 DEG C 5 seconds, 72 DEG C 2 minutes, 72 DEG C 5 minutes, be then maintained at 4℃。
Passing through gel electrophoresis and gel extraction after purification, is then mediating PCR product (8019bp) for RED ET Recombination.Before a reorganization, e. coli bl21 (DE3) PPT enzyme is converted with plasmid pRED (GeneBridges) by electroporation, And the transcription of the recombinase of induction pRED coding according to the manufacturer's instructions.Then, with above-mentioned PCR product (2.5kV, 200Ohm, 25 μ F, the 150ng PCR product in 5 μ l) Electroporation Transformation bacterial strain, then recombination enters lac operon.
By the cell inoculation of electroporation to the LB agar containing 15 μ g/ml kanamycins on, and in 37 DEG C of overnight growths.It chooses The clone that obtains simultaneously is inoculated on the MacConkey containing 15 μ g/ml kanamycins (containing lactose) agar, and grows at 37 DEG C At least 24 hours.Obtained white colony is separated in pure culture, and is tested by PCR and sequencing to ensure segment Sxt1 is correct and is integrated into lac operon without mutation.
After confirmation, according to the scheme (GeneBridges) of manufacturer, pass through flippase recombination selection gram using plasmid p707 It is grand to remove kanamycin resistance cassette.The kalamycin resistance of obtained clone is screened, and kalamycin resistance is verified by PCR The successful removal of box.In addition, PCR is complete for verifying the rest part of sxt1 segment.
Then obtained strains are used to for segment sxt2 being integrated into maltose operon using identical method.Pass through phase Same method uses obtained strains (after segment sxt1 and sxt2 and removal kanamycin resistance cassette) by sxt3 piece Each in three kinds of variants of section is integrated into xylose operon.
Sxt3 variant e. coli bl21 (DE3) bacterial strain
Bacterial strain Bacterial strain design The missing gene from sxt3
T3PPT enzyme sxt1 sxt2 sxt3 v1 NSX3v1 Nothing
T3PPT enzyme sxt1 sxt2 sxt3 v2 NSX3v2 orf24
T3PPT enzyme sxt1 sxt2 sxt3 v3 NSX3v3 SxtQ, sxtR and orf24
Then turned using the 4'-phosphopantetheine base from bacillus subtilis (Bacillus subtilis) Move the T3PPT enzyme in the above-mentioned every kind of bacterial strain of enzyme gene sfp (Pfeifer BA waits (2001) Science 291:1790-2) replacement To produce other bacterial strain.
Then obtained strains are used to for segment sxt4 to be integrated into e. coli bl21 (DE3) T3PPT enzyme and Escherichia coli In the Melibiose operon of BL21 (DE3) sfp.Kanamycins box is not removed.The chart of sxt1-4 segment is in Fig. 9 A and Fig. 9 B In provide.
Embodiment 9: the generation of the variant strain of e. coli bl21 (DE3) sfp NSX3v3
Use strain Escherichia coli BL21 (DE3) sfp NSX3v3 as parent strain to generate following bacterial strain, wherein leading to Cross methods of homologous recombination missing individual or multiple groups gene.
E. coli bl21 (DE3) bacterial strain table and the gene in nonessential sugared operon is would be integrated into
Embodiment 10: LC-MS detection N-STX and intermediate are used
LC-MS is used to detect the intermediate in N-STX and N-STX production.LC-MS analysis exists It is carried out on ThermoFisher Scientific Q Exative Hybrid Quadrupole mass spectrograph, which is equipped with There is ESI II ion source, and is coupled to Dionex 3000Ultimate RSLC Ultrapressure liquid chromatograph online.
Can by e. coli bl21 (DE3) NSX3 bacterial strain generate possible saxitoxin analog and intermediate supersession The mass-to-charge ratio (m/z) of object
Compound M/z [M+H]+adduct Chemical composition
Intermediate 1 187.15534 C8H19ON4
Intermediate 2 229.17714 C9H21ON6
Intermediate 3 211.16657 C9H19N6
Intermediate 4 209.14584 C9H17N6
Intermediate 5 207.13527 C9H15N6
Intermediate 6 223.13019 C9H15ON6
Intermediate 7 223.13090 C9H15ON6
Intermediate 8 225.14584 C9H17ON6
Intermediate 9 268.15165 C10H18O2N7
dcSTX 257.13566 C9H17O3N6
dcneoSTX 273.13058 C9H17O4N6
STX 300.14148 C10H18O4N7
neoSTX 316.13639 C10H18O5N7
STX-15N4 304.12962 C10H18O4N3-15N4
Embodiment 11: the detection of intermediate 1 and intermediate 8 in E. coli extract
E. coli bl21 (DE3) T3PPt enzyme NSX3v1 shakes in the 20ml LB meat soup in 100ml flask at 19 DEG C Swing (200rpm) growth.When it reaches OD600When being 0.9, with 0.2mM IPTG, 1mM toluic acid Induced cultures, and grow 18 hours to OD600=5.
Cell is harvested by centrifugation, and is extracted in the methanol solution of the 0.1M acetic acid in 800 μ l.Lysate is centrifuged, and Supernatant is diluted with 1:5 with acetonitrile before LC-MS analysis.
Intermediate 1 and 8 is detected in extract.Spectrum from intermediate 8 is shown in Figure 10 and Figure 11.
Embodiment 12: the production of N-STX
The inoculum of Escherichia coli sfp NSX3v3 is prepared in 50ml Hi YE culture medium, and at 30 DEG C (225rpm) is incubated overnight.According to the explanation of manufacturer, establish and be equipped with having heaters, water cooling, pH and dissolved oxygen probe it is new 110 fermentor of Brunswick BioFlo (2L volume) is used for fermenting experiment.2L Hi-YE culture medium is packed into fermentor, and High pressure sterilization.After autoclaving, the stock solution of yeast extract, magnesium chloride, glucose and glycerol is sterilely added to In fermentor.In addition, the disinfectant solution of 5% defoaming agent 204 (Sigma Aldrich) of 2ml is added into fermentor.With 20ml Overnight seed cultures inoculation medium, OD600It is 5.71.The OD of starting culture600It is measured under 0.15.At 19 DEG C Culture is incubated, initial mixing speed is 50rpm, increases to 600rpm after incubating 26 hours.With forced air with 2 liters/it is small When flow velocity purge culture.Continuous monitoring pH and dissolved oxygen levels, and off-line measurement is grown after sampling.In entire experiment periods Between pH (pH 7.1) and dissolved oxygen levels (100%) be stable.(OD after incubating 22 hours600=10.6) with first between 0.5mM Benzoic acid and 0.2mM IPTG Induced cultures, and incubate again 22 hours.By sterile dextrose solution (400g/l) with 2.9ml/ The flow velocity of min is added in culture (11.4g in total) between 24 and 26.3 hours of experiment, and the sterile 1M sulfuric acid of 1.8ml Magnesium solution is adding for 26.3 hours in experiment, to attempt to stimulate the growth and generation of neoSTX.Experiment is terminated after 45 hours, this When by centrifugation (5000 × 5,30 minutes, 4 DEG C) harvest cultures.By cell precipitation with 50ml ice-cold MQ water (5000 × g, 10 minutes, 4 DEG C) it washes twice, it weighs, and be stored in -20 DEG C until analysis.The total biomass of acquisition is 23.77g.
Crack the cell from fermenting experiment by boiling in 0.1% formic acid, and with containing before LC-MS analysis There is the acetonitrile of 0.1% formic acid to dilute extract with 1:5 (referring to Figure 12 and Figure 13).MS is also measured by mouse neuroblastoma The content of neoSTX in analysis precipitating.
Embodiment 13: optimization cell cracking is to extract intermediate
Natural gene sxtA, sxtB, sxtC are cloned into pVB carrier (Vectrons Biosolutions), and will To carrier pVB-sxtABC be transformed into Escherichia coli BAP1.BAP1pVB-sxtABC is at 19 DEG C in 10ml TB culture medium In with 200rpm oscillating growth 24 hours.Cell is harvested by centrifugation, and twice with ice-cold MQ water washing, sediment is claimed Weight, and -20 DEG C are stored in until analysis.
(1:3 weight in wet base: volume) is resuspended in sediment in various cracked solutions:
1. 50% methanol containing 25mM sodium hydroxide
2. 50% methanol containing 0.5% ammonium hydroxide
3. 50% methanol containing 0.1% formic acid
4.0.1mM hydrochloric acid
5.0.1% formic acid
6.0.5% ammonium hydroxide
1,2 and 3 will be handled using the Branson Sonifier 250 (output 2, duty ratio 50%) equipped with microprobe Ultrasonic treatment 2 minutes.Processing 3 to 5 is boiled 5 minutes in boiling water batch.Extract is centrifuged 10 under 18000 × g (4 DEG C) Minute.250 μ l supernatants are mixed with the 750 μ l acetonitriles containing 0.4% formic acid, and are centrifuged (10 minutes, 18000 × g, 4 DEG C). Supernatant is transferred to the LC-MS analysis that intermediate 1 is used in autosampler bottle (referring to Figure 14).
It is considered as most suitable method that 5 minutes are boiled in 0.1% formic acid, because it will not cause to HILIC LC- The interference of MS, and the precipitating of minimum is generated during the extraction process.
Embodiment 14: optimum strain and production level
The inoculum of coli strain is prepared in 10ml LB meat soup, and is vibrated and given birth to 200rpm at 30 DEG C It is long to stay overnight.Compare the neoSTX production level of following bacterial strain:
E. coli bl21 (DE3) sfp
E. coli bl21 (DE3) T3PPT enzyme sxt1sxt2
E. coli bl21 (DE3) T3PPT enzyme NSX3v1
E. coli bl21 (DE3) sfp NSX3v1
E. coli bl21 (DE3) sfp NSX3v2
E. coli bl21 (DE3) sfp NSX3v3
E. coli bl21 (DE3) sfp NSX3v4
E. coli bl21 (DE3) sfp NSX3v5
E. coli bl21 (DE3) sfp NSX3v6
E. coli bl21 (DE3) sfp NSX3v7
30ml is had into 0.4% glycerol and is buffered to the Terrific Broth of pH 6.8 with 89mM phosphate buffer (TB) OD is seeded to 300 μ l Overnight seed cultures600It is 0.05.Culture is straight with 225rpm incubated under agitation at 30 DEG C Reach OD to them600It is 0.4.Then culture is transferred to 19 DEG C (oscillation 225rpm), and grows to OD600It is 0.5.In order to Sfp and sxt gene is induced, 0.05mM IPTG (0.05mM final concentration) and toluic acid (0.5mM final concentration) are added to culture In object, incubated 48 hours at 19 DEG C after persistent oscillation (225rpm).Every kind of bacterial strain is grown in triplicate subculture object.It is logical It crosses and every kind of culture of 25ml was harvested with 3000 × g centrifugation 10 minutes at 4 DEG C.The aliquot of 1ml supernatant is stored At -20 DEG C, remaining supernatant is discarded.Cell precipitate is used respectively 25 and 5ml ice-cold MQ water (3000 × g, 4 DEG C, 10 points Clock) it washes twice.Weighing cell precipitation is simultaneously stored in -20 DEG C.
Toxin is extracted from cell precipitation
Bacterium cell pellet object is resuspended in 0.1% formic acid and is boiled 5 minutes with the ratio of 1:4 (weight in wet base: volume).It will Extract of short duration cooling on ice collects supernatant with 16000 × g centrifugation 10 minutes.LC-MS is analyzed, supernatant is used Contain 25nM saxitoxin-15N4Interior 90% acetonitrile of target: 10% methanol: 0.1% formic acid is with the dilution proportion of 1:5.By sample It is centrifuged (16000 × g, 10 minutes, 4 DEG C), supernatant is transferred to progress LC-MS analysis in autosampler bottle.
Toxin is extracted from growth medium
Growth medium (200 μ l) 2 μ l, 10% formic acid is acidified, boils 5 minutes, cools down on ice, and at 4 DEG C With 16000 × g centrifugation 10 minutes.Supernatant is transferred in new pipe, and 40 μ l internal standard (25nM saxitoxins-are added15N4 In 10% methanol, 90% acetonitrile and 0.1% formic acid).Pipe is centrifuged 10 minutes in the case where 4 DEG C of 16000 × g, and supernatant is turned HPLC autosampler bottle is moved to analyze for LC-MS.As a result as shown in figure 15.
Embodiment 15: the mouse neuroblastoma measurement (MNBA) of toxin is blocked for detecting sodium channel
Culture of Escherichia coli for MNBA
The kind of coli strain BL21 (DE3) sfp and BL21 (DE3) sfp NSX3v3 is prepared in 10ml LB meat soup Sub- culture, and stayed overnight at 30 DEG C with 200rpm oscillating growth.50ml had into 0.4% glycerol and with 89mM phosphate-buffered The Terrific Broth (TB) that liquid is buffered to pH 6.8 is seeded to OD with 500 μ l Overnight seed cultures600About 0.05.It will Culture is at 30 DEG C with 225rpm incubated under agitation until they reach OD600It is 0.4.Then culture is transferred to 19 DEG C of (vibrations Swing 225rpm) and grow to OD600It is 0.5.In order to induce sfp and sxt gene, by 0.05mM IPTG (0.05mM final concentration) and Toluic acid (0.5mM final concentration) is added in culture, is incubated 48 hours at 19 DEG C after persistent oscillation (225rpm).Every kind Bacterial strain is grown in triplicate subculture object.By being centrifuged 10 minutes with 2500 × g at 4 DEG C to harvest culture.It will be thin Born of the same parents' sediment uses 25 DEG C of ice-cold MQ water (2500 × g, 4 DEG C, 10 minutes) to wash twice respectively.Weighing cell precipitate simultaneously stores At -20 DEG C.
The cell extraction of MNBA
Passed through according to following scheme using Accell Plus CM column (360mg, 1.1ml, WAT010910, Waters) Weak cation exchange solid phase extractions (WCX-SPE) are that MNBA extracts bacterial cell.
1.2g cell precipitate is resuspended in 0.15% formic acid of 3.6ml simultaneously boiling lysis 5 minutes.By with 16000 × G, which is centrifuged 10 minutes, carrys out clarified cell extract.
With 3.6ml methanol adjustable column, then adjusted with 0.15% formic acid of 3.6ml.3ml sample is added, with 1.8ml MQ water Pillar is washed, is then washed with 1.8ml acetonitrile.Then column is dry, sample is washed in 2 × 3.6ml methanol containing 5% formic acid It is de-.By the dry eluent of traditional vacuum, and sample is reconstructed in 200 μ l, 0.01% formic acid.
Mouse neuroblastoma detection for sodium channel retardance toxin
Using mouse neuroblastoma cell line (CCL131), and (such as using mouse neuroblastoma measuring method Described in Humpage etc. (2007) .Environ.Toxicol.Chem.26:1512-9).
Using the certified reference material for being directed to neoSTX, it is bent that the calibration that MNBA is measured is prepared with and without bio-matrix Line (CRM-NEO-c, batch 2009-02-18,65.6 μM in 3mM HCl).As a result as shown in figure 16.
Embodiment 16: N-STX is detected by ELISA immunochemistry
It is detected using saxitoxin ELISA kit (Abraxis PN 52255B, Microtiter Plate 96T) The neoSTX generated in Escherichia coli.The kit uses polyclonal saxitoxin antibody, with neoSTX with 1.3% Cross reactivity.It prepares the culture of Escherichia coli T3PPT enzyme NSX3v3 and obtains cell lysate.In SampliQ silicagel column (Agilent PN 5982-2211,1ml, 100mg, Jansson D and Astot C (2015) m J Chromatogr A Sample is extracted by Solid Phase Extraction on 1417:41-8).It will extract and the sample of evaporation be dissolved in and mentioned by STX ELISA kit In the 100 μ l sample buffers supplied.Also it is prepared for the diluted Escherichia coli T3PPT enzyme NSX3v3 of the 1:1000 in sample buffer Extract.The Std 0 (as blank), Std 1 (0.0668nM STX) and 5 (1.3365nM of STd for using kit to provide STX) pass through 2 standard curve calibration measurements.Reference sample is used to estimate the accuracy of the STX ELISA kit of neoSTX, And the rate of recovery of the neoSTX during SPE is estimated based on the ratio of the reference sample of extraction and reference sample.Measurement result is aobvious Show in the following table.The accuracy of estimation is 119%, and the rate of recovery during SPE is 92%.The measurement is in Escherichia coli T3PPT It is detected in the cell extract of enzyme NSX3v3 and is equivalent to 1.16nM STX.NeoSTX is converted to, this is equivalent to 89.1nM, and every liter The yield of culture of Escherichia coli is about 223pmol neoSTX.
STX ELISA.Std 0, Std 1 and Std 5 are provided by STX ELISA kit.Pass through 2 points of (y=-0.4627+ 0.7597) calibration ELISA measurement.According to manufacturer, 1.3% cross reactivity based on STX antibody calculates the concentration of neoSTX. ND: it does not detect.SPE is 92% to the rate of recovery of neoSTX.
Embodiment 17: the effect with natural gene and RBS spacer region of synthesis
Many pVB constructs have been made using following element:
(i) Pm promoter;
(ii) sxtA (codon optimization is carried out to Escherichia coli) or sxt natural gene synthesized;And
(iii) the 8 or 10bp spacer region between ribosome bind site (RBS) and initiation codon.
The sequence of Pm promoter with the 8bp spacer region between RBS and SxtA initiation codon is as follows.RBS and Initiation codon shows that spacer region is marked with underscore with capitalization:
agtccagccttgcaagaagcggatacaggagtgcaaaaaatggctatctctagaaaggcctacccctt aggctttatgcaacagaaacaataataatGGAGtcatgaacATG(SEQ ID NO:100)
The sequence of Pm promoter with the 10bp spacer region between RBS and SxtA initiation codon is as follows.RBS and Initiation codon shows that spacer region is marked with underscore with capitalization:
agtccagccttgcaagaagcggatacaggagtgcaaaaaatggctatctctagaaaggcctacccctt aggctttatgcaacagaaacaataataatGGAGtcatgaacatATG(SEQ ID NO:101)
Four kinds of pVB-sxtA plasmids are independently transformed into e. coli bl21 (DE3) sfp.
Prepare the culture of each and receipts in four kinds of e. coli bl21 (DE3) sfp with pVB-sxtA variant Obtain cell.It extracts cell precipitate and analyzes the presence of intermediate 1 by LC-MS.As a result as shown in figure 17.As can be seen that with Synthesis sxtA construct containing 8bp spacer region is compared, the synthesis containing 10bp spacer region between RBS and initiation codon Significantly more intermediate 1 is generated in sxtA construct.
Embodiment 18: intermediate 8 is prepared in the presence of various PPT enzymes
In this experiment, following PPT enzyme is compared:
1.T3PPT: e. coli bl21 (DE3) T3PPT enzyme NSX3v1
2.T3PPT: e. coli bl21 (DE3) T3PPT enzyme NSX3v1pET28B-NsPPT (has and comes from tubercle bacterium The pET carrier of the Phosphopantetheinyl transferase of (Nodularia spumigena))
3.Ala18T3PPT: e. coli bl21 (DE3) T3PPT enzyme NSX3v1pET30b-Ala18T3PPT enzyme (T3PPT Enzyme, wherein removing its preceding 18 amino acid to increase the solubility of expression albumen.)
By bacterial strain in 20ml LB meat soup at 19 DEG C with 200rpm shaken cultivation 18 hours.Bacterial strain with pET carrier exists It is grown in the presence of 50 μ g/ml kanamycins.Culture is grown in the case where no inducer, or in OD600At about 0.8 DEG C It is induced with 0.2mM IPTG and 1mM toluic acid.In the case where no inducer, sxt and PPT enzyme gene has apparent background Expression.
Intermediate 8 and neoSTX are measured, and is used as the index of PPT enzyme validity.As a result as shown in figure 18.Ala18T3PPT Highest level is provided, but horizontal reduction after induction.This phenomenon may be due to inhibiting SxtA when PPT enzyme level is excessively high and accounting for According to enzyme.
Embodiment 19: the generation of saxitoxin analog and variant
Saxitoxin can be converted into GTX-5 (sulfonation for passing through carbamyl base side chain) by SxtN.Similarly, Saxitoxin can be converted into 11- hydroxyl STX by SxtDIOX.This is to convert GTX-2/ for STX before C-11 sulfonation The step of 3 (or converting GTX-4/1 for N-STX).
SxtN from Scytonema cf.crispum UCFS15 is cloned into suitable expression vector, is placed in Under the control of IPTG induction type T7 promoter, and hexahistidine tag is provided in itself end N- and C-.
SxtO from S.cf.crispum UCFS15 is cloned into suitable expression vector, IPTG induction is placed in Under the control of type T7 promoter, and hexahistidine tag is provided in itself end N- and C-.
Expression vector purifies Sxt albumen in expression in escherichia coli, and using No-NTA resin (Novagen).In SDS The purity of albumen is assessed on gel.
Use the sulfotransferase activity of saxitoxin or GTX2 test SxtN.Use HPLC-MS/MS measurement result. Use saxitoxin as substrate, identifies the peak at 2.13 minutes be not present in control.It includes m/z 380.10 Main peak, fragmentation (LC-MS/MS) to m/z be 300.14 and 282.13, it is proposed that be GTX5 (as shown in figure 19).It is using When GTX2 is as substrate, difference existing for toxin is not observed between sample and control.
Use the dioxygenase activity of saxitoxin test SxtDIOX.Use HPLC-MS/MS measurement result.It is measuring Substrate is identified in control the two.In addition, identifying the m/z316.14 at 1.66 minutes be not present in control in the assay > 296.13 peak shows that there are hydroxylated saxitoxin (Figure 20).
Sequence
Appended sequence table is entirely incorporated into this as part of specification.
Independent text of sequence table
SEQ ID NO:91
The sequence of sxt1 segment after being integrated into E coli lac operon.
SEQ ID NO:92
It is integrated into the sequence of the sxt3 segment version 1 in Escherichia coli xylose operon.
SEQ ID NO:93
It is integrated into the sequence of the sxt3 segment version 2 in Escherichia coli xylose operon.
SEQ ID NO:94
It is integrated into the sequence of the sxt3 segment version 3 in Escherichia coli xylose operon.
SEQ ID NO:95
It is integrated into the sequence of the sxt1 segment in E coli lac operon.
SEQ ID NO:96
It is integrated into the sequence of the sxt4 segment in Escherichia coli Melibiose operon.
SEQ ID NO:97
It is integrated into the sequence of the sxt2 segment in E. coli. maltose operon.
SEQ ID NO:98
The sequence of the sxt2 segment in maltose operon is integrated into after missing sxtL.
SEQ ID NO:99
It is integrated into the sequence of the sxt2 segment in maltose operon.
Sequence table
<110>Bergen Teknologioverforing AS
University of New South Wales
<120>method
<130> 489.121403/01
<160> 101
<170> PatentIn version 3.5
<210> 1
<211> 252
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 1
Met Ile Asp Thr Ile Ser Val Leu Leu Arg Glu Trp Thr Val Ile Ser
1 5 10 15
Leu Thr Gly Leu Ala Phe Trp Leu Trp Glu Ile Arg Ser Pro Phe His
20 25 30
Gln Ile Glu Tyr Lys Ala Lys Phe Phe Lys Glu Leu Gly Trp Ala Gly
35 40 45
Ile Ser Phe Val Phe Arg Asn Val Tyr Ala Tyr Val Ser Val Ala Ile
50 55 60
Ile Lys Leu Leu Ser Ser Leu Phe Met Gly Glu Ser Ala Asn Phe Ala
65 70 75 80
Gly Val Met Tyr Val Pro Leu Trp Leu Arg Ile Ile Thr Ala Tyr Ile
85 90 95
Leu Gln Asp Leu Thr Asp Tyr Leu Leu His Arg Thr Met His Ser Asn
100 105 110
Gln Phe Leu Trp Leu Thr His Lys Trp His His Ser Thr Lys Gln Ser
115 120 125
Trp Trp Leu Ser Gly Asn Lys Asp Ser Phe Thr Gly Gly Leu Leu Tyr
130 135 140
Thr Val Thr Ala Leu Trp Phe Pro Leu Leu Asp Ile Pro Ser Glu Val
145 150 155 160
Met Ser Val Val Ala Val His Gln Val Ile His Asn Asn Trp Ile His
165 170 175
Leu Asn Val Lys Trp Asn Ser Trp Leu Gly Ile Ile Glu Trp Ile Tyr
180 185 190
Val Thr Pro Arg Ile His Thr Leu His His Leu Asp Thr Gly Gly Arg
195 200 205
Asn Leu Ser Ser Met Phe Thr Phe Ile Asp Arg Leu Phe Gly Thr Tyr
210 215 220
Val Phe Pro Glu Asn Phe Asp Ile Glu Lys Ser Lys Asn Arg Leu Asp
225 230 235 240
Asp Gln Ser Val Thr Val Lys Thr Ile Leu Gly Phe
245 250
<210> 2
<211> 759
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 2
atgatagata caatatcagt actattaaga gagtggactg taatttttct tacaggttta 60
gccttctggc tttgggaaat tcgctctccc ttgcatcaaa ttgaatacaa agctaaattc 120
ttcaaggaat tgggatgggc gggaatatca ttcgtcttta gaattgttta tgcatatgtt 180
tctgtggcaa ttataaaact attgagttct ctatttatgg gagagtcagc aaattttgca 240
ggagtaatgt atgtgcccct ctggctgagg atcatcactg catatatatt acaggactta 300
actgactatc tattacacag gacaatgcat agtaatcagt ttctttggtt gacgcacaaa 360
tggcatcatt caacaaagca atcatggtgg ctgagtggaa acaaagatag ctttaccggc 420
ggacttttat atactgttac agctttgtgg tttccactgc tggacattcc ctcagaggtt 480
atgtctgtag tggcagtaca tcaagtgatt cataacaatt ggatacacct caatgtaaag 540
tggaactcct ggttaggaat aattgaatgg atttatgtta cgccccgtat tcacactttg 600
catcatcttg atacaggggg aagaaatttg agttctatgt ttactttcat cgaccgatta 660
tttggaacct atgtgtttcc agaaaacttt gatatagaaa aatctaaaaa tagattggat 720
gatcaatcag taacggtgaa gacaattttg ggtttttaa 759
<210> 3
<211> 759
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 3
atgattgata ccattagcgt tctgctgcgt gaatggaccg ttatttttct gaccggtctg 60
gcattttggc tgtgggaaat tcgtagtccg ctgcatcaga ttgaatacaa agccaaattt 120
ttcaaagaac tgggttgggc aggtatcagc tttgtttttc gtattgttta tgcctatgtt 180
agcgtggcca ttatcaaact gctgagcagc ctgtttatgg gtgaaagcgc aaattttgcc 240
ggtgttatgt atgttccgct gtggctgcgt attattaccg catatattct gcaggatctg 300
accgattatc tgctgcatcg taccatgcat agcaatcagt ttctgtggct gacccataaa 360
tggcatcata gcaccaaaca gagttggtgg ctgagcggta ataaagatag ctttaccggt 420
ggtctgctgt ataccgttac cgcactgtgg tttccgctgc tggatattcc gagcgaagtt 480
atgagcgttg ttgcagttca tcaggtgatt cataacaact ggattcacct gaatgtgaaa 540
tggaatagct ggctgggtat tatcgaatgg atttatgtta caccgcgtat ccataccctg 600
catcatctgg ataccggtgg tcgtaatctg agcagtatgt ttacctttat tgatcgtctg 660
tttggcacct atgtgtttcc ggaaaacttt gatatcgaaa aaagcaaaaa ccgcctggat 720
gatcagagcg ttaccgttaa aaccattctg ggtttctga 759
<210> 4
<211> 117
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 4
Met Phe Gln Thr Lys Ser Tyr Tyr Ser Val Val Gly Leu Glu Thr Glu
1 5 10 15
Leu Ile Lys Gly Lys Phe Phe Met Ser Asn Glu Leu Thr Asn Glu Gln
20 25 30
Val Phe Lys Leu Val Cys Met Glu Val Ile Glu Lys Met Gly Phe Ala
35 40 45
His Phe Pro Pro Ile Ile Leu Val Tyr Glu Met Thr Asn Ser Gly Phe
50 55 60
Val Asp Trp Cys Glu Gln Met Val Phe Val Asp Asp Lys Gly Lys Leu
65 70 75 80
Asp Glu Gly Glu Lys Phe Leu Leu Asp Trp Met Arg Arg Asn Val Gly
85 90 95
Asn Phe Asp Leu Ile Arg Glu Leu Met Pro Val Ala Glu Arg Leu Glu
100 105 110
Met Lys Met Arg Ser
115
<210> 5
<211> 354
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 5
atgttccaga ccaagagtta ttactctgtg gtaggattag aaacagaatt gattaaagga 60
aaattcttta tgtctaatga attgacaaac gaacaagtat ttaagctggt ttgtatggaa 120
gtcattgaaa aaatgggatt cgcacacttt cctcccatca ttttagtcta tgagatgact 180
aattccggat ttgtagattg gtgcgagcag atggtttttg ttgatgataa aggtaagcta 240
gatgaaggag aaaaattctt attagactgg atgagacgga acgtaggaaa ctttgatctg 300
atacgtgagt taatgcccgt tgctgaacgt ctagaaatga aaatgaggtc ataa 354
<210> 6
<211> 354
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 6
atgtttcaga ccaaaagcta ttatagcgtc gttggcctgg aaaccgaact gattaaaggt 60
aaattcttca tgagcaacga actgaccaat gaacaggtgt ttaaactggt gtgcatggaa 120
gtgattgaaa aaatgggttt tgcacacttt ccgcctatta tcctggttta tgaaatgacc 180
aattccggct ttgttgattg gtgcgagcag atggtttttg tggatgataa aggcaaactg 240
gatgagggcg aaaaatttct gctggattgg atgcgtcgta atgtgggtaa ttttgatctg 300
attcgcgaac tgatgccggt ggcagaacgc ctggaaatga aaatgcgtag ctaa 354
<210> 7
<211> 318
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 7
Met Thr His Val Ala Leu Glu Gln Ala Ile Ala Lys Val Pro Arg Ser
1 5 10 15
Ile Gln Ser Glu Leu Arg Thr Ile Leu Ala Gln His Ala Val Ile Asp
20 25 30
Ser Ser Val Val Ala Ser Trp Ile Asp Arg Leu Gly Thr Asn Ile Ser
35 40 45
Thr Leu Met Ile Gln Leu Leu Pro Val Ala Ala Thr Tyr Ala Arg Val
50 55 60
Pro Ile Ser Gln Phe Tyr Val Gly Ala Ile Ala Leu Gly Lys Pro Gln
65 70 75 80
Ser Lys Asn Gln Leu Gly Ser Gly Thr Leu Tyr Phe Gly Ala Asp Met
85 90 95
Glu Phe Val Gly Gln Ala Leu Ser Phe Ser Val His Ala Glu Gln Ser
100 105 110
Ala Thr Ile Asn Ala Trp Leu His Gly Glu Thr Gly Leu Gln Ala Leu
115 120 125
Ala Ile His Glu Ala Pro Cys Gly Tyr Cys Arg Gln Phe Leu Tyr Glu
130 135 140
Met Ala Thr Val Asn Gln Asn Phe Val Leu Leu Val Lys Ser Asn Glu
145 150 155 160
Ser Gln Pro Glu Gln Thr Tyr Thr Ser Asn Lys Leu Pro His Phe Leu
165 170 175
Pro Glu Pro Phe Gly Pro Ala Asp Leu Gly Leu Thr Gly Gly Leu Met
180 185 190
Gln Thr Val Phe His Asp Leu Glu Thr Tyr Ser Thr Asp Asp Val Val
195 200 205
Leu Ala Ala Leu Ser Ala Ala Asn Gln Ser Tyr Ala Pro Tyr Thr Lys
210 215 220
Asn Phe Ala Gly Val Ala Leu Lys Asp Ser His Gly Asn Ile Phe Thr
225 230 235 240
Gly Arg Tyr Ala Glu Asn Ala Ala Phe Asn Ser Ser Met Ser Pro Met
245 250 255
Glu Ser Ala Leu Thr Phe Met Asn Met Asn Arg Tyr Ser Gln Ser Leu
260 265 270
Phe Asp Ile Cys Asp Ala Val Leu Val Glu Val Glu Thr Gly Ile Ser
275 280 285
Gln Arg Pro Val Thr Glu Ala Phe Leu Ser Ser Ile Ala Pro Lys Val
290 295 300
Lys Leu Arg Tyr Ala Pro Ala Thr Pro Ser Ser Asn Lys Leu
305 310 315
<210> 8
<211> 957
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 8
atgacccatg tagcattaga acaggcgatt gccaaggttc cacgttccat tcaatcagag 60
ttaaggacaa ttcttgccca acatgctgta attgactcaa gtgttgtcgc atcttggatt 120
gatcgacttg gtactaatat tagtacgtta atgattcaat tactacccgt agccgcaact 180
tatgctaggg taccaatatc gcagttttat gtaggggcga tcgctcttgg taaaccacaa 240
tctaagaatc aactgggttc tggaactctt tattttggtg ccgacatgga atttgtagga 300
caggcactta gtttctcagt tcacgcagaa caatccgcca ccataaatgc gtggttgcac 360
ggagaaaccg gtttacaagc attagcaatc cacgaagcac catgtggata ctgccgacaa 420
tttttatacg agatggcaac tgtaaatcaa aattttgttc ttcttgtgaa gtctaatgaa 480
tcacagcctg agcaaactta tacctcaaat aaactcccac attttctacc cgagccattt 540
ggaccagcgg atctaggact cacaggtgga ttaatgcaaa cagtatttca tgatctggag 600
acctattcta ccgatgatgt tgtgcttgct gctctatccg ctgccaatca aagttatgct 660
ccctacacga aaaattttgc aggggtagcg ttaaaagatt cccacgggaa tatatttaca 720
ggtcgatacg ctgaaaacgc tgcctttaat tcatccatgt ctccgatgga atctgctctg 780
actttcatga atatgaatag atattctcaa tcactattcg acatttgtga tgctgtttta 840
gttgaagtgg aaactgggat tagtcaaaga cccgtcactg aagccttcct ttcttctatc 900
gctcccaagg tcaagttaag gtatgcccct gcaactccgt caagtaataa gttatga 957
<210> 9
<211> 957
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 9
atgacccatg ttgccctgga acaggcaatt gcaaaagttc cgcgtagcat tcagagcgaa 60
ctgcgtacca ttctggcaca gcatgcagtt attgatagca gcgttgtggc aagctggatt 120
gatcgtctgg gcaccaatat tagtaccctg atgatccagc tgctgccggt tgcagcaacc 180
tatgcacgtg ttccgattag ccagttttat gttggtgcca ttgcactggg caaaccgcag 240
agtaaaaatc agctgggtag cggcaccctg tattttggtg cagatatgga atttgttggt 300
caggcactga gctttagcgt tcatgcagaa cagagcgcca ccattaatgc ctggctgcat 360
ggcgaaaccg gactgcaggc actggcaatc catgaagcac cgtgtggtta ttgtcgccag 420
tttctgtatg aaatggcaac cgtgaatcag aattttgtgc tgctggtgaa aagcaatgaa 480
agccagccgg aacagaccta taccagcaac aaactgccgc attttctgcc tgaaccgttt 540
ggtccagccg atctgggtct gaccggtggc ctgatgcaga ccgtgtttca cgatctggaa 600
acctatagca ccgatgatgt tgttctggca gcactgagtg cagcaaatca gagttatgca 660
ccgtatacca aaaactttgc cggtgttgca ctgaaagata gtcatggtaa catttttaca 720
ggtcgctatg ccgaaaacgc agcatttaat agcagcatga gcccgatgga aagcgcactg 780
acctttatga atatgaatcg ttattcacag agcctgttcg atatttgtga tgcagttctg 840
gtagaagtgg aaaccggtat tagtcagcgt ccggttaccg aagcctttct gagtagcatt 900
gcaccgaaag tgaaactgcg ctatgcaccg gcaaccccga gcagtaacaa actgtga 957
<210> 10
<211> 1245
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 10
Met Leu Gln Lys Ile Asn Arg Tyr Thr His Gly Phe Val Ala Val Pro
1 5 10 15
Val Ile Leu Ala Cys Arg Glu Lys Gly Val Phe Glu Leu Leu Ala Asp
20 25 30
Glu Ser Pro Leu Ser Leu Asn Gln Met Val Glu His Leu Gly Ala Asn
35 40 45
Ser Gly His Phe Gln Val Ala Leu Arg Met Leu Glu Ser Leu His Trp
50 55 60
Leu Ser Arg Asn Lys Glu Leu Lys Tyr Ser Leu Thr Ala Glu Ala Ala
65 70 75 80
Ile His Asn Lys Ile Ser Glu Asp Ile Leu Gln Leu Tyr Asn Leu Pro
85 90 95
Ile Gln Ser Tyr Leu Glu Gly Lys Gln Gly Asn Leu Leu Gly Arg Trp
100 105 110
Ile Glu Arg Ser Cys Gln Leu Trp Asn Leu Asp Asn Pro Leu Met Ala
115 120 125
Asp Phe Leu Asp Gly Leu Leu Val Ile Pro Leu Leu Leu Ala Leu His
130 135 140
Lys His Asn Leu Leu Ala Asp Ser Glu Asp Lys Pro Leu Leu Ser Ser
145 150 155 160
Leu Ser Ser Thr Val Gln Glu Glu Leu Gly Lys Leu Phe Leu His Leu
165 170 175
Gly Trp Ala Asp Leu Thr Ala Gly Arg Leu Thr Ile Thr Glu Leu Gly
180 185 190
Arg Phe Met Gly Glu Arg Ala Leu Asn Thr Ala Ile Val Ala Ser Tyr
195 200 205
Thr Pro Met Leu Ser Arg Ile His Asp Val Leu Phe Gly Asn Cys Leu
210 215 220
Ser Val Phe Gln Arg Asp Ala Ser Gly His Glu Arg His Ile Asp Arg
225 230 235 240
Thr Leu Asn Val Ile Gly Ser Gly Phe Gln His Gln Lys Tyr Phe Ala
245 250 255
Asp Leu Glu Glu Ser Ile Leu Ser Val Phe Asn Gln Leu Pro Leu Glu
260 265 270
Glu Gln Pro Lys Tyr Ile Thr Asp Met Gly Cys Gly Asp Gly Thr Leu
275 280 285
Leu Lys Arg Val Trp Glu Thr Ile Gln Phe Lys Ser Ala Arg Gly Lys
290 295 300
Ala Leu Glu Gln Tyr Pro Leu Arg Leu Ile Gly Val Asp Tyr Asn Glu
305 310 315 320
Ala Ser Leu Lys Ala Thr Thr Arg Thr Leu Ala Ser Leu Pro His Leu
325 330 335
Val Leu Gln Gly Asp Ile Gly Asn Pro Glu Gln Met Val Arg Ser Leu
340 345 350
Glu Ala His Gly Ile His Asp Pro Glu Asn Ile Leu His Ile Arg Ser
355 360 365
Phe Leu Asp His Asp Arg Leu Phe Ile Pro Pro Gln Lys Arg Asn Glu
370 375 380
Leu Lys Glu Arg Ala His Leu Pro Tyr Gln Ser Val Cys Val Asp Asp
385 390 395 400
Gln Gly Glu Leu Ile Pro Pro His Val Met Val Gln Ser Leu Val Glu
405 410 415
His Leu Glu Arg Trp Ser Gln Val Val Asn Lys His Gly Leu Met Ile
420 425 430
Leu Glu Val His Cys Leu Glu Pro Arg Val Val Tyr Gln Phe Leu Asp
435 440 445
Lys Ser Glu Asn Leu His Phe Asp Ala Phe Gln Gly Phe Ser Gln Gln
450 455 460
Tyr Leu Val Glu Ala Glu Val Phe Leu Met Ser Ala Ala Gln Val Gly
465 470 475 480
Leu Phe Pro Lys Leu Glu Leu Ser Lys Arg Tyr Pro Lys Thr Phe Pro
485 490 495
Phe Thr Arg Ile Thr Leu Asn Tyr Phe Glu Lys Arg Pro Tyr Lys Ile
500 505 510
Ser His Ala Tyr Leu Ser Asp Leu Pro Ala Leu Val Asp Leu Glu Val
515 520 525
Lys Cys Trp Pro Glu Asn Leu Arg Ala Ser Thr His Glu Ile Arg Arg
530 535 540
Arg Leu Glu Leu Asn Pro Gln Gly Asn Leu Val Leu Ile Ile Glu Asp
545 550 555 560
Gln Ile Ile Gly Ala Ile Tyr Ser Gln Thr Ile Thr Ser Thr Glu Ala
565 570 575
Leu Glu Asn Val Lys Tyr Ala Gln Val Pro Thr Leu His Thr Pro Gln
580 585 590
Gly Ser Val Ile Gln Leu Leu Ala Leu Asn Ile Leu Pro Glu Phe Gln
595 600 605
Ala Arg Gly Leu Gly Asn Glu Leu Arg Asp Phe Met Leu Tyr Tyr Cys
610 615 620
Thr Leu Lys Gly Gly Ile Glu Ser Val Val Gly Val Thr Arg Cys Arg
625 630 635 640
Asn Tyr Val Asn Tyr Ser Gln Met Pro Met Met Glu Tyr Leu Lys Leu
645 650 655
His Asn Glu Gln Arg Gln Leu Leu Asp Pro Ile Val Gly Phe His Val
660 665 670
Ser Gly Gly Ala Glu Ile Arg Gly Ile Ile Ala Asn Tyr Arg Pro Glu
675 680 685
Asp Thr Asp Asn Leu Gly Met Gly Ile Leu Ile Glu Tyr Asn Leu Arg
690 695 700
Asp Ser Ala Leu His Ser Pro Gly Asp Arg Lys Gly Pro Tyr Ile Asn
705 710 715 720
Ser Ala Ile Gly Ser Leu Val Pro Lys Ala Thr Ser Ala Thr Lys Glu
725 730 735
Asn Lys Thr Val Ala Asp Leu Val Lys Glu Cys Ile Leu Lys Val Met
740 745 750
Gly Ser Gln Arg Gln Ala Ala Tyr Ala Pro Gln Gln Lys Leu Leu Asp
755 760 765
Met Gly Leu Asp Ser Leu Asp Leu Leu Glu Leu Gln Thr Leu Leu Glu
770 775 780
Glu Arg Leu Gly Ile Asn Leu Ser Gly Thr Phe Phe Leu Gln Lys Asn
785 790 795 800
Thr Pro Thr Ala Ile Ile Thr Tyr Phe Gln Asn Gln Val Val Gln Glu
805 810 815
Lys Gln Ser Asp Leu Ala Pro Pro Val Asp Ser Ala Asn Glu Ile Asn
820 825 830
Thr Leu Glu Asn Val Val Asn Gln Gln Lys Ile Pro Gln Val Thr Arg
835 840 845
Val Val Thr Glu Gln Gln Gly Arg Lys Val Leu Ile Asp Gly His Trp
850 855 860
Val Ile Asp Phe Ala Ser Cys Asn Tyr Leu Gly Leu Asp Leu His Pro
865 870 875 880
Lys Val Lys Glu Ala Ile Pro Pro Ala Leu Asp Lys Trp Gly Thr His
885 890 895
Pro Ser Trp Thr Arg Leu Val Ala Ser Pro Ala Ile Tyr Glu Glu Leu
900 905 910
Glu Glu Glu Leu Ser Lys Leu Leu Gly Val Pro Asp Val Leu Val Phe
915 920 925
Pro Ala Val Thr Leu Leu Gln Ile Gly Ile Leu Pro Leu Leu Thr Gly
930 935 940
Asn Asn Gly Val Ile Phe Gly Asp Ile Ala Ala His Arg Cys Ile Tyr
945 950 955 960
Glu Ala Cys Cys Leu Ala Gln His Lys Gly Ala Gln Phe Ile Gln Tyr
965 970 975
Arg His Asn Asp Leu Asn Asp Leu Ala Glu Lys Leu Ala Lys Tyr Pro
980 985 990
Pro Glu Gln Val Lys Ile Ile Val Ile Asp Gly Val Tyr Ser Met Ser
995 1000 1005
Ala Asp Phe Pro Asp Leu Pro Ala Tyr Val His Leu Ala Lys Glu
1010 1015 1020
Tyr Asn Ala Leu Ile Tyr Met Asp Asp Ala His Gly Phe Gly Ile
1025 1030 1035
Leu Gly Glu Asn Pro Ser Ser Asp Met Pro Tyr Gly Tyr Lys Gly
1040 1045 1050
Asn Gly Met Val Asn Tyr Phe Asp Leu Arg Phe Ala Glu Asp Asn
1055 1060 1065
Ile Ile Tyr Val Ala Gly Leu Ser Lys Ala Tyr Ser Ser Tyr Ala
1070 1075 1080
Ala Phe Leu Thr Cys Gly Asp Arg Arg Ile Lys Thr Asn Phe Arg
1085 1090 1095
Asn Ala Trp Thr Ala Ile Phe Ser Gly Pro Ser Pro Val Ala Ser
1100 1105 1110
Leu Ala Ser Ala Leu Ala Gly Leu Gln Val Asn Arg Gln Glu Gly
1115 1120 1125
Glu Gln Leu Arg Lys Gln Ile Tyr His Leu Thr His Lys Leu Val
1130 1135 1140
Thr Gln Ala Arg Ala Ile Gly Phe Glu Val Asp Asn Tyr Gly Tyr
1145 1150 1155
Val Pro Ile Val Gly Val Leu Val Gly Asp Ala Gln His Met Ile
1160 1165 1170
Asp Val Cys Gln Leu Leu Trp Glu Tyr Gly Ile Leu Ile Thr Pro
1175 1180 1185
Ala Ile Phe Pro Ile Val Pro Leu Asn Lys Ser Ala Leu Arg Phe
1190 1195 1200
Ser Ile Thr Ala Ala Asn Thr Glu Glu Glu Ile Asp Gln Ala Ile
1205 1210 1215
Lys Ser Leu Lys Ala Val Trp Asp Leu Leu Gln Lys Arg Lys Ala
1220 1225 1230
Leu Pro Cys Lys Gln Glu Glu Asn Ile Leu Lys His
1235 1240 1245
<210> 11
<211> 3738
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 11
atgttacaaa agattaatcg ttatactcac ggctttgtgg cggttcccgt tattcttgcg 60
tgtcgagaaa aaggtgtttt tgaattactc gccgatgaaa gtcctctctc tttaaaccaa 120
atggtggaac atctgggagc taacagcgga cattttcaag ttgctttgag gatgctcgag 180
tctttacatt ggctttcccg aaataaggag cttaaatact ctctaaccgc agaagcagcg 240
attcacaaca aaatttcgga agacattctt caattgtaca acctaccaat tcagtcttat 300
ttagaaggga aacaaggaaa tttgctggga agatggattg agcgttcttg ccaattgtgg 360
aacctggaca atcccctaat ggcagatttt ttagatggat tactggtcat cccactcctg 420
ctggcactgc acaaacacaa cttgcttgca gattcggagg acaaaccttt gctctcctca 480
ttaagctcaa cagtgcaaga agagttgggt aagttatttc tccaccttgg ctgggctgac 540
cttacagcag gtcgtttgac cataaccgaa cttggtcgat ttatgggaga gcgagccttg 600
aatacagcca tagtggcgtc ctacactcct atgttgtccc gcattcatga tgtattgttt 660
ggcaattgtc tctccgtatt ccaaagagat gcttccggtc acgaaaggca cattgatcgc 720
acccttaacg tgatcgggag tggatttcaa caccagaaat attttgccga tttagaagaa 780
agtatcctct cagtattcaa tcagttgcca ttagaagaac aacccaaata cattactgac 840
atggggtgtg gcgatggaac tctcctgaaa cgagtctggg aaaccattca atttaagtct 900
gctaggggaa aagcactcga acagtatccc ctgcgtctta taggtgtaga ttataacgaa 960
gcttctttaa aagctaccac acgcaccctt gctagccttc cccacttagt tttacaggga 1020
gatattggga acccagaaca aatggtgcgt tctttagaag ctcatggcat tcatgatccc 1080
gaaaatatcc tgcacatccg ttcgttcctc gaccatgatc gtctctttat tcctcctcag 1140
aaaagaaacg aattgaaaga acgtgctcac ttaccttacc aatcagtctg tgtcgatgat 1200
caaggagagc ttattcctcc tcatgttatg gtgcaaagtt tggtggaaca cttagaaaga 1260
tggtctcaag tggtcaataa acacggttta atgattttgg aggtccattg tttggaacca 1320
agggtagtct atcagttttt agacaaaagc gaaaacttac atttcgatgc gtttcaggga 1380
ttttctcagc agtatcttgt ggaagctgag gtttttctca tgtctgctgc acaagtaggt 1440
ctatttccaa aactagagct ttctaaaaga tacccaaaaa catttccttt tactcgcatt 1500
acgcttaatt acttcgagaa aagaccttac aaaattagtc atgcctattt gtcagattta 1560
cctgccttag ttgacttgga ggtcaagtgt tggccagaaa atttacgggc atctactcat 1620
gaaattcggc gaagacttga gctaaacccg caaggtaatt tagtgctgat tatagaagat 1680
caaattattg gtgcgattta ttcccaaaca attaccagca ctgaggcatt agagaatgta 1740
aaatatgcgc aagtgccgac gttacatact ccccaagggt cagttattca actgctcgca 1800
ctaaatattc tacctgagtt tcaggcgcgg gggttaggaa atgaattgcg ggactttatg 1860
ctttactact gtaccctgaa aggcggcatt gagagcgtgg tgggtgtaac tcgctgtcga 1920
aattatgtca attattccca aatgccgatg atggagtatt taaagctaca caatgagcaa 1980
cgacagcttc tggatccaat tgtgggtttc catgtgtcgg gaggagccga aattagggga 2040
attattgcta attatcgtcc ggaagataca gataatctcg gcatgggtat tttgattgaa 2100
tataacctgc gcgacagtgc tttgcactcg cctggtgatc gcaaaggacc gtatattaac 2160
tcagcaattg gttcattggt accaaaagca acatctgcaa ctaaggaaaa caaaactgta 2220
gcggatctcg ttaaagaatg catcttaaaa gtaatgggtt cccaacgtca ggcagcctac 2280
gctccacaac aaaaactgct ggatatggga ttagattctt tagatttatt agaactgcaa 2340
acgctcctag aggaacgttt agggatcaat ctgtctggaa cgttcttttt acaaaagaac 2400
actccaactg ccatcatcac ttatttccaa aaccaagtgg tacaagagaa acaatctgat 2460
ctagctccac ctgttgactc agccaacgaa atcaacactc tggaaaacgt agttaaccaa 2520
caaaaaattc ctcaagtcac aagagtcgtc acagaacaac aaggtcgcaa ggtgctaatt 2580
gacggacatt gggtgataga ctttgcttct tgcaactatt taggtcttga cttgcatcca 2640
aaagttaagg aagcaattcc accagctttg gataaatggg gcacacatcc aagctggact 2700
cggcttgttg cttccccagc aatttatgag gaattggagg aagaattgtc caaactttta 2760
ggcgtacctg atgttttagt atttccagct gtaacactgc ttcagatagg aattttacca 2820
ctattaactg ggaataatgg tgtcatcttt ggtgacatag ctgcacatcg ttgtatttat 2880
gaagcgtgct gtctggctca gcacaaagga gcccagttca tccaatatcg acataatgat 2940
ttgaacgatt tagccgaaaa actagcaaaa tatccgcctg aacaagtaaa gattattgtc 3000
attgatggcg tgtattccat gtcggcagat tttcccgatc tgccagctta cgtgcatctg 3060
gcaaaagagt acaatgcctt aatttacatg gatgatgctc atggttttgg cattttgggc 3120
gaaaatccca gcagcgatat gccttacggt tacaaaggaa acgggatggt gaattatttt 3180
gacctgcggt ttgcagagga taatatcatc tatgtagctg gtttgtccaa agcctattct 3240
tcttacgcag cattcttaac ttgtggcgat cgccggatca aaaccaactt ccgcaacgct 3300
tggactgcca tattttctgg tccttctcct gttgcgagtt tggcaagtgc cttagccgga 3360
ttacaggtga atcgtcagga gggggagcag ttaagaaaac aaatttatca cctaactcac 3420
aaattggtta cacaagcaag agccattgga ttcgaagtgg ataactatgg ttacgttccc 3480
atcgtaggcg tgttagtggg agatgctcaa cacatgattg atgtgtgtca actcctttgg 3540
gaatatggta ttttaattac tcctgctatt tttccaatcg tacctttaaa taaaagtgct 3600
ttaaggtttt cgattacagc cgccaatacc gaagaggaga tagaccaagc aattaaatct 3660
ctcaaagcag tttgggattt gctacaaaaa aggaaagctt tgccttgtaa gcaggaggaa 3720
aacatactca agcattaa 3738
<210> 12
<211> 3738
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 12
atgctgcaga aaatcaatcg ttatacccat ggttttgttg ccgttccggt tattctggca 60
tgtcgtgaaa aaggtgtttt tgaactgctg gcagatgaaa gtccgctgag cctgaatcag 120
atggttgaac atctgggtgc caatagcggt cattttcagg ttgcactgcg tatgctggaa 180
agtctgcatt ggctgagccg taataaagaa ctgaaatata gcctgaccgc agaagcagca 240
attcataaca aaattagcga agatatcctg cagctgtata atctgccgat tcagagctat 300
ctggaaggta aacagggcaa tctgctgggt cgttggattg aacgtagctg tcagctgtgg 360
aatctggata atccgctgat ggcagatttt ctggatggtc tgctggttat tccgctgctg 420
ctggcactgc ataaacataa cctgctggcc gattctgaag ataaaccgct gctgagcagc 480
ctgagcagta ccgttcaaga agaactgggt aaactgtttc tgcatctggg ttgggcagat 540
ctgacagcag gtcgtctgac cattaccgaa ctgggtcgct ttatgggtga acgtgcactg 600
aataccgcaa ttgttgcaag ctataccccg atgctgagtc gtattcatga tgttctgttt 660
ggtaattgcc tgagcgtttt tcagcgtgat gcaagcggtc atgaacgtca tattgatcgt 720
accctgaatg ttattggtag cggttttcag caccagaaat actttgcaga tctggaagaa 780
agcattctga gcgtgtttaa tcagctgccg ctggaagaac agccgaaata cattaccgat 840
atgggttgtg gtgatggcac cctgctgaaa cgtgtttggg aaaccattca gtttaaaagc 900
gcacgtggta aagcactgga acagtatccg ctgcgtctga ttggtgttga ttataatgaa 960
gcaagcctga aagcaaccac ccgtaccctg gcaagcctgc cgcatctggt tctgcagggt 1020
gatattggta atccggaaca aatggttcgt agcctggaag cacatggcat tcatgatccg 1080
gaaaatattc tgcatattcg cagctttctg gatcacgatc gtctgtttat tccgcctcag 1140
aaacgtaatg aactgaaaga acgtgcccat ctgccgtatc agagtgtttg tgttgatgat 1200
cagggtgaac tgattcctcc gcatgttatg gttcagagcc tggtggaaca cctggaacgt 1260
tggagccagg ttgttaataa acatggtctg atgattctgg aagtgcattg tctggaaccg 1320
cgtgttgttt atcagtttct ggataaaagc gaaaacctgc actttgatgc atttcagggt 1380
tttagccagc agtatctggt tgaagccgaa gtttttctga tgagcgcagc acaggttggt 1440
ctgtttccga aactggaact gagcaaacgt tatccgaaaa cctttccgtt tacccgtatt 1500
accctgaact atttcgaaaa acgtccgtac aaaatcagcc atgcatatct gagcgatctg 1560
cctgcactgg ttgacctgga agttaaatgt tggcctgaga atctgcgtgc aagcacccat 1620
gaaattcgtc gtcgtctgga actgaatccg cagggtaacc tggttctgat tattgaagat 1680
cagattatcg gtgccattta cagccagacc attacaagca ccgaagccct ggaaaatgtt 1740
aaatatgcac aggttccgac cctgcataca ccgcagggtt cagtgattca gctgctggcc 1800
ctgaacattc tgccggaatt tcaggcacgt ggtctgggca atgaactgcg tgattttatg 1860
ctgtattatt gcaccctgaa aggtggtatt gaaagcgttg ttggtgttac ccgttgtcgc 1920
aattatgtga attatagcca gatgccgatg atggaatatc tgaaactgca taatgaacag 1980
cgtcaactgc tggatccgat tgttggtttt catgttagcg gtggtgcaga aattcgtggc 2040
attattgcaa attatcgtcc ggaagataca gataatctgg gtatgggtat tctgatcgaa 2100
tataacctgc gtgatagcgc actgcattca ccgggtgatc gtaaaggtcc gtatatcaat 2160
agcgcaattg gtagcctggt tccgaaagcg accagcgcaa ccaaagaaaa caaaaccgtt 2220
gcggatctgg tgaaagaatg tattctgaaa gtgatgggta gccagcgtca ggcagcatat 2280
gcaccgcagc agaaactgct ggacatgggt ctggatagcc tggatctgct ggaactgcag 2340
accctgctgg aagaacgtct gggtattaat ctgagcggca ccttttttct gcaaaaaaac 2400
accccgaccg ccatcattac ctattttcag aatcaggtcg tgcaagagaa acagagtgat 2460
ctggcaccgc ctgttgatag cgccaatgaa atcaatacac tggaaaacgt tgtgaatcag 2520
cagaaaattc cgcaggttac acgtgttgtt accgaacagc agggacgtaa agttctgatt 2580
gatggtcatt gggttattga ttttgccagc tgtaattatc tgggcctgga cctgcatccg 2640
aaagttaaag aagcaattcc tccggcactg gataaatggg gcacccatcc gagctggacc 2700
cgtctggttg caagtccggc aatttatgag gaactggaag aggaactgtc aaaactgctg 2760
ggtgtgccgg atgttctggt ttttccggca gttacactgc tgcagattgg tattctgcct 2820
ctgctgaccg gtaataatgg tgtgattttt ggcgatattg cagcccatcg ttgtatttat 2880
gaagcatgtt gtctggccca gcataaaggt gcacagttta ttcagtatcg tcataacgac 2940
ctgaatgatc tggccgaaaa actggccaaa tatccgcctg aacaggttaa aatcattgtg 3000
atcgatggtg tgtatagcat gagtgccgat ttcccggacc tgcctgcata tgttcatctg 3060
gcaaaagaat ataacgccct gatctatatg gatgatgcac atggctttgg cattctgggt 3120
gaaaatccga gcagcgatat gccgtatggt tataaaggta atggcatggt gaactacttt 3180
gatctgcgtt ttgccgaaga taacatcatt tatgttgcag gtctgagcaa agcctatagc 3240
agctatgcag catttctgac ctgtggtgat cgtcgtatta aaaccaattt tcgtaatgca 3300
tggaccgcga tttttagcgg tccgagtccg gttgcaagcc tggccagcgc actggcaggt 3360
ctgcaggtta atcgtcaaga aggtgaacag ctgcgcaaac aaatctatca tctgacacat 3420
aaactggtta cccaggctcg tgccattggt tttgaagttg ataattatgg ttatgtgccg 3480
attgtgggtg ttctggtggg tgatgcacag catatgattg atgtgtgcca actgctgtgg 3540
gaatatggta tcctgattac ccctgcaatt tttccgattg tgccgctgaa taaatcagca 3600
ctgcgtttta gcattaccgc agcaaatacc gaagaagaaa ttgatcaggc catcaaaagt 3660
ctgaaagcag tttgggacct gctgcaaaaa cgtaaagccc tgccgtgtaa acaagaagaa 3720
aatatcctga aacattga 3738
<210> 13
<211> 128
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 13
Met Leu Lys Asp Phe Asn Gln Phe Leu Ile Arg Thr Leu Ala Phe Val
1 5 10 15
Phe Ala Phe Gly Ile Phe Leu Thr Thr Gly Val Gly Ile Ala Lys Ala
20 25 30
Asp Tyr Leu Val Lys Gly Gly Lys Ile Thr Asn Val Gln Asn Thr Ser
35 40 45
Ser Asn Gly Asp Asn Tyr Ala Val Ser Ile Ser Gly Gly Phe Gly Pro
50 55 60
Cys Ala Asp Arg Val Ile Ile Leu Pro Thr Ser Gly Val Ile Asn Arg
65 70 75 80
Asp Ile His Met Arg Gly Tyr Glu Ala Ala Leu Thr Ala Leu Ser Asn
85 90 95
Gly Phe Leu Val Asp Ile Tyr Asp Tyr Thr Gly Ser Ser Cys Ser Asn
100 105 110
Gly Gly Gln Leu Thr Ile Thr Asn Gln Leu Gly Lys Leu Ile Ser Asn
115 120 125
<210> 14
<211> 387
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 14
atgttgaaag atttcaacca gtttttaatc agaacactag cattcgtatt cgcatttggt 60
attttcttaa ccactggagt tggcattgct aaagctgact acctagttaa aggtggaaag 120
attaccaatg ttcaaaatac ttcttctaac ggtgataatt atgccgttag tatcagcggt 180
gggtttggtc cttgcgcaga tagagtgatt atcctaccaa cttcaggagt gataaatcga 240
gacattcata tgcgtggcta tgaagccgca ttaactgcac tatccaatgg ctttttagta 300
gatatttacg actatactgg ctcttcttgc agcaatggtg gccaactaac tattaccaac 360
caattaggta agctaatcag caattag 387
<210> 15
<211> 387
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 15
atgctgaaag attttaacca gttcctgatt cgtaccctgg catttgtttt tgcctttggc 60
atttttctga caaccggtgt tggtattgca aaagcagatt atctggtgaa aggtggcaaa 120
attaccaatg ttcagaatac cagcagcaac ggtgataatt atgcagttag cattagcggt 180
ggttttggtc cgtgtgcaga tcgtgttatt attctgccga ccagcggtgt tattaatcgt 240
gatattcaca tgcgtggtta tgaagcagca ctgaccgcac tgagcaatgg ttttctggtt 300
gatatctatg attataccgg tagcagctgt agcaatggtg gccagctgac cattaccaat 360
cagctgggta aactgattag caattga 387
<210> 16
<211> 471
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 16
Met Glu Thr Thr Ser Lys Lys Phe Lys Ser Asp Leu Ile Leu Glu Ala
1 5 10 15
Arg Ala Ser Leu Lys Leu Gly Ile Pro Leu Val Ile Ser Gln Met Cys
20 25 30
Glu Thr Gly Ile Tyr Thr Ala Asn Ala Val Met Met Gly Leu Leu Gly
35 40 45
Thr Gln Val Leu Ala Ala Gly Ala Leu Gly Ala Leu Ala Phe Leu Thr
50 55 60
Leu Leu Phe Ala Cys His Gly Ile Leu Ser Val Gly Gly Ser Leu Ala
65 70 75 80
Ala Glu Ala Phe Gly Ala Asn Lys Ile Asp Glu Val Ser Arg Ile Ala
85 90 95
Ser Gly Gln Ile Trp Leu Ala Val Thr Leu Ser Leu Pro Ala Met Leu
100 105 110
Leu Leu Trp His Gly Asp Thr Ile Leu Leu Leu Phe Gly Gln Glu Glu
115 120 125
Ser Asn Val Leu Leu Thr Lys Thr Tyr Leu His Ser Ile Leu Trp Gly
130 135 140
Phe Pro Ala Ala Leu Ser Ile Leu Thr Leu Arg Gly Ile Ala Ser Ala
145 150 155 160
Leu Asn Val Pro Arg Leu Ile Thr Ile Thr Met Leu Thr Gln Leu Ile
165 170 175
Leu Asn Thr Ala Ala Asp Tyr Val Leu Ile Phe Gly Lys Phe Gly Leu
180 185 190
Pro Gln Leu Gly Leu Ala Gly Ile Gly Trp Ala Thr Ala Leu Gly Phe
195 200 205
Trp Val Ser Phe Thr Leu Gly Leu Ile Leu Leu Ile Phe Ser Leu Lys
210 215 220
Val Arg Asp Tyr Lys Leu Phe Arg Tyr Leu His Gln Phe Asp Lys Gln
225 230 235 240
Ile Phe Val Lys Ile Phe Gln Thr Gly Trp Pro Met Gly Phe Gln Trp
245 250 255
Gly Ala Glu Thr Ala Leu Phe Asn Val Thr Ala Trp Val Ala Gly Tyr
260 265 270
Leu Gly Thr Val Thr Leu Ala Ala His Asp Ile Gly Phe Gln Thr Ala
275 280 285
Glu Leu Ala Met Val Ile Pro Leu Gly Val Gly Asn Val Ala Met Thr
290 295 300
Arg Val Gly Gln Ser Ile Gly Glu Lys Asn Pro Leu Gly Ala Arg Arg
305 310 315 320
Val Ala Ser Ile Gly Ile Thr Ile Val Gly Ile Tyr Ala Ser Ile Val
325 330 335
Ala Leu Val Phe Trp Leu Phe Pro Tyr Gln Ile Ala Gly Ile Tyr Leu
340 345 350
Asn Ile Asn Asn Pro Glu Asn Ile Glu Ala Ile Lys Lys Ala Thr Thr
355 360 365
Phe Ile Pro Leu Ala Gly Leu Phe Gln Met Phe Tyr Ser Ile Gln Ile
370 375 380
Ile Ile Val Gly Ala Leu Val Gly Leu Arg Asp Thr Phe Val Pro Val
385 390 395 400
Ser Met Asn Leu Ile Val Trp Gly Leu Gly Leu Ala Gly Ser Tyr Phe
405 410 415
Met Ala Ile Ile Leu Gly Trp Gly Gly Ile Gly Ile Trp Leu Ala Met
420 425 430
Val Leu Ser Pro Leu Leu Ser Ala Val Ile Leu Thr Val Arg Phe Tyr
435 440 445
Arg Val Ile Asp Asn Leu Leu Ala Asn Ser Asp Asp Met Leu Gln Asn
450 455 460
Ala Ser Val Thr Thr Leu Gly
465 470
<210> 17
<211> 1416
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 17
atggaaacaa cctcaaaaaa atttaagtca gatctgatat tagaagcacg agcaagccta 60
aagttgggaa tccccttagt catttcacaa atgtgcgaaa cgggtattta tacagcgaat 120
gcagtcatga tgggtttact tggtacgcaa gttttggccg ccggtgcttt gggcgcgctc 180
gcttttttga ccttattatt tgcctgccat ggtattctct cagtaggagg atcactagca 240
gccgaagctt ttggggcaaa taaaatagat gaagttagtc gtattgcttc cgggcaaata 300
tggctagcag ttaccttgtc tttacctgca atgcttctgc tttggcatgg cgatactatc 360
ttgctgctat tcggtcaaga ggaaagcaat gtgttattga caaaaacgta tttacactca 420
attttatggg gctttcccgc tgcgcttagt attttgacat taagaggcat tgcctctgct 480
ctcaacgttc cccgattgat aactattact atgctcactc agctgatatt gaataccgcc 540
gccgattatg tgttaatatt cggtaaattt ggtcttcctc aacttggttt ggctggaata 600
ggctgggcaa ctgctctggg tttttgggtt agttttacat tggggcttat cttgctgatt 660
ttctccctga aagttagaga ttataaactt ttccgctact tgcatcagtt tgataaacag 720
atctttgtca aaatttttca aactggatgg cccatggggt ttcaatgggg ggcggaaacg 780
gcactattta acgtcaccgc ttgggtagca gggtatttag gaacggtaac attagcagcc 840
catgatattg gcttccaaac ggcagaactg gcgatggtta taccactcgg agtcggcaat 900
gtcgctatga caagagtagg tcagagtata ggagaaaaaa accctttggg tgcaagaagg 960
gtagcatcga ttggaattac aatagttggc atttatgcca gtattgtagc acttgttttc 1020
tggttgtttc catatcaaat tgccggaatt tatttaaata taaacaatcc cgagaatatc 1080
gaagcaatta agaaagcaac tacttttatc cccttggcgg gactattcca aatgttttac 1140
agtattcaaa taattattgt tggggctttg gtcggtctgc gggatacatt tgttccagta 1200
tcaatgaact taattgtctg gggtcttgga ttggcaggaa gctatttcat ggcaatcatt 1260
ttaggatggg gggggatcgg gatttggttg gctatggttt tgagtccact cctctcggca 1320
gttattttaa ctgttcgttt ttatcgagtg attgacaatc ttcttgccaa cagtgatgat 1380
atgttacaga atgcgtctgt tactactcta ggctga 1416
<210> 18
<211> 1416
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 18
atggaaacca cgagcaaaaa attcaaaagc gatctgattc tggaagcacg tgcaagcctg 60
aaactgggta ttccgctggt tattagccag atgtgtgaaa ccggtattta taccgcaaat 120
gcagttatga tgggtctgct gggcacccag gttctggcag ccggtgctct gggtgcactg 180
gcatttctga ccctgctgtt tgcatgtcat ggtattctga gcgttggtgg tagcctggca 240
gcggaagcat ttggtgcaaa caaaattgat gaagttagcc gtattgcaag cggtcagatt 300
tggctggcag ttaccctgag cctgcctgca atgctgctgc tgtggcatgg tgataccatt 360
ctgctgttat ttggtcaaga agaaagcaac gttctgctga ccaaaaccta tctgcatagc 420
attctgtggg gttttccggc agcactgagt attctgacac tgcgtggtat tgccagcgca 480
ctgaatgttc cgcgtctgat taccattacc atgctgaccc agctgattct gaataccgca 540
gcagattatg ttctgatctt tggtaaattt ggtctgccgc agctgggtct ggcaggtatt 600
ggttgggcaa ccgcactggg tttttgggtt agctttaccc tgggtctgat cctgctgatt 660
tttagcctga aagtgcgtga ttataaactg tttcgttatc tgcaccagtt cgacaagcag 720
atctttgtga aaatctttca gaccggttgg ccgatgggtt ttcagtgggg tgcagaaaca 780
gcactgttta atgttaccgc atgggttgca ggttatctgg gcaccgttac cctggcagca 840
catgatattg gttttcagac agcagaactg gcaatggtta tcccgctggg tgttggtaat 900
gttgcaatga cccgtgttgg tcagagcatt ggtgaaaaaa atccactggg tgcccgtcgt 960
gttgcaagca ttggtattac cattgttggt atttatgcca gcattgttgc cctggttttt 1020
tggctgtttc cgtatcagat tgcaggcatt tatctgaaca ttaataaccc ggaaaacatt 1080
gaagccatca aaaaagccac cacctttatt ccactggcag gtctgtttca gatgttttat 1140
agcattcaga tcattatcgt tggtgcgctg gttggtctgc gtgatacctt tgttccggtt 1200
agcatgaatc tgattgtttg gggtctgggt ttagcaggta gctattttat ggcaattatt 1260
ctgggttggg gtggtattgg tatctggctg gccatggttc tgagtccgct gctgagcgca 1320
gttattctga ccgttcgttt ttatcgcgtg attgataatc tgctggccaa cagtgatgat 1380
atgctgcaga atgcaagcgt taccaccctg ggatga 1416
<210> 19
<211> 377
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 19
Met Thr Asn Gln Asn Asn Gln Glu Leu Glu Asn Asp Leu Pro Ile Ala
1 5 10 15
Lys Gln Pro Cys Pro Val Asn Ser Tyr Asn Glu Trp Asp Thr Leu Glu
20 25 30
Glu Val Ile Val Gly Ser Val Glu Gly Ala Met Leu Pro Ala Leu Glu
35 40 45
Pro Ile Asn Lys Trp Thr Phe Pro Phe Glu Glu Leu Glu Ser Ala Gln
50 55 60
Lys Ile Leu Ser Glu Arg Gly Gly Val Pro Tyr Pro Pro Glu Met Ile
65 70 75 80
Thr Leu Ala His Lys Glu Leu Asn Glu Phe Ile His Ile Leu Glu Ala
85 90 95
Glu Gly Val Lys Val Arg Arg Val Lys Pro Val Asp Phe Ser Val Pro
100 105 110
Phe Ser Thr Pro Ala Trp Gln Val Gly Ser Gly Phe Cys Ala Ala Asn
115 120 125
Pro Arg Asp Val Phe Leu Val Ile Gly Asn Glu Ile Ile Glu Ala Pro
130 135 140
Met Ala Asp Arg Asn Arg Tyr Phe Glu Thr Trp Ala Tyr Arg Glu Met
145 150 155 160
Leu Lys Glu Tyr Phe Gln Ala Gly Ala Lys Trp Thr Ala Ala Pro Lys
165 170 175
Pro Gln Leu Phe Asp Ala Gln Tyr Asp Phe Asn Phe Gln Phe Pro Gln
180 185 190
Leu Gly Glu Pro Pro Arg Phe Val Val Thr Glu Phe Glu Pro Thr Phe
195 200 205
Asp Ala Ala Asp Phe Val Arg Cys Gly Arg Asp Ile Phe Gly Gln Lys
210 215 220
Ser His Val Thr Asn Gly Leu Gly Ile Glu Trp Leu Gln Arg His Leu
225 230 235 240
Glu Asp Glu Tyr Arg Ile His Ile Ile Glu Ser His Cys Pro Glu Ala
245 250 255
Leu His Ile Asp Thr Thr Leu Met Pro Leu Ala Pro Gly Lys Ile Leu
260 265 270
Val Asn Pro Glu Phe Val Asp Val Asn Lys Leu Pro Lys Ile Leu Lys
275 280 285
Ser Trp Asp Ile Leu Val Ala Pro Tyr Pro Asn His Ile Pro Gln Asn
290 295 300
Gln Leu Arg Leu Val Ser Glu Trp Ala Gly Leu Asn Val Leu Met Leu
305 310 315 320
Asp Glu Glu Arg Val Ile Val Glu Lys Asn Gln Glu Gln Met Ile Lys
325 330 335
Ala Leu Lys Asp Trp Gly Phe Lys Pro Ile Val Cys His Phe Glu Ser
340 345 350
Tyr Tyr Pro Phe Leu Gly Ser Phe His Cys Ala Thr Leu Asp Val Arg
355 360 365
Arg Arg Gly Thr Leu Gln Ser Tyr Phe
370 375
<210> 20
<211> 1134
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 20
atgaccaatc aaaataacca agaattagag aacgatttac caatcgccaa gcagccttgt 60
ccggtcaatt cttataatga gtgggacaca cttgaggagg tcattgttgg tagtgttgaa 120
ggtgcaatgt taccggccct agaaccaatc aacaaatgga cattcccttt tgaagaattg 180
gaatctgccc aaaagatact ctctgagagg ggaggagttc cttatccacc agagatgatt 240
acattagcac acaaagaact aaatgaattt attcacattc ttgaagcaga aggggtcaaa 300
gttcgtcgag ttaaacctgt agatttctct gtccccttct ccacaccagc ttggcaagta 360
ggaagtggtt tttgtgccgc caatcctcgc gatgtttttt tggtgattgg gaatgagatt 420
attgaagcac caatggcaga tcgcaaccgc tattttgaaa cttgggcgta tcgagagatg 480
ctcaaggaat attttcaggc aggagctaag tggactgcag cgccgaagcc acaattattc 540
gacgcacagt atgacttcaa tttccagttt cctcaactgg gggagccgcc gcgtttcgtc 600
gttacagagt ttgaaccgac ttttgatgcg gcagattttg tgcgctgtgg acgagatatt 660
tttggtcaaa aaagtcatgt gactaatggt ttgggcatag aatggttaca acgtcacttg 720
gaagacgaat accgtattca tattattgaa tcgcattgtc cggaagcact gcacatcgat 780
accaccttaa tgcctcttgc acctggcaaa atactagtaa atccagaatt tgtagatgtt 840
aataaattgc caaaaatcct gaaaagctgg gacattttgg ttgcacctta ccccaaccat 900
atacctcaaa accagctgag actggtcagt gaatgggcag gtttgaatgt actgatgtta 960
gatgaagagc gagtcattgt agaaaaaaac caggagcaga tgattaaagc actgaaagat 1020
tggggattta agcctattgt ttgccatttt gaaagctact atccattttt aggatcattt 1080
cactgtgcaa cattagacgt tcgccgacgc ggaactcttc agtcctattt ttaa 1134
<210> 21
<211> 1134
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 21
atgaccaatc agaacaacca agagctggaa aatgatctgc cgattgcaaa acagccgtgt 60
ccggttaata gctataatga atgggatacc ctggaagaag ttattgttgg tagcgttgaa 120
ggtgcaatgc tgcctgcact ggaaccgatt aacaaatgga cctttccgtt tgaagaactg 180
gaaagcgcac agaaaattct gagcgaacgt ggtggtgttc cgtatccgcc tgaaatgatt 240
accctggcac ataaagaact gaacgagttt attcatatcc tggaagccga aggtgttaaa 300
gttcgtcgtg ttaaaccggt tgattttagc gttccgttta gcacaccggc atggcaggtt 360
ggtagcggtt tttgtgcagc aaatccgcgt gatgtttttc tggttattgg caacgaaatt 420
atcgaagcac cgatggcaga tcgtaatcgt tattttgaaa cctgggcata tcgcgaaatg 480
ctgaaagaat attttcaggc aggcgcaaaa tggaccgcag caccgaaacc gcagctgttt 540
gatgcacagt atgatttcaa ttttcagttt ccgcagctgg gtgaaccgcc tcgttttgtt 600
gttaccgaat ttgaaccgac ctttgatgca gccgattttg ttcgttgtgg tcgtgatatt 660
tttggccaga aaagccatgt taccaatggt ctgggtattg aatggctgca gcgtcatctg 720
gaagatgaat atcgcattca tatcatcgaa agccattgtc cggaagcact gcatattgat 780
accaccctga tgccgctggc accgggtaaa attctggtta atccggaatt tgtggacgtg 840
aataaactgc cgaaaattct gaaaagctgg gatattctgg ttgcaccgta tccgaatcat 900
attccgcaga atcagctgcg tctggttagc gaatgggcag gtctgaatgt tctgatgctg 960
gatgaagaac gtgtgatcgt ggaaaaaaat caagagcaga tgatcaaagc cctgaaagat 1020
tggggtttta aaccgattgt ttgccacttc gaaagctatt atccgtttct gggtagcttt 1080
cattgtgcaa ccctggatgt tcgtcgtcgt ggcaccctgc agagctattt ttga 1134
<210> 22
<211> 334
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 22
Met Thr Thr Ala Asp Leu Ile Leu Ile Asn Asn Trp Tyr Val Val Ala
1 5 10 15
Lys Val Glu Asp Cys Lys Pro Gly Ser Ile Thr Thr Ala Leu Leu Leu
20 25 30
Gly Val Lys Leu Val Leu Trp Arg Ser Arg Glu Gln Asn Ser Pro Ile
35 40 45
Gln Ile Trp Gln Asp Tyr Cys Pro His Arg Gly Val Ala Leu Ser Met
50 55 60
Gly Glu Ile Val Asn Asn Thr Leu Val Cys Pro Tyr His Gly Trp Arg
65 70 75 80
Tyr Asn Gln Ala Gly Lys Cys Val His Ile Pro Ala His Pro Asp Met
85 90 95
Thr Pro Pro Ala Ser Ala Gln Ala Lys Ile Tyr His Cys Gln Glu Arg
100 105 110
Tyr Gly Leu Val Trp Val Cys Leu Gly Asp Pro Val Asn Asp Ile Pro
115 120 125
Ser Leu Pro Glu Trp Asp Asp Pro Asn Tyr His Asn Thr Cys Thr Lys
130 135 140
Ser Tyr Phe Ile Gln Ala Ser Ala Phe Arg Val Met Asp Asn Phe Ile
145 150 155 160
Asp Val Ser His Phe Pro Phe Val His Asp Gly Gly Leu Gly Asp Arg
165 170 175
Asn His Ala Gln Ile Glu Glu Phe Glu Val Lys Val Asp Lys Asp Gly
180 185 190
Ile Ser Ile Gly Asn Leu Lys Leu Gln Met Pro Arg Phe Asn Ser Ser
195 200 205
Asn Glu Asp Asp Ser Trp Thr Leu Tyr Gln Arg Ile Ser His Pro Leu
210 215 220
Cys Gln Tyr Tyr Ile Thr Glu Ser Ser Glu Ile Arg Thr Ala Asp Leu
225 230 235 240
Met Leu Val Thr Pro Ile Asp Glu Asp Asn Ser Leu Val Arg Met Leu
245 250 255
Val Thr Trp Asn Arg Ser Glu Ile Leu Glu Ser Thr Val Leu Glu Glu
260 265 270
Phe Asp Glu Thr Ile Glu Gln Asp Ile Pro Ile Ile His Ser Gln Gln
275 280 285
Pro Ala Arg Leu Pro Leu Leu Pro Ser Lys Gln Ile Asn Met Gln Trp
290 295 300
Leu Ser Gln Glu Ile His Val Pro Ser Asp Arg Cys Thr Val Ala Tyr
305 310 315 320
Arg Arg Trp Leu Lys Glu Leu Gly Val Thr Tyr Gly Val Cys
325 330
<210> 23
<211> 1005
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 23
atgacaactg ctgacctaat cttaattaac aactggtacg tagtcgcaaa ggtggaagat 60
tgtaaaccag gaagtatcac cacggctctt ttattgggag ttaagttggt actatggcgc 120
agtcgtgaac agaattcccc catacagata tggcaagact actgccctca ccgaggtgtg 180
gctctgtcta tgggagaaat tgttaataat actttggttt gtccgtatca cggatggaga 240
tataatcaag caggtaaatg cgtacatatc ccggctcacc ctgacatgac acccccagca 300
agtgcccaag ccaagatcta tcattgccag gagcgatacg gattagtatg ggtgtgctta 360
ggtgatcctg tcaatgatat accttcatta cccgaatggg acgatccgaa ttatcataat 420
acttgtacta aatcttattt tattcaagct agtgcgtttc gtgtaatgga taatttcata 480
gatgtatctc attttccttt tgtccacgac ggtgggttag gtgatcgcaa ccacgcacaa 540
attgaagaat ttgaggtaaa agtagacaaa gatggcatta gcataggtaa ccttaaactc 600
cagatgccaa ggtttaacag cagtaacgaa gatgactcat ggactcttta ccaaaggatt 660
agtcatccct tgtgtcaata ctatattact gaatcctctg aaattcggac tgcggatttg 720
atgctggtaa caccgattga tgaagacaac agcttagtgc gaatgttagt aacgtggaac 780
cgctccgaaa tattagagtc aacggtacta gaggaatttg acgaaacaat agaacaagat 840
attccgatta tacactctca acagccagcg cgtttaccac tgttaccttc aaagcagata 900
aacatgcaat ggttgtcaca ggaaatacat gtaccgtcag atcgatgcac agttgcctat 960
cgtcgatggc taaaggaact gggcgttacc tatggtgttt gttaa 1005
<210> 24
<211> 1005
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 24
atgacgaccg cagatctgat tctgatcaat aattggtatg ttgtggccaa ggtggaagat 60
tgtaaaccgg gtagcattac caccgcactg ctgctgggtg ttaaactggt tctgtggcgt 120
agccgtgaac agaatagccc gattcagatt tggcaggatt attgtccgca tcgtggtgtt 180
gcactgagca tgggtgaaat tgtgaataat accctggttt gtccgtatca tggttggcgt 240
tataatcagg caggtaaatg tgttcatatt ccggcacatc cggatatgac ccctccggca 300
agcgcacagg caaaaatcta tcattgtcaa gaacgttatg gtctggtttg ggtttgtctg 360
ggtgatccgg ttaatgatat tccgagtctg ccggaatggg atgatccgaa ttatcataat 420
acctgcacca agagctactt tatccaggca agcgcatttc gtgtgatgga taactttatt 480
gatgtgagcc attttccgtt tgtgcatgat ggtggtctgg gcgatcgtaa tcatgcacag 540
attgaagaat ttgaggtgaa agtggataaa gacggtatta gcattggcaa tctgaaactg 600
cagatgcctc gttttaatag cagcaatgaa gatgatagct ggaccctgta tcagcgtatt 660
agccatccgc tgtgtcagta ttatatcacc gaaagcagcg aaattcgtac agcagatctg 720
atgctggtta ccccgattga tgaagataat tcactggttc gtatgctggt gacctggaat 780
cgtagcgaaa ttctggaaag caccgttctg gaagaatttg atgaaaccat tgaacaggat 840
atcccgatta ttcatagcca gcagcctgca cgtctgccgc tgctgccgag caagcagatt 900
aatatgcagt ggctgagcca agaaattcat gttccgagcg atcgttgtac cgttgcatat 960
cgtcgttggc tgaaagaact gggcgttacc tatggtgttt gttga 1005
<210> 25
<211> 612
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 25
Met Gln Ile Leu Gly Ile Ser Ala Tyr Tyr His Asp Ser Ala Ala Ala
1 5 10 15
Met Val Ile Asp Gly Glu Ile Val Ala Ala Ala Gln Glu Glu Arg Phe
20 25 30
Ser Arg Arg Lys His Asp Ala Gly Phe Pro Thr Gly Ala Ile Thr Tyr
35 40 45
Cys Leu Lys Gln Val Gly Thr Lys Leu Gln Tyr Ile Asp Gln Ile Val
50 55 60
Phe Tyr Asp Lys Pro Leu Val Lys Phe Glu Arg Leu Leu Glu Thr Tyr
65 70 75 80
Leu Ala Tyr Ala Pro Lys Gly Phe Gly Ser Phe Ile Thr Ala Met Pro
85 90 95
Val Trp Leu Lys Glu Lys Leu Tyr Leu Lys Thr Leu Leu Lys Lys Glu
100 105 110
Leu Ala Leu Leu Gly Glu Cys Lys Ala Ser Gln Leu Pro Pro Leu Leu
115 120 125
Phe Thr Ser His His Gln Ala His Ala Ala Ala Ala Phe Phe Pro Ser
130 135 140
Pro Phe Gln Arg Ala Ala Val Leu Cys Leu Asp Gly Val Gly Glu Trp
145 150 155 160
Ala Thr Thr Ser Val Trp Leu Gly Glu Gly Asn Lys Leu Thr Pro Gln
165 170 175
Trp Glu Ile Asp Phe Pro His Ser Leu Gly Leu Leu Tyr Ser Ala Phe
180 185 190
Thr Tyr Tyr Thr Gly Phe Lys Val Asn Ser Gly Glu Tyr Lys Leu Met
195 200 205
Gly Leu Ala Pro Tyr Gly Glu Pro Lys Tyr Val Asp Gln Ile Leu Lys
210 215 220
His Leu Leu Asp Leu Lys Glu Asp Gly Thr Phe Arg Leu Asn Met Asp
225 230 235 240
Tyr Phe Asn Tyr Thr Val Gly Leu Thr Met Thr Asn His Lys Phe His
245 250 255
Ser Met Phe Gly Gly Pro Pro Arg Gln Ala Glu Gly Lys Ile Ser Gln
260 265 270
Arg Asp Met Asp Leu Ala Ser Ser Ile Gln Lys Val Thr Glu Glu Val
275 280 285
Ile Leu Arg Leu Ala Arg Thr Ile Lys Lys Glu Leu Gly Val Glu Tyr
290 295 300
Leu Cys Leu Ala Gly Gly Val Gly Leu Asn Cys Val Ala Asn Gly Arg
305 310 315 320
Ile Leu Arg Glu Ser Asp Phe Lys Asp Ile Trp Ile Gln Pro Ala Ala
325 330 335
Gly Asp Ala Gly Ser Ala Val Gly Ala Ala Leu Ala Ile Trp His Glu
340 345 350
Tyr His Lys Lys Pro Arg Thr Ser Thr Ala Gly Asp Arg Met Lys Gly
355 360 365
Ser Tyr Leu Gly Pro Ser Phe Ser Glu Ala Glu Ile Leu Gln Phe Leu
370 375 380
Asn Ser Val Asn Ile Pro Tyr His Arg Cys Val Asp Asn Glu Leu Met
385 390 395 400
Ala Arg Leu Ala Glu Ile Leu Asp Gln Gly Asn Val Val Gly Trp Phe
405 410 415
Ser Gly Arg Met Glu Phe Gly Pro Arg Ala Leu Gly Gly Arg Ser Ile
420 425 430
Ile Gly Asp Ser Arg Ser Pro Lys Met Gln Ser Val Met Asn Leu Lys
435 440 445
Ile Lys Tyr Arg Glu Ser Phe Arg Pro Phe Ala Pro Ser Val Leu Ala
450 455 460
Glu Arg Val Ser Asp Tyr Phe Asp Leu Asp Arg Pro Ser Pro Tyr Met
465 470 475 480
Leu Leu Val Ala Gln Val Lys Glu Asn Leu His Ile Pro Met Thr Gln
485 490 495
Glu Gln His Glu Leu Phe Gly Ile Glu Lys Leu Asn Val Pro Arg Ser
500 505 510
Gln Ile Pro Ala Val Thr His Val Asp Tyr Ser Ala Arg Ile Gln Thr
515 520 525
Val His Lys Glu Thr Asn Pro Arg Tyr Tyr Glu Leu Ile Arg His Phe
530 535 540
Glu Ala Arg Thr Gly Cys Ala Val Leu Val Asn Thr Ser Phe Asn Val
545 550 555 560
Arg Gly Glu Pro Ile Val Cys Thr Pro Glu Asp Ala Tyr Arg Cys Phe
565 570 575
Met Arg Thr Glu Met Asp Tyr Leu Val Met Glu Asn Phe Leu Leu Val
580 585 590
Lys Ser Glu Gln Pro Arg Gly Asn Ser Asp Glu Ser Trp Gln Lys Glu
595 600 605
Phe Glu Leu Asp
610
<210> 26
<211> 1839
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 26
atgcagatct taggaatttc agcttactac cacgatagtg ctgccgcgat ggttatcgat 60
ggcgaaattg ttgctgcagc tcaggaagaa cgtttctcaa gacgaaagca cgatgctggg 120
tttccgactg gagcgattac ttactgtcta aaacaagtag gaaccaagtt acaatatatc 180
gatcaaattg ttttttacga caagccatta gtcaaatttg agcggttgct agaaacatat 240
ttagcatatg ccccaaaggg atttggctcg tttattactg ctatgcccgt ttggctcaaa 300
gaaaagcttt acctaaaaac acttttaaaa aaagaattgg cgcttttggg ggagtgcaaa 360
gcttctcaat tgcctcctct actgtttacc tcacatcacc aagcccatgc ggccgctgct 420
ttttttccca gtccttttca gcgtgctgcc gttctgtgct tagatggtgt aggagagtgg 480
gcaactactt ctgtctggtt gggagaagga aataaactca caccacaatg ggaaattgat 540
tttccccatt ccctcggttt gctttactca gcgtttacct actacactgg gttcaaagtt 600
aactcaggtg agtacaaact catgggttta gcaccctacg gggaacccaa atatgtggac 660
caaattctca agcatttgtt ggatctcaaa gaagatggta cttttaggtt gaatatggac 720
tacttcaact acacggtggg gctaaccatg accaatcata agttccatag tatgtttgga 780
ggaccaccac gccaggcgga aggaaaaatc tcccaaagag acatggatct ggcaagttcg 840
atccaaaagg tgactgaaga agtcatactg cgtctggcta gaactatcaa aaaagaactg 900
ggtgtagagt atctatgttt agcaggtggt gtcggtctca attgcgtggc taacggacga 960
attctccgag aaagtgattt caaagatatt tggattcaac ccgcagcagg agatgccggt 1020
agtgcagtgg gagcagcttt agcgatttgg catgaatacc ataagaaacc tcgcacttca 1080
acagcaggcg atcgcatgaa aggttcttat ctgggaccta gctttagcga ggcggagatt 1140
ctccagtttc ttaattctgt taacataccc taccatcgat gcgttgataa cgaacttatg 1200
gctcgtcttg cagaaatttt agaccaggga aatgttgtag gctggttttc tggacgaatg 1260
gagtttggtc cgcgtgcttt gggtggccgt tcgattattg gcgattcacg cagtccaaaa 1320
atgcaatcgg tcatgaacct gaaaattaaa tatcgtgagt ccttccgtcc atttgctcct 1380
tcagtcttgg ctgaacgagt ctccgactac ttcgatcttg atcgtcctag tccttatatg 1440
cttttggtag cacaagtcaa agagaatctg cacattccta tgacacaaga gcaacacgag 1500
ctatttggga tcgagaagct gaatgttcct cgttcccaaa ttcccgcagt cactcacgtt 1560
gattactcag ctcgtattca gacagttcac aaagaaacga atcctcgtta ctacgagtta 1620
attcgtcatt ttgaggcacg aactggttgt gctgtcttgg tcaatacttc gtttaatgtc 1680
cgcggcgaac caattgtttg tactcccgaa gacgcttatc gatgctttat gagaactgaa 1740
atggactatt tggttatgga gaatttcttg ttggtcaaat ctgaacagcc acggggaaat 1800
agtgatgagt catggcaaaa agaattcgag ttagattaa 1839
<210> 27
<211> 1839
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 27
atgcagattc tgggtatcag cgcctattat catgatagcg cagcagcaat ggttattgat 60
ggtgaaattg ttgcagcagc acaagaagaa cgttttagcc gtcgtaaaca tgatgcaggt 120
tttccgaccg gtgcaattac ctattgtctg aaacaggttg gcaccaaact gcagtatatt 180
gatcagatcg tgttctatga taaaccgctg gtgaaatttg aacgtctgct ggaaacctat 240
ctggcctatg caccgaaagg ttttggtagt tttattaccg caatgccggt gtggctgaaa 300
gagaaactgt atctgaaaac cctgctgaaa aaagaactgg cactgctggg tgaatgtaaa 360
gcaagccagc tgcctccgct gctgtttacc agccatcatc aggcacatgc agcagcagca 420
ttttttccga gcccgtttca gcgtgcagca gttctgtgtc tggatggtgt tggtgaatgg 480
gcaaccacca gtgtttggct gggtgaaggt aataaactga caccgcagtg ggaaattgat 540
tttccgcata gcctgggcct gctgtatagc gcatttacct attataccgg ctttaaagtg 600
aacagcggtg agtataaact gatgggtctg gcaccgtatg gtgaaccgaa atatgttgat 660
cagattctga aacatctgct ggatctgaaa gaagatggca cctttcgtct gaacatggat 720
tatttcaatt ataccgttgg tctgaccatg accaaccata aatttcatag catgtttggt 780
ggtccgcctc gtcaggcaga aggtaaaatt agccagcgtg atatggatct ggcaagcagc 840
attcagaaag ttaccgaaga agtgattctg cgtctggcac gtaccattaa gaaagaatta 900
ggtgttgaat acctgtgtct ggcaggcggt gttggtctga attgtgttgc aaatggtcgt 960
attctgcgtg agagcgattt taaagatatt tggattcagc ctgcagccgg tgatgcaggt 1020
agcgcagttg gtgcagcact ggcaatttgg catgaatatc ataaaaaacc gcgtaccagc 1080
accgcaggcg atcgtatgaa aggtagctat ctgggtccga gctttagcga agcagaaatt 1140
ctgcagtttc tgaacagcgt gaatattccg tatcatcgtt gtgtggataa tgaactgatg 1200
gcacgtctgg cggaaattct ggatcagggt aatgttgttg gttggtttag cggtcgtatg 1260
gaatttggtc cgcgtgcact gggtggtcgt agcattattg gtgatagccg tagcccgaaa 1320
atgcagagcg ttatgaatct gaaaatcaaa tatcgcgaaa gcttccgtcc gtttgcaccg 1380
agcgttctgg cagaacgtgt tagcgattat tttgatctgg atcgtccgag cccgtatatg 1440
ctgctggttg cacaggttaa agaaaatctg catattccga tgacccaaga acagcatgaa 1500
ctgtttggta tcgaaaaact gaatgttccg cgtagccaga ttccggcagt tacccatgtt 1560
gattatagcg cacgtattca gaccgttcat aaagaaacca atccgcgtta ttatgaactg 1620
atccgtcatt ttgaagcacg taccggttgt gcagttctgg ttaataccag ctttaatgtt 1680
cgtggtgaac cgattgtgtg tacaccggaa gatgcatatc gttgttttat gcgtaccgag 1740
atggattacc tggtgatgga aaattttctg ctggtgaaaa gcgaacagcc tcgtggtaat 1800
agtgatgaaa gctggcagaa agaatttgag ctggattga 1839
<210> 28
<211> 147
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 28
Met Ser Glu Phe Phe Pro Gln Lys Ser Gly Lys Leu Lys Met Glu Gln
1 5 10 15
Ile Lys Glu Leu Asp Lys Lys Gly Leu Arg Glu Phe Gly Leu Ile Gly
20 25 30
Gly Ser Ile Val Ala Val Leu Phe Gly Phe Leu Leu Pro Val Ile Arg
35 40 45
His His Ser Leu Ser Val Ile Pro Trp Val Val Ala Gly Phe Leu Trp
50 55 60
Ile Trp Ala Ile Ile Ala Pro Thr Thr Leu Ser Phe Ile Tyr Gln Ile
65 70 75 80
Trp Met Arg Ile Gly Leu Val Leu Gly Trp Ile Gln Thr Arg Ile Ile
85 90 95
Leu Gly Val Leu Phe Tyr Ile Met Ile Thr Pro Ile Gly Phe Ile Arg
100 105 110
Arg Leu Leu Asn Gln Asp Pro Met Thr Arg Ile Phe Glu Pro Glu Leu
115 120 125
Pro Thr Tyr Arg Gln Leu Ser Lys Ser Arg Thr Thr Gln Ser Met Glu
130 135 140
Lys Pro Phe
145
<210> 29
<211> 405
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 29
atggaacaga taaaagaact tgacaaaaaa ggattgcgtg agtttggact gattggcggt 60
tctatagtgg cggttttatt cggcttttta ctgccagtta tacgccatca ttccttatca 120
gttatccctt gggttgttgc tggatttctc tggatttggg caataatcgc acctacgact 180
ttaagtttta tttaccaaat atggatgagg attggacttg ttttaggatg gatacaaaca 240
cgaattattt tgggagtttt attttatata atgatcacac caataggatt cataagacgg 300
ctgttgaatc aagatccaat gacgcgaatc ttcgagccag agttgccaac ttatcgccaa 360
ttgagtaagt caagaactac acaaagtatg gagaaaccat tctaa 405
<210> 30
<211> 405
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 30
atggaacaaa ttaaagaact ggataagaaa ggcctgcgtg aatttggtct gattggtggt 60
agcattgttg ccgttctgtt tggttttctg ctgccggtta ttcgtcatca tagcctgagc 120
gttattccgt gggttgttgc aggttttctg tggatttggg caattattgc accgaccacc 180
ctgagcttta tctatcagat ttggatgcgt attggtctgg tgctgggttg gattcagacc 240
cgtattattc tgggtgttct gttctatatt atgattaccc cgatcggttt tattcgtcgt 300
ctgctgaatc aggatccgat gacccgtatt tttgaaccgg aactgccgac ctatcgtcag 360
ctgagcaaaa gccgtaccac ccagagcatg gaaaaaccgt tctga 405
<210> 31
<211> 54
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 31
Met Leu Lys Asp Thr Trp Asp Phe Ile Lys Asp Ile Ala Gly Phe Ile
1 5 10 15
Lys Glu Gln Lys Asn Tyr Leu Leu Ile Pro Leu Ile Ile Thr Leu Val
20 25 30
Ser Leu Gly Ala Leu Ile Val Phe Ala Gln Ser Ser Ala Ile Ala Pro
35 40 45
Phe Ile Tyr Thr Leu Phe
50
<210> 32
<211> 165
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 32
atgctaaaag acacttggga ttttattaaa gacattgccg gatttattaa agaacaaaaa 60
aactatttgt tgattcccct aattatcacc ctggtatcct tgggggcgct gattgtcttt 120
gctcaatctt ctgcgatcgc acctttcatt tacactcttt tttaa 165
<210> 33
<211> 165
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 33
atgttaaaag acacctggga ttttatcaag gatatcgcag gctttatcaa agaacagaaa 60
aactatctgc tgattccgct gattattacc ctggttagcc tgggtgcact gattgttttt 120
gcacagagca gcgcaattgc accgtttatc tataccctgt tttga 165
<210> 34
<211> 432
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 34
Met Ser Asn Phe Lys Gly Ser Val Lys Ile Ala Leu Met Gly Ile Leu
1 5 10 15
Ile Phe Cys Gly Leu Ile Phe Gly Val Ala Phe Val Glu Ile Gly Leu
20 25 30
Arg Ile Ala Gly Ile Glu His Ile Ala Phe His Ser Ile Asp Glu His
35 40 45
Arg Gly Trp Val Gly Arg Pro His Val Ser Gly Trp Tyr Arg Thr Glu
50 55 60
Gly Glu Ala His Ile Gln Met Asn Ser Asp Gly Phe Arg Asp Arg Glu
65 70 75 80
His Ile Lys Val Lys Pro Glu Asn Thr Phe Arg Ile Ala Leu Leu Gly
85 90 95
Asp Ser Phe Val Glu Ser Met Gln Val Pro Leu Glu Gln Asn Leu Ala
100 105 110
Ala Val Ile Glu Gly Glu Ile Ser Ser Cys Ile Ala Leu Ala Gly Arg
115 120 125
Lys Ala Glu Val Ile Asn Phe Gly Val Thr Gly Tyr Gly Thr Asp Gln
130 135 140
Glu Leu Ile Thr Leu Arg Glu Lys Val Trp Asp Tyr Ser Pro Asp Ile
145 150 155 160
Val Val Leu Asp Phe Tyr Thr Gly Asn Asp Ile Val Asp Asn Ser Arg
165 170 175
Ala Leu Ser Gln Lys Phe Tyr Pro Asn Glu Leu Gly Ser Leu Lys Pro
180 185 190
Phe Phe Ile Leu Arg Asp Gly Asn Leu Val Val Asp Ala Ser Phe Ile
195 200 205
Asn Thr Asp Asn Tyr Arg Ser Lys Leu Thr Trp Trp Gly Lys Thr Tyr
210 215 220
Met Lys Ile Lys Asp His Ser Arg Ile Leu Gln Val Leu Asn Met Val
225 230 235 240
Arg Asp Ala Leu Asn Asn Ser Ser Arg Gly Phe Ser Ser Gln Ala Ile
245 250 255
Glu Glu Pro Leu Phe Ser Asp Gly Lys Gln Asp Thr Lys Leu Ser Gly
260 265 270
Phe Phe Asp Ile Tyr Lys Pro Pro Thr Asp Pro Glu Trp Gln Gln Ala
275 280 285
Trp Gln Val Thr Glu Lys Leu Ile Ser Ser Met Gln His Glu Val Thr
290 295 300
Ala Lys Lys Ala Asp Phe Leu Val Val Thr Phe Gly Gly Pro Phe Gln
305 310 315 320
Arg Glu Pro Leu Val Arg Gln Lys Glu Met Gln Glu Leu Gly Leu Thr
325 330 335
Asp Trp Phe Tyr Pro Glu Lys Arg Ile Thr Arg Leu Gly Glu Asp Glu
340 345 350
Gly Phe Ser Val Leu Asn Leu Ser Pro Asn Leu Gln Val Tyr Ser Glu
355 360 365
Gln Asn Asn Ala Cys Leu Tyr Gly Phe Asp Asp Thr Gln Gly Cys Val
370 375 380
Gly His Trp Asn Ala Leu Gly His Gln Val Ala Gly Lys Met Ile Ala
385 390 395 400
Ser Lys Ile Cys Gln Gln Gln Met Arg Glu Ser Ile Leu Pro His Lys
405 410 415
His Asp Pro Ser Ser Gln Ser Ser Pro Ile Thr Gln Ser Val Ile Gln
420 425 430
<210> 35
<211> 1299
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 35
atgagtaact tcaagggttc ggtaaagata gcattgatgg gaatattgat tttttgtggg 60
ctaatctttg gcgtagcatt tgttgaaatt gggttacgta ttgccgggat cgaacacata 120
gcattccata gcattgatga acacaggggg tgggtagggc gacctcatgt ttccgggtgg 180
tatagaaccg aaggtgaagc tcacatccaa atgaatagtg atggctttcg agatcgagaa 240
cacatcaagg tcaaaccaga aaataccttc aggatagcgc tgttgggaga ttcctttgta 300
gagtccatgc aagtaccgtt ggagcaaaat ttggcagcag ttatagaagg agaaatcagt 360
agttgtatag ctttagctgg acgaaaggcg gaagtgatta attttggagt gactggttat 420
ggaacagacc aagaactaat tactctacgg gagaaagttt gggactattc acctgatata 480
gtagtgctag atttttatac tggcaacgac attgttgata actcccgtgc gctgagtcag 540
aaattctatc ctaatgaact aggttcacta aagccgtttt ttatacttag agatggtaat 600
ctggtggttg atgcttcgtt tatcaatacg gataattatc gctcaaagct gacatggtgg 660
ggcaaaactt atatgaaaat aaaagaccac tcacggattt tacaggtttt aaacatggta 720
cgggatgctc ttaacaactc tagtagaggg ttttcttctc aagctataga ggaaccgtta 780
tttagtgatg gaaaacagga tacaaaattg agcgggtttt ttgatatcta caaaccacct 840
actgaccctg aatggcaaca ggcatggcaa gtcacagaga aactgattag ctcaatgcaa 900
cacgaggtga ctgcgaagaa agcagatttt ttagttgtta cttttggcgg tccctttcaa 960
cgagaacctt tagtgcgtca aaaagaaatg caagaattgg gtctgactga ttggttttac 1020
ccagagaagc gaattacacg tttgggtgag gatgaggggt tcagtgtact caatctcagc 1080
ccaaatttgc aggtttattc tgagcagaac aatgcttgcc tatatgggtt tgatgatact 1140
caaggctgtg tagggcattg gaatgcttta ggacatcagg tagcaggaaa aatgattgca 1200
tcgaagattt gtcaacagca gatgagagaa agtatattgc ctcataagca cgacccttca 1260
agccaaagct cacctattac ccaatcagtg atccaataa 1299
<210> 36
<211> 1299
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 36
atgagcaact tcaaaggcag cgttaaaatt gcactgatgg gcattctgat tttttgcggt 60
ctgatttttg gtgtggcctt tgttgaaatt ggtctgcgta ttgcaggcat tgaacatatt 120
gcctttcata gcattgatga acatcgtggt tgggttggtc gtccgcatgt tagcggttgg 180
tatcgtaccg aaggtgaagc acatattcag atgaatagtg atggttttcg tgatcgcgaa 240
cacattaaag tgaaaccgga aaataccttt cgtattgccc tgctgggtga tagctttgtt 300
gaaagcatgc aggttccgct ggaacagaat ctggcagcag ttattgaagg cgaaattagc 360
agctgtattg cactggcagg tcgtaaagcc gaagttatta actttggtgt taccggttat 420
ggcaccgatc aagaactgat taccctgcgt gaaaaagtgt gggattatag tccggatatt 480
gttgtgctgg atttctatac cggtaacgat attgttgata atagccgtgc actgtcccag 540
aaattctatc cgaatgaact gggtagcctg aaaccgtttt ttatcctgcg tgatggtaat 600
ctggttgttg atgcaagctt tatcaacacc gataactatc gtagcaaact gacctggtgg 660
ggtaaaacct atatgaaaat caaagatcat agccgcattc tgcaggtcct gaatatggtt 720
cgtgatgcac tgaataatag cagccgtggt tttagcagcc aggcaattga agaaccgctg 780
tttagtgatg gtaaacagga taccaaactg agcggcttct tcgatatcta taaaccgcct 840
accgatccgg aatggcagca ggcctggcag gttaccgaaa aactgattag tagcatgcag 900
catgaagtga ccgccaaaaa agccgatttt ctggttgtta cctttggcgg tccgtttcag 960
cgcgaaccgc tggttcgtca gaaagaaatg caagaactgg gtctgaccga ttggttttat 1020
ccggaaaaac gtattacccg tctgggtgaa gatgaaggtt ttagcgtgct gaatctgagc 1080
ccgaatctgc aggtttatag cgaacagaat aatgcctgtc tgtatggttt tgatgatacc 1140
cagggttgtg ttggtcattg gaatgcactg ggtcatcagg ttgcaggtaa aatgattgca 1200
agcaaaattt gtcagcagca gatgcgtgaa agcattctgc cgcataaaca tgatccgagc 1260
agccagagca gcccgattac ccagagcgtt attcagtaa 1299
<210> 37
<211> 482
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 37
Met Thr Asn Thr Glu Arg Gly Leu Ala Glu Ile Thr Ser Thr Gly Tyr
1 5 10 15
Lys Ser Glu Leu Arg Ser Glu Ala Arg Val Ser Leu Gln Leu Ala Ile
20 25 30
Pro Leu Val Leu Val Glu Ile Cys Gly Thr Ser Ile Asn Val Val Asp
35 40 45
Val Val Met Met Gly Leu Leu Gly Thr Gln Val Leu Ala Ala Gly Ala
50 55 60
Leu Gly Ala Ile Ala Phe Leu Ser Val Ser Asn Thr Cys Tyr Asn Met
65 70 75 80
Leu Leu Ser Gly Val Ala Lys Ala Ser Glu Ala Phe Gly Ala Asn Lys
85 90 95
Ile Asp Gln Val Ser Arg Ile Ala Ser Gly Gln Ile Trp Leu Ala Leu
100 105 110
Thr Leu Ser Leu Pro Ala Met Leu Leu Leu Trp Tyr Met Asp Thr Ile
115 120 125
Leu Val Leu Phe Gly Gln Val Glu Ser Asn Thr Leu Ile Ala Lys Thr
130 135 140
Tyr Leu His Ser Ile Val Trp Gly Phe Pro Ala Ala Val Gly Ile Leu
145 150 155 160
Ile Leu Arg Gly Ile Ala Ser Ala Val Asn Val Pro Gln Leu Val Thr
165 170 175
Val Thr Met Leu Val Gly Leu Val Leu Asn Ala Pro Ala Asn Tyr Val
180 185 190
Leu Met Phe Gly Lys Phe Gly Leu Pro Glu Leu Gly Leu Ala Gly Ile
195 200 205
Gly Trp Ala Ser Thr Leu Val Phe Trp Ile Ser Phe Leu Val Gly Val
210 215 220
Val Leu Leu Ile Phe Ser Pro Lys Val Arg Asp Tyr Lys Leu Phe Arg
225 230 235 240
Tyr Leu His Gln Phe Asp Arg Gln Thr Val Val Glu Ile Phe Gln Thr
245 250 255
Gly Trp Pro Met Gly Phe Leu Leu Gly Val Glu Ser Val Val Leu Ser
260 265 270
Leu Thr Ala Trp Leu Thr Gly Tyr Leu Gly Thr Val Thr Leu Ala Ala
275 280 285
His Glu Ile Ala Ile Gln Thr Ala Glu Leu Ala Ile Val Ile Pro Leu
290 295 300
Gly Ile Gly Asn Val Ala Val Thr Arg Val Gly Gln Thr Ile Gly Glu
305 310 315 320
Lys Asn Pro Leu Gly Ala Arg Arg Ala Ala Leu Ile Gly Ile Met Ile
325 330 335
Gly Gly Ile Tyr Ala Ser Leu Val Ala Val Ile Phe Trp Leu Phe Pro
340 345 350
Tyr Gln Ile Ala Gly Leu Tyr Leu Lys Ile Asn Asp Pro Glu Ser Met
355 360 365
Glu Ala Val Lys Thr Ala Thr Asn Phe Leu Phe Leu Ala Gly Leu Phe
370 375 380
Gln Phe Phe His Ser Val Gln Ile Ile Val Val Gly Val Leu Ile Gly
385 390 395 400
Leu Gln Asp Thr Phe Ile Pro Leu Leu Met Asn Leu Val Gly Trp Gly
405 410 415
Leu Gly Leu Ala Val Ser Tyr Tyr Met Gly Ile Ile Leu Cys Trp Gly
420 425 430
Gly Met Gly Ile Trp Leu Gly Leu Val Leu Ser Pro Leu Leu Ser Gly
435 440 445
Leu Ile Leu Met Val Arg Phe Tyr Gln Glu Ile Ala Asn Arg Ile Ala
450 455 460
Asn Ser Asp Asp Gly Gln Glu Ser Ile Ser Ile Asp Asn Val Glu Glu
465 470 475 480
Leu Ser
<210> 38
<211> 1449
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 38
atgacaaata ccgaaagagg attagcagaa ataacatcaa caggatataa gtcagagctt 60
agatcggagg cacgagttag cctccaactg gcaattccct tagtccttgt cgaaatatgc 120
ggaacgagta ttaatgtggt ggatgtagtc atgatgggct tacttggtac tcaagttttg 180
gctgctggtg ccttgggtgc gatcgctttt ttatctgtat cgaatacttg ttataatatg 240
cttttgtcgg gggtagcaaa ggcatctgag gcttttgggg caaacaaaat agatcaggtt 300
agtcgtattg cttctgggca aatatggctg gcactcacct tgtctttgcc tgcaatgctt 360
ttgctttggt atatggatac tatattggtg ctatttggtc aagttgaaag caacacatta 420
attgcaaaaa cgtatttaca ctcaattgtg tggggatttc cggcggcagt tggtattttg 480
atattaagag gcattgcctc tgctgtgaac gtcccccaat tggtaactgt gacgatgcta 540
gtagggctgg tcttgaatgc cccggccaat tatgtattaa tgttcggtaa atttggtctt 600
cctgaacttg gtttagctgg aataggctgg gcaagtactt tggttttttg gattagtttt 660
ctagtggggg ttgtcttgct gattttctcc ccaaaagtta gagattataa acttttccgc 720
tacttgcatc agtttgatcg acagacggtt gtggaaattt ttcaaactgg atggcctatg 780
ggttttctac tgggagtgga atcagtagta ttgagcctca ccgcttggtt aacaggctat 840
ttgggaacag taacattagc agctcatgag atcgcgatcc aaacagcaga actggcgata 900
gtgataccac tcggaatcgg gaatgttgcc gtcacgagag taggtcagac tataggagaa 960
aaaaaccctt tgggtgctag aagggcagca ttgattggga ttatgattgg tggcatttat 1020
gccagtcttg tggcagtcat tttctggttg tttccatatc agattgcggg actttattta 1080
aaaataaacg atccagagag tatggaagca gttaagacag caactaattt tctcttcttg 1140
gcgggattat tccaattttt tcatagcgtt caaataattg ttgttggggt tttaataggg 1200
ttgcaggata cgtttatccc attgttaatg aatttggtag gctggggtct tggcttggca 1260
gtaagctatt acatgggaat cattttatgt tggggaggta tgggtatctg gttaggtctg 1320
gttttgagtc cactcctgtc cggacttatt ttaatggttc gtttttatca agagattgcc 1380
aataggattg ccaatagtga tgatgggcaa gagagtatat ctattgacaa cgttgaagaa 1440
ctctcctga 1449
<210> 39
<211> 1449
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 39
atgaccaata ccgaacgtgg tctggccgaa attaccagca ccggttataa aagcgaactg 60
cgtagcgaag cccgtgttag cctgcagctg gcaattcctc tggttctggt tgaaatttgt 120
ggcaccagca ttaatgttgt tgatgttgtg atgatgggtt tactgggtac acaagtgtta 180
gcagcgggtg ccctgggagc aattgccttc ctgagcgtta gcaatacctg ctataatatg 240
ctgctgagtg gtgttgcaaa agcaagcgaa gcctttggag ccaataaaat cgatcaggtt 300
tcacgtattg cctcaggcca gatttggtta gccctgaccc tgtcattacc agccatgctg 360
ttactgtggt atatggatac catcctggtt ctgtttggtc aggttgaaag caataccctg 420
attgcgaaaa catacctgca ttcaattgtg tggggctttc ctgccgcagt tggtatcctg 480
attctgcgtg gcatagcaag tgcagttaac gttcctcagc tggttaccgt gaccatgctg 540
gttggcctgg tgctgaatgc accggctaat tatgtgctga tgttcggcaa attcggttta 600
ccggaattag gcctggctgg cattggctgg gccagcacac tggtgttttg gattagtttt 660
ctggttggtg ttgtgctgct gatattttca ccgaaagttc gcgactacaa actgttccgc 720
tatttacatc agtttgatcg tcagaccgtg gttgagattt ttcagacggg ctggcctatg 780
ggcttcctgc tgggtgtgga aagcgttgtt ctgagcctga ccgcatggct gaccggctat 840
ctgggtacag tgaccttagc agcccatgaa attgcaatcc agactgccga actggcgatt 900
gtgattccgt taggtattgg caatgttgcc gttacccgtg tgggccagac aatcggcgaa 960
aaaaacccgc tgggagcacg ccgtgcagcc ctgattggca ttatgattgg tggcatttat 1020
gcgagcctgg ttgcagtgat tttttggtta ttcccttatc aaatcgcagg cctgtacctg 1080
aaaattaacg atccggaatc aatggaagca gttaaaaccg caacaaactt tctgttttta 1140
gctggcctgt tccagttttt tcatagcgtg cagattattg ttgtgggtgt tctgattggc 1200
ctgcaggata cctttatccc tctgctgatg aatctggtgg gctggggact gggcctggcg 1260
gtttcctatt atatgggtat tatcctgtgc tggggtggca tgggcatctg gttaggtctg 1320
gtactgtcac cgctgctgtc aggcctgatc ctgatggtgc gcttttatca agaaattgcc 1380
aatcgcattg cgaatagcga cgatggccaa gaaagcatta gcattgataa tgttgaagaa 1440
ctgagctaa 1449
<210> 40
<211> 276
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 40
Met Lys Thr Asn Lys His Ile Ala Met Trp Ala Cys Pro Arg Ser Arg
1 5 10 15
Ser Thr Val Ile Thr Arg Ala Phe Glu Asn Leu Asp Gly Cys Val Val
20 25 30
Tyr Asp Glu Pro Leu Glu Ala Pro Asn Val Leu Met Thr Thr Tyr Thr
35 40 45
Met Ser Asn Ser Arg Thr Leu Ala Glu Glu Asp Leu Lys Gln Leu Ile
50 55 60
Leu Gln Asn Asn Val Glu Thr Asp Leu Lys Lys Val Ile Glu Gln Leu
65 70 75 80
Thr Gly Asp Leu Pro Asp Gly Lys Leu Phe Ser Phe Gln Lys Met Ile
85 90 95
Thr Gly Asp Tyr Arg Ser Glu Phe Gly Ile Asp Trp Ala Lys Lys Leu
100 105 110
Thr Asn Phe Phe Leu Ile Arg His Pro Gln Asp Ile Ile Phe Ser Phe
115 120 125
Asp Ile Ala Glu Arg Lys Thr Gly Ile Thr Glu Pro Phe Thr Gln Gln
130 135 140
Asn Leu Gly Met Lys Thr Leu Tyr Glu Val Phe Gln Gln Ile Glu Val
145 150 155 160
Ile Thr Gly Gln Thr Pro Leu Val Ile His Ser Asp Asp Ile Ile Lys
165 170 175
Asn Pro Pro Ser Ala Leu Lys Trp Leu Cys Lys Asn Leu Gly Leu Ala
180 185 190
Phe Asp Glu Lys Met Leu Thr Trp Lys Ala Asn Leu Glu Asp Ser Asn
195 200 205
Leu Lys Tyr Thr Lys Leu Tyr Ala Asn Ser Ala Ser Gly Ser Ser Glu
210 215 220
Pro Trp Phe Glu Thr Leu Arg Ser Thr Lys Thr Phe Leu Ala Tyr Glu
225 230 235 240
Lys Lys Glu Lys Lys Leu Pro Ala Arg Leu Ile Pro Leu Leu Asp Glu
245 250 255
Ser Ile Pro Tyr Tyr Glu Lys Leu Leu Gln His Cys His Ile Phe Glu
260 265 270
Trp Ser Glu His
275
<210> 41
<211> 831
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 41
atgaaaacaa acaaacatat agctatgtgg gcttgtccta gaagtcgttc tactgtaatt 60
acccgtgctt ttgagaactt agatgggtgt gttgtttatg atgagcctct agaggctccg 120
aatgtcttga tgacaactta cacgatgagt aacagtcgta cgttagcaga agaagactta 180
aagcaattaa tactgcaaaa taatgtagaa acagacctca agaaagttat agaacaattg 240
actggagatt taccggacgg aaaattattc tcatttcaaa aaatgataac aggtgactat 300
agatctgaat ttggaataga ttgggcaaaa aagctaacta acttcttttt aataaggcat 360
ccccaagata ttattttttc tttcgatata gcggagagaa agacaggtat cacagaacca 420
ttcacacaac aaaatcttgg catgaaaaca ctttatgaag ttttccaaca aattgaagtt 480
attacagggc aaacaccttt agttattcac tcagatgata taattaaaaa ccctccttct 540
gctttgaaat ggctgtgtaa aaacttaggg cttgcatttg atgaaaagat gctgacatgg 600
aaagcaaatc tagaagactc caatttaaag tatacaaaat tatatgctaa ttctgcgtct 660
ggcagttcag aaccttggtt tgaaacttta agatcgacca aaacatttct cgcctatgaa 720
aagaaggaga aaaaattacc agctcggtta atacctctac tagatgaatc tattccttac 780
tatgaaaaac tcttacagca ttgtcatatt tttgaatggt cagaacactg a 831
<210> 42
<211> 257
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 42
Met Ser Phe Gln Lys Phe Val Gln Glu Ala Ala Tyr Lys Val Ala Pro
1 5 10 15
Phe Lys Pro Asn Arg Phe Ala Lys Ile Ser Glu Arg Glu Asp Lys Cys
20 25 30
Ala Ile Pro Val Pro Ala Trp Arg Ala Leu Leu Ala Asn Arg Asp Leu
35 40 45
Phe Thr Trp Lys Gly Ile Pro Phe Leu Lys Gly Cys Thr Glu Ile Ala
50 55 60
Leu Tyr Ser Met Leu Leu Tyr Glu Leu Arg Pro Lys Thr Ile Ile Glu
65 70 75 80
Ile Gly Ala Leu Ser Gly Gly Ser Ala Ile Trp Leu Ala Asp His Leu
85 90 95
Glu Leu Phe Gln Ile Glu Gly Cys Val Tyr Cys Ile Asp Ile Asp Leu
100 105 110
Ser Leu Leu Asp Glu Lys Ala Lys Thr Asp Ser Arg Val His Phe Leu
115 120 125
Glu Gly Asp Cys Asn Asn Met Gly Ala Ile Met Ser Ser Glu Leu Leu
130 135 140
Ser Gly Leu Ala His Pro Trp Leu Ile Val Glu Asp Ala His Ala Asn
145 150 155 160
Ala Val Gly Val Val Glu Tyr Phe His Glu Asn Gly Leu Lys Ser Gly
165 170 175
Asp Tyr Leu Ile Val Glu Asp Thr Asn Lys Thr Met Trp Glu Leu Asp
180 185 190
Arg Glu Glu Leu Asp Arg Asp Asp Leu Asp Glu Gln Glu Leu Ile Glu
195 200 205
Lys Gly Glu Gln Lys Leu Ala Glu Leu Lys Ser Trp Leu Met Leu His
210 215 220
Glu Asn Glu Tyr Leu Ile Asp Thr Tyr Tyr Gln Asp Met Tyr Gly Tyr
225 230 235 240
Asn Gly Ser Arg Asn Trp Asn Ser Ile Leu Lys Arg Val Glu Lys Asn
245 250 255
Phe
<210> 43
<211> 774
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 43
atgagcttcc aaaaatttgt tcaagaagcc gcctataaag ttgcaccttt caaacctaat 60
cggtttgcca aaatttctga aagagaagat aaatgtgcta ttccagtgcc agcttggaga 120
gcgctcttgg caaaccgcga tttgttcact tggaaaggga tacccttcct gaaagggtgc 180
accgaaatag ctctttattc aatgctcctg tatgagcttc gcccgaaaac aataatcgaa 240
ataggagcat taagcggtgg cagcgcgatt tggctagccg atcacttaga actgttccaa 300
atagaaggtt gtgtctactg tatcgatatc gatctttccc tactcgacga gaaagcaaaa 360
actgactctc gcgttcattt tttagagggg gattgtaaca atatgggtgc aataatgtcg 420
tcggaactgc tttctgggct tgctcatccc tggttgatcg tagaagatgc ccatgctaat 480
gcggtgggag tagttgaata ttttcacgaa aacggtctaa aaagtggaga ctacttgatt 540
gtcgaagata ccaacaaaac tatgtgggag ttggacaggg aggagttgga cagggatgat 600
ttggatgagc aagaattaat agaaaaagga gagcagaaat tagcggagtt aaaaagctgg 660
ttaatgctcc acgaaaatga gtacctcatc gatacgtact atcaagatat gtacggttac 720
aacggctcta gaaactggaa ttctatcctg aaaagagtag aaaaaaattt ttag 774
<210> 44
<211> 774
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 44
atgtcatttc agaaatttgt gcaagaagca gcctataaag tcgcaccgtt taaaccgaat 60
cgttttgcca aaattagcga gcgtgaagat aaatgtgcaa ttccggttcc ggcatggcgt 120
gcactgctgg ccaatcgtga cctgtttacc tggaaaggta ttccgtttct gaaaggttgt 180
accgaaattg cactgtatag catgctgctg tatgaactgc gtccgaaaac gattattgaa 240
attggtgcgc tgagcggtgg tagcgcaatt tggctggcag atcatctgga actgtttcag 300
attgaaggtt gcgtgtattg cattgatatt gatctgtctc tgctggacga aaaagcaaaa 360
accgatagcc gtgttcattt tctggaaggt gattgcaata atatgggtgc aattatgtca 420
agcgagctgc tgagtggtct ggcacatcct tggctgattg ttgaagatgc acatgcaaat 480
gccgttggtg tggttgaata ttttcacgaa aacggtctga aaagtggcga ttacctgatc 540
gtggaagata ccaataaaac aatgtgggaa ctggatcgcg aagaactgga ccgtgatgac 600
ctggatgaac aagaactgat cgaaaaaggt gagcagaaat tagcagaact gaaaagctgg 660
ctgatgctgc atgagaatga atatctgata gatacctact atcaggatat gtatggctat 720
aatggtagcc gtaattggaa cagcattctg aaacgtgtgg aaaagaactt ttaa 774
<210> 45
<211> 108
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 45
Met Ile Glu Leu Val Ser His Lys Leu Cys Ile Asn Cys Asn Val Cys
1 5 10 15
Val Gln Val Cys Pro Thr Asn Val Phe Asp Ala Val Pro Asn Gln Pro
20 25 30
Pro Ala Ile Ala Arg Gln Glu Asp Cys Gln Thr Cys Phe Ile Cys Glu
35 40 45
Ala Tyr Cys Pro Ala Asp Ala Leu Tyr Val Ala Pro Gln Ser His Thr
50 55 60
Asn Val Ala Val Asn Glu Asp Asp Leu Ile Asp Ser Gly Ile Met Gly
65 70 75 80
Glu Tyr Arg Arg Ile Leu Gly Trp Gly Tyr Gly Arg Lys Asn Asn Ser
85 90 95
Glu Leu Asp Thr Asp His Lys Leu Arg Leu Phe Glu
100 105
<210> 46
<211> 327
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 46
atgatcgagc ttgtcagcca taaactctgt attaattgta atgtttgcgt ccaagtatgc 60
cctaccaatg tctttgatgc agttcccaac caaccgcctg cgatcgcccg acaggaagac 120
tgtcaaactt gtttcatctg tgaagcatat tgtcctgcgg atgcgctcta tgttgcgccg 180
caatctcata ccaatgttgc agtcaacgag gatgatttaa ttgacagtgg cattatgggt 240
gaatatcgtc gcatcttagg ttggggatat ggcagaaaaa acaatagcga attggatacc 300
gatcataaac tacggctatt tgaataa 327
<210> 47
<211> 327
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 47
atgattgaac tggtgagcca taagctgtgc attaattgta atgtttgtgt tcaggtgtgc 60
ccgaccaatg tttttgatgc agtgccgaat cagcctccgg caattgcacg ccaagaagat 120
tgtcagacct gttttatttg tgaagcatat tgtcctgcag atgcgctgta tgttgcaccg 180
cagagccata ccaatgttgc agttaacgaa gatgatttaa tcgacagcgg cattatgggt 240
gaatatcgtc gcattctggg ttggggctat ggtcgtaaaa acaatagcga actggatacc 300
gaccataaac tgcgtctgtt tgaatga 327
<210> 48
<211> 550
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 48
Met Asn Leu Thr Leu Asn Lys Glu Glu Lys Gln Leu Leu Thr Ala Tyr
1 5 10 15
Ser Gly Thr Glu Leu Gln Leu Thr Ala Asp Val Leu Val Ile Gly Gly
20 25 30
Gly Pro Ala Ala Ala Trp Ala Ala Trp Ala Ala Gly Ala Gln Gly Val
35 40 45
Lys Val Ile Ile Val Asp Lys Gly Phe Leu Gly Thr Ser Gly Ala Ala
50 55 60
Ala Ala Ser Gly Asn Ser Val Met Ala Pro Ser Pro Glu Asn Trp Glu
65 70 75 80
Lys Asp Val Ser Glu Cys Tyr Ser Lys Gly Asn Asn Leu Ala Asn Leu
85 90 95
Arg Trp Ile Glu Arg Val Ile Glu Lys Ala Trp Leu Ser Leu Pro Leu
100 105 110
Val Glu Asp Trp Gly Tyr Arg Phe Pro Lys Glu Asn Gly Glu Ser Val
115 120 125
Arg Gln Ser Tyr Tyr Gly Pro Glu Tyr Met Arg Val Leu Arg Lys Asn
130 135 140
Leu Leu Arg Val Gly Val Gln Ile Phe Asp Gln Ser Pro Ala Leu Glu
145 150 155 160
Leu Leu Leu Ala Gln Asp Gly Ser Val Ala Gly Ala Arg Gly Val Gln
165 170 175
Arg Gln Asn His Arg Thr Tyr Thr Val Arg Ala Gly Ala Val Val Leu
180 185 190
Ala Asn Gly Gly Cys Ala Phe Leu Ser Lys Ala Leu Gly Cys Asn Thr
195 200 205
Asn Thr Gly Asp Gly Leu Leu Met Ala Val Glu Ala Gly Gly Glu Leu
210 215 220
Ser Ser Met Glu Ala Ser Ser His Tyr Thr Ile Ser Thr Ala Phe Asn
225 230 235 240
Ala Thr Val Thr Arg Ala Ala Pro Phe Tyr Trp Ala Ser Tyr Thr Asp
245 250 255
Glu Ala Gly Asn Asp Leu Gly Gly Tyr Ile Asn Gly Arg Arg Asp Pro
260 265 270
Ser Phe Leu Pro Asn Ala Leu Leu Lys Gly Pro Val Tyr Ala Arg Leu
275 280 285
Asp Arg Ala Thr Pro Glu Ile Gln Ala Leu Val Glu Lys Ser His Phe
290 295 300
Ile Ala Phe Leu Pro Tyr Lys Lys Ala Gly Ile Asp Pro Tyr Thr Glu
305 310 315 320
Arg Val Pro Val Thr Leu Val Leu Glu Gly Thr Val Arg Gly Thr Gly
325 330 335
Gly Ile Arg Ile Val Asn Asp Ser Cys Gly Thr Lys Val Pro Gly Leu
340 345 350
Tyr Ala Ala Gly Asp Ala Ala Ser Arg Glu Phe Leu Ala Gly Ile Ala
355 360 365
Ser Gly Gly Asp Gly Pro Asn Ala Ala Trp Ala Ile Ser Thr Gly Gln
370 375 380
Trp Ala Gly Glu Gly Ala Ala Ala Phe Ala Lys Ser Leu Gly Ala His
385 390 395 400
Val His Glu Arg Val Val Arg Pro Ala Gly Gln Ala Gly Leu Arg Ser
405 410 415
Gln Tyr Pro Gly Ser Glu Thr Phe Asp Ser Glu Ala Val Val Arg Gly
420 425 430
Val Gln Ala Glu Met Phe Pro Leu Glu Lys Asn Tyr Leu Arg Cys Glu
435 440 445
Gln Gly Leu Leu Asp Ser Leu Ala Lys Leu Glu Met Leu Trp Gln Gln
450 455 460
Val Gln Gly Asn Pro Lys Gln Asp Thr Val Arg Asp Leu Glu Phe Ser
465 470 475 480
Arg Arg Ala Ala Ala Leu Val Ser Val Ala Arg Trp Ala Tyr Phe Ser
485 490 495
Ala Leu His Arg Lys Glu Thr Arg Ser Glu His Ile Arg Ile Asp Tyr
500 505 510
Pro Glu Thr Asp Pro Asn Gln Leu Tyr Tyr Gln Ala Thr Gly Gly Leu
515 520 525
Glu Arg Leu Trp Val Arg Arg Asp Trp Val Lys Asp Ala Ser Ala Thr
530 535 540
Pro Pro Val Leu Thr Thr
545 550
<210> 49
<211> 1653
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 49
atgaacttga ctttaaacaa ggaggaaaag caattgctta cagcctatag cggcactgaa 60
ctacaattaa ctgctgacgt gctggtaatt ggtggtggtc ctgccgccgc atgggcagca 120
tgggcggctg gagcccaagg tgtcaaagtc atcattgttg ataaaggttt tctaggtacg 180
agcggtgcag ctgctgccag tggcaatagc gtcatggcac cttctccaga gaattgggag 240
aaagatgtat ccgaatgtta cagcaaagga aataacctcg ctaacttacg ttggattgaa 300
cgtgtaattg aaaaagcttg gctgagtttg cccttagtgg aagattgggg ctatcgtttc 360
cccaaagaaa atggggaatc cgtgcgccag agttattatg gtccggaata tatgcgggta 420
cttcgcaaga acctgttgcg tgtgggtgtg caaattttcg accaaagtcc ggctctagaa 480
ctgttattag cccaggacgg ctccgtggct ggagctagag gtgtacagag gcaaaatcat 540
cgcacctata ccgttcgcgc tggtgcagta gttctagcga atggcggttg tgcattccta 600
agtaaagctt taggttgcaa taccaataca ggcgatggac tgctgatggc ggtggaagct 660
ggcggcgaac tctccagtat ggaagcttcc agtcactata ccatctcgac cgctttcaat 720
gccacagtga caagggctgc tcccttttac tgggctagtt acaccgatga ggcaggtaac 780
gatcttggtg gctatatcaa tggtcgtcgc gatccatcgt tcctgcccaa tgccctcctg 840
aaaggtcccg tttatgctcg tttggatcga gccacacctg aaatccaagc attggttgaa 900
aagtctcact tcatcgcctt tctaccctat aaaaaagctg gcattgaccc ttatacagaa 960
cgagtacctg taacactggt tttagaaggt acagtccgtg gtacaggtgg aattcggatt 1020
gtgaatgata gttgtggtac aaaagttcct ggactgtatg ccgccggaga tgcagcatcg 1080
cgggagtttt tagctgggat agcttctggg ggtgatggtc ctaatgctgc ttgggcaatc 1140
tctacaggac aatgggcagg ggaaggtgca gccgcctttg ccaagagttt gggcgctcat 1200
gtccatgaac gggttgtgcg tccagcaggt caagccggat tacgttccca gtaccctggt 1260
tccgaaacat tcgatagcga ggcagttgtc cgcggtgtac aagccgagat gttcccatta 1320
gagaagaatt acttgcgctg tgagcaggga cttttggatt ccctcgccaa attagaaatg 1380
ctgtggcagc aagtacaagg gaacccgaaa caagatacag tgcgcgatct ggaattttct 1440
cgtcgagcgg ctgctcttgt gtctgtagca cgatgggcat attttagcgc tttacatcgc 1500
aaggaaacgc gtagcgaaca tattcgcata gactatcctg aaaccgatcc aaatcagctt 1560
tattaccaag ccacgggcgg cttagaaagg ctttgggtga gacgggattg ggtgaaggat 1620
gcgagcgcta caccaccagt attaaccact taa 1653
<210> 50
<211> 1653
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 50
atgaacctga ccctgaacaa agaagaaaaa cagctgctga cggcatatag cggcaccgaa 60
ctgcagctga cagcagatgt tctggttatt ggtggtggtc cggcagccgc atgggcagct 120
tgggcagcag gcgcacaggg tgtgaaagtt attattgtgg ataaaggttt tctgggcacc 180
agcggtgccg cagccgcaag cggtaatagc gttatggcac cgtcaccgga aaattgggaa 240
aaagatgtga gcgaatgtta cagcaaaggt aataatctgg caaatctgcg ttggattgaa 300
cgtgttattg aaaaagcctg gctgtcactg ccgctggttg aagattgggg ttatcgtttt 360
cctaaagaaa atggtgaaag cgtgcgtcag agctattatg gtcctgaata tatgcgtgtt 420
ctgcggaaaa atctgctgcg cgttggtgtt cagatctttg atcagtcacc ggcactggaa 480
ttactgctgg cacaggatgg tagcgttgcc ggtgcacgtg gtgtgcagcg tcagaatcat 540
cgtacatata ccgttcgtgc cggtgccgtt gttctggcca atggtggttg cgcatttctg 600
agtaaagcac tgggttgtaa taccaatacc ggtgatggtc tgttaatggc agttgaagcc 660
ggtggtgaac tgagcagtat ggaagccagc agccattata ccattagcac cgcctttaat 720
gcaaccgtta cccgtgcagc tccgttttat tgggcaagct ataccgatga agctggcaat 780
gatctgggtg gctatattaa cggtcgtcgt gatccgagct ttctgccgaa cgcactgctg 840
aaaggtccgg tttatgcacg tctggatcgt gcaacaccgg aaattcaggc gctggtagaa 900
aaaagccatt ttattgcatt tctgccgtac aagaaagccg gtattgatcc gtataccgaa 960
cgtgttccgg ttaccctggt gctggaaggc accgtgcgtg gcaccggtgg tattcgcatt 1020
gttaatgatt catgtggcac caaagttccg ggactgtatg cagcgggtga tgcagcaagc 1080
cgtgaatttc tggcaggcat tgccagcggt ggtgatggac cgaatgcagc atgggcaatt 1140
tcaaccggtc agtgggcagg cgaaggtgca gcagcctttg caaaaagtct gggtgcacat 1200
gttcatgaac gcgttgttcg tccggcaggc caggcaggtc tgcgtagtca gtatccgggt 1260
agcgaaacct ttgatagtga agcagttgtt cgtggcgttc aggcagaaat gtttccgctg 1320
gaaaaaaact atctgcgctg tgaacaggga ctgctggata gcctggcaaa actggaaatg 1380
ctgtggcagc aggttcaggg taatccgaaa caggatacag ttcgtgatct ggaattttca 1440
cgtcgtgcgg cagcactggt tagcgtggca cgttgggcat attttagcgc actgcatcgt 1500
aaagaaaccc gtagcgaaca tatccgtatt gattacccgg aaacggatcc gaatcaactg 1560
tattatcagg caaccggtgg cctggaacgt ctgtgggtgc gtcgtgattg ggttaaagat 1620
gcaagcgcca cccctccggt gctgaccacc tga 1653
<210> 51
<211> 249
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 51
Met Ala Gly Lys Leu Asp Gly Lys Val Ala Ile Ile Thr Gly Ala Ser
1 5 10 15
Ser Gly Ile Gly Glu Ala Thr Ala Phe Ala Leu Ala Ala Glu Gly Ala
20 25 30
Lys Val Ala Ile Ala Ala Arg Arg Ala Glu Leu Leu His Ala Leu Ala
35 40 45
Lys Arg Ile Glu Ala Ser Gly Gly Gln Ala Leu Pro Ile Val Thr Asp
50 55 60
Ile Thr Asp Glu Ser Gln Val Asn His Leu Val Gln Lys Thr Lys Val
65 70 75 80
Glu Leu Gly His Val Asp Ile Leu Val Asn Asn Ala Gly Ile Gly Val
85 90 95
Phe Gly Ala Ile Asp Thr Gly Asn Pro Ala Asp Trp Arg Arg Ala Phe
100 105 110
Asp Val Asn Val Leu Gly Val Leu Tyr Ala Ile His Ala Val Leu Pro
115 120 125
Leu Leu Lys Ala Gln Lys Ser Gly His Ile Val Asn Ile Ser Ser Val
130 135 140
Asp Gly Arg Ile Ala Gln Ser Gly Ala Val Val Tyr Ser Ala Ala Lys
145 150 155 160
Ser Gly Val Asn Ala Leu Ser Glu Ala Leu Arg Gln Glu Val Ser Leu
165 170 175
Asp Asn Ile Arg Val Thr Ile Ile Glu Pro Gly Leu Val Asp Thr Pro
180 185 190
Phe Asn Asp Leu Ile Ser Asp Pro Ile Thr Lys Gln Leu Ser Lys Glu
195 200 205
Gln Leu Ser Thr Ile Thr Pro Leu Gln Ser Glu Asp Ile Ala Arg Ala
210 215 220
Ile Ile Tyr Ala Val Thr Gln Pro Asp His Val Asn Val Asn Glu Ile
225 230 235 240
Leu Ile Arg Pro Thr Ala Glu Asp Asn
245
<210> 52
<211> 750
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 52
atggcaggta aattggatgg aaaagtggcg attattactg gagcttcctc tgggattgga 60
gaggctacag catttgcttt agctgcggag ggggcaaaag ttgcgatcgc cgcaagacgt 120
gctgagcttt tgcatgcact agcaaaacgg attgaagcca gtggtggtca agcattgcct 180
attgttacag atattacaga cgaatctcaa gtaaatcatc tagtccaaaa gaccaaggtt 240
gagctaggac atgtagatat tttggtgaat aatgcaggaa ttggtgtgtt tggtgcaatt 300
gatactggaa atcccgcaga ctggaggcga gcattcgatg tgaatgttct gggagtttta 360
tatgctatcc acgcagtttt gcctcttctg aaggcccaaa aatccggtca tatagtcaat 420
atatcttctg tcgatggcag gatagcgcag tccggtgcgg tcgtttatag tgctgccaaa 480
tcaggcgtca atgctctttc agaagcatta cgccaggagg tatctttaga caacattcgc 540
gttaccatca ttgagccagg tttagtcgat acgccattta atgacttaat ttctgacccg 600
atcacgaaac agcttagtaa agaacaactt agtacaataa cacctttaca aagtgaggat 660
attgcaagag ctataattta tgcagtgaca caacccgatc atgtaaatgt aaatgaaatt 720
ttgattcgac cgactgcaga agataattaa 750
<210> 53
<211> 750
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 53
atggcaggta aactggatgg taaggttgca attattaccg gtgcaagcag cggtattggt 60
gaagccaccg catttgcact ggcagcagaa ggtgcaaaag ttgcaattgc agcccgtcgt 120
gcagaactgt tacatgcact ggccaaacgt attgaagcaa gcggtggtca ggcactgccg 180
attgttaccg atatcaccga tgaaagccag gttaatcatc tggttcagaa aaccaaagtt 240
gaactgggtc atgttgatat cctggtgaat aatgcaggta ttggcgtttt tggtgcaatc 300
gataccggta atccggcaga ttggcgtcgt gcatttgatg ttaatgtgct gggtgttctg 360
tatgcaattc atgcagttct gcctttactg aaagcacaga aaagcggtca tattgtgaat 420
attagcagcg tggatggtcg tattgcacag agcggtgcag ttgtttatag cgcagcaaaa 480
agcggtgtta atgccctgag cgaagcactg cgtcaagaag tgagcctgga taatattcgt 540
gtgaccatta ttgaaccggg tctggtagat accccgttta atgatctgat tagtgatccg 600
attaccaaac agctgagcaa agaacagctg tcaaccatta ctccgctgca gagcgaagat 660
attgcacgtg ccattatcta tgcagttacc cagccggatc atgttaacgt taatgaaatt 720
ctgattcgtc cgaccgcaga ggataattga 750
<210> 54
<211> 334
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 54
Met Thr Thr Thr Asp Pro Ile Leu Ile Asn Asn Trp His Val Val Ala
1 5 10 15
Asn Val Glu Asp Cys Lys Pro Gly Ser Ile Thr Arg Ser Arg Leu Leu
20 25 30
Gly Val Lys Leu Val Leu Trp Arg Ser Tyr Glu Gln Asn Ser Pro Ile
35 40 45
Gln Val Trp Leu Asp Tyr Cys Pro His Arg Gly Val Pro Leu Ser Met
50 55 60
Gly Glu Ile Thr Asn Asn Thr Leu Val Cys Pro Tyr His Gly Trp Arg
65 70 75 80
Tyr Asn Glu Ala Gly Lys Cys Ile Gln Ile Pro Ala His Pro Gly Met
85 90 95
Val Pro Pro Ala Ser Ala Glu Ala Arg Thr Tyr His Ser Gln Glu Arg
100 105 110
Tyr Gly Leu Val Trp Val Cys Leu Gly Asp Pro Val Asn Asp Ile Pro
115 120 125
Ser Phe Pro Glu Trp Asp Asp Pro Asn Tyr His Lys Thr Tyr Thr Lys
130 135 140
Ser Tyr Leu Ile Lys Ala Ser Ala Phe Arg Val Met Asp Asn Ser Leu
145 150 155 160
Asp Val Ser His Phe Pro Phe Ile His Asp Gly Trp Leu Gly Asp Arg
165 170 175
Asn Tyr Thr Lys Val Glu Glu Phe Glu Val Lys Leu Asp Lys Asp Gly
180 185 190
Leu Thr Met Gly Lys Tyr Gln Phe Gln Thr Ser Arg Ile Val Ser His
195 200 205
Ile Glu Asp Asp Ser Trp Val Asn Trp Phe Arg Leu Ser His Pro Leu
210 215 220
Cys Gln Tyr Cys Val Ser Glu Ser Pro Glu Met Arg Ile Val Asp Leu
225 230 235 240
Met Thr Ile Thr Pro Ile Asp Glu Glu Asn Ser Val Leu Arg Met Leu
245 250 255
Ile Met Trp Asn Gly Tyr Glu Thr Leu Glu Ser Lys Met Leu Thr Glu
260 265 270
Tyr Asp Glu Thr Ile Glu Gln Asp Ile Arg Ile Leu His Ala Gln Gln
275 280 285
Pro Val Arg Leu Pro Leu Leu Thr Pro Lys Gln Ile Asn Thr Gln Leu
290 295 300
Phe Ser His Glu Ile His Val Pro Ser Asp Arg Cys Thr Leu Ala Tyr
305 310 315 320
Arg Arg Trp Leu Lys Gln Leu Gly Val Thr Tyr Gly Val Cys
325 330
<210> 55
<211> 1005
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 55
atgacaacta ccgacccaat cttaatcaat aactggcacg tagtcgccaa tgtagaagac 60
tgtaaacctg gaagtatcac cagatctcgt ttgttgggag tgaagttggt attatggcgc 120
agttatgaac aaaattcacc catacaggta tggcttgact actgccccca ccgaggtgtt 180
cctctgtcta tgggagaaat tacgaataat actttagttt gtccgtatca cggatggaga 240
tacaatgagg ctggtaaatg catacagatc ccagctcacc ctggcatggt accaccggca 300
agtgctgaag ccaggacata tcactcccag gagcgctatg gcttagtgtg ggtgtgcttg 360
ggcgatcctg ttaatgatat accttcattt cctgaatggg atgatccgaa ttatcacaag 420
acttatacca agtcttactt gattaaagct agtgcgtttc gtgtgatgga taattcctta 480
gacgtgtctc attttccttt tatccatgac ggttggttag gtgatcgcaa ttatacaaaa 540
gtggaagaat ttgaggtgaa attagataaa gatggcctta ctatgggtaa gtatcaattc 600
cagacatcaa ggattgtcag ccatatcgaa gatgactctt gggttaattg gttcaggctt 660
agtcatcctt tatgtcaata ctgcgtttca gaatcccctg aaatgaggat tgtggattta 720
atgacgatca caccgattga tgaggaaaat agtgtattgc gtatgttgat aatgtggaac 780
gggtatgaaa cgttagagtc aaagatgcta actgaatatg acgaaacaat agaacaagat 840
attcggatct tacatgcaca acagccggta cgtttaccac tgttaactcc aaagcagata 900
aatacacaat tgttttcaca cgaaatccac gtaccatcag atagatgcac acttgcctat 960
cgtcgatggc taaagcaact aggtgttact tatggggttt gttaa 1005
<210> 56
<211> 1005
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 56
atgacaacca ccgatccgat cctgattaat aactggcatg ttgtggcaaa tgtcgaggat 60
tgtaaaccgg gtagcattac ccgtagccgt ttactgggtg ttaaactggt tctgtggcgt 120
agctatgaac agaatagccc gattcaggtt tggctggatt attgtccgca tcgtggtgtt 180
ccgctgagca tgggtgaaat taccaataat accctggttt gtccgtatca tggctggcgt 240
tataatgaag caggtaaatg tattcagatt ccggcacatc cgggtatggt tccgcctgca 300
agcgcagaag cacgtaccta tcatagccaa gaacgttatg gtctggtttg ggtttgtctg 360
ggtgatccgg ttaatgatat tccgtcattt ccggaatggg atgatccgaa ttatcacaaa 420
acctacacca aaagctatct gattaaagca agcgcctttc gcgttatgga taattcactg 480
gatgttagcc attttccgtt tattcatgat ggctggctgg gcgatcgtaa ctataccaaa 540
gtggaagaat ttgaagtgaa actggataaa gatggtctga cgatgggcaa atatcagttt 600
cagaccagcc gtattgtgag ccatattgaa gatgatagct gggtgaattg gtttcgtctg 660
agccatccgc tgtgtcagta ttgtgttagc gaaagtccgg aaatgcgtat tgttgatctg 720
atgaccatta cgccgattga tgaagaaaat agcgttctgc gcatgctgat catgtggaat 780
ggttatgaaa ccctggaaag caaaatgctg acagagtatg atgaaacgat cgaacaggat 840
attcgtattc tgcatgccca gcagccggtg cgtctgccgc tgctgacacc gaagcagatt 900
aatacccagc tgtttagcca tgaaattcat gttccgagcg atcgttgtac cctggcatat 960
cgtcgttggc tgaaacaact gggtgtgacc tatggtgttt gttga 1005
<210> 57
<211> 241
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 57
Met Leu Thr Ala Glu Gln Lys Gln Ala Tyr Thr Asn Asp Gly Tyr Phe
1 5 10 15
Thr Val Glu Glu Ala Val Pro Lys Ala Leu Ile Glu Glu Ile Arg His
20 25 30
Glu Val Glu Leu Ile Thr Glu Gln Lys Arg Gly Gly Val Leu Ala Gly
35 40 45
Asp Tyr Glu Trp Trp Ser Glu His Thr Ile Pro Asp Pro Val Arg Tyr
50 55 60
Gln Lys Ile Ile Gln Arg Leu Leu Glu Leu Pro Thr Val Met Gly Pro
65 70 75 80
Val Gln Ala Leu Ile Gly Ser Asp Ile Phe Leu Leu Ile Thr Asp Leu
85 90 95
Ala Ile Ile Arg Ala Gly Thr Gly Tyr Ile Ala Trp His Gln Asp His
100 105 110
Gly Tyr Val Val Glu Val Leu Asn Ala Leu Ala Ser Met Ser Lys Asn
115 120 125
Glu Leu Asn Asp Asp Ala Leu Arg Leu Leu Val Pro Val Ala Asn Gln
130 135 140
Ala Met Val Phe Ile Thr Ile Tyr Leu Gln Asp Thr Asp Asn Thr Met
145 150 155 160
Gly Thr Met Arg Val Ile Pro Ser Ser His Gln Trp Glu His Ser Leu
165 170 175
Asp Ser Ser Ser Ala Asn Ser Leu Asn Ala Glu Ile Cys Leu Ser Leu
180 185 190
Pro Gly Gly Ala Ala Met Phe Tyr Thr Pro Thr Val Trp His Thr Ala
195 200 205
Ala Ala Asn Thr Ser Ile Thr Asp Tyr Arg Met Leu Thr Leu Ile Phe
210 215 220
Thr Lys Asn Asn Ile Lys Pro Leu Leu Val Asp Ala Leu Lys Arg Ile
225 230 235 240
Ile
<210> 58
<211> 726
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 58
atgctcacag cggaacaaaa acaagcttac acaaatgatg gttatttcac agttgaagaa 60
gctgtaccaa aagcgttaat tgaagaaata cggcatgaag tagaacttat taccgaacaa 120
aaacgtgggg gagtattggc gggtgactat gagtggtggt ctgagcatac tatcccagat 180
ccagttaggt atcaaaagat aattcagagg cttttagagc ttccaactgt gatgggacca 240
gtacaggctc taattgggtc tgatatcttc ctattgatca ccgatctagc cataattcgt 300
gcaggtacag gatacattgc ttggcatcaa gaccatggat atgtagttga agtattgaac 360
gcacttgcat ccatgtcaaa aaacgagtta aatgacgacg cgcttcggtt gttggttcca 420
gtagccaatc aagccatggt attcataact atatacttac aggatacaga taatactatg 480
ggtacaatgc gagttatacc aagtagccac caatgggaac actcattaga ttcatcttct 540
gccaattcac taaatgcaga aatatgtctt tcacttccag gaggggcagc aatgttttat 600
acaccaactg tatggcatac cgcagctgcc aacacttcaa ttaccgatta caggatgcta 660
actctgattt ttacaaaaaa caacatcaaa ccactgttgg tggatgcctt gaaaaggata 720
atttag 726
<210> 59
<211> 726
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 59
atgctgaccg cagaacagaa acaggcatat accaatgatg gctattttac cgtggaagaa 60
gcagttccga aagcactgat tgaagaaatt cgccatgaag tggaactgat caccgagcag 120
aaacgtggtg gtgtgctggc aggcgattat gaatggtggt cagaacacac cattccggat 180
ccggttcgtt atcagaaaat tatccagcgt ctgctggaac tgccgaccgt tatgggtccg 240
gttcaggccc tgattggtag cgatattttt ctgttaatta ccgacctggc aattattcgt 300
gcaggcaccg gttatattgc atggcatcag gatcatggct atgttgttga agttctgaac 360
gccctggcaa gcatgagcaa aaatgagctg aatgatgatg cactgcgcct gctggtgccg 420
gttgcaaatc aggcaatggt gtttattacc atctatctgc aggataccga taacaccatg 480
ggcaccatgc gtgtgattcc gagcagccat cagtgggaac atagtctgga tagcagcagc 540
gccaattcac tgaatgcaga aatttgtctg agcctgcctg gtggtgcagc aatgttttat 600
accccgaccg tttggcatac cgcagcagca aataccagca ttaccgatta tcgtatgctg 660
acgctgatct tcaccaaaaa caacattaaa ccgctgctgg ttgatgccct gaaacgtatt 720
atttga 726
<210> 60
<211> 191
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 60
Met Ile Asn Ile Glu Gln Phe Arg Gln Glu Ile Glu Asp Trp Ile Ile
1 5 10 15
Asn Val Val Ser Ile Pro Asn Pro Leu Thr Gly Asn Phe Pro Pro Cys
20 25 30
Pro Tyr Ala Lys Ala Ala Trp Leu Asn Asn Arg Val Ser Val Arg Trp
35 40 45
Phe His Gly Pro Glu Leu Pro Glu Leu Leu Met Glu Gln Ile Arg Thr
50 55 60
Trp Asn Asn Asp Phe Glu Met Val Ile Phe Gly Cys Asp Pro Gln Asn
65 70 75 80
Leu Asp Ala Gln Arg Leu Glu Arg Tyr Ile Thr Lys Ala Asn Tyr Val
85 90 95
Leu Pro Glu Tyr Asp Leu Val Ala Leu Gly Ser His Pro Asp Lys Gln
100 105 110
Tyr Val Gly Asp Asp Ala Glu Asn Val Asn Asn Val Ile Ile Thr His
115 120 125
Pro Lys Tyr Val Leu Ala Ser Val Gln Ser Phe Ser Gln Leu Gln Glu
130 135 140
Ala Ser Asp Glu Leu Leu Arg Leu Gly Tyr Phe Gln Tyr Trp Ser Ala
145 150 155 160
Glu Lys Leu Ala Glu Met Lys Ser Glu Arg Ala Ser His Asn Leu Ser
165 170 175
Ser Ile Gln Arg Lys Asn Ser Tyr Arg Ile Ile Pro Thr Asn His
180 185 190
<210> 61
<211> 576
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 61
atgataaata tcgaacaatt tcgccaagaa atagaggatt ggattatcaa tgttgtcagc 60
attcccaatc ctctaacagg aaattttcca ccctgtcctt acgcgaaggc agcttggtta 120
aataaccgtg ttagtgttcg ttggtttcat ggacctgaac tgccagagct tctaatggaa 180
cagataagaa catggaataa tgactttgaa atggtgattt ttggctgcga ccctcaaaac 240
ctagatgcac agaggttgga aaggtacatt accaaggcga attatgtatt accagaatac 300
gatttggtag ctttaggatc gcatccagac aaacaatatg ttggtgatga cgcggagaat 360
gtgaataacg taatcataac tcaccctaag tatgttttag catcagtaca gtcattcagc 420
cagttacaag aggctagtga tgaattatta agattgggat attttcagta ttggtctgca 480
gaaaaattgg ctgaaatgaa gtcggagcga gcttctcaca acctttcttc tatccagaga 540
aagaacagct ataggataat tcctactaac cattga 576
<210> 62
<211> 576
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 62
atgatcaaca tcgaacagtt tcgccaagaa atcgaagatt ggattattaa cgttgtcagc 60
attccgaacc cgctgaccgg taattttcct ccgtgtccgt atgcaaaagc agcatggctg 120
aataatcgtg ttagcgtgcg ttggtttcat ggtccggaac tgcctgaact gctgatggaa 180
caaattcgta catggaacaa cgatttcgag atggtgattt ttggttgcga tcctcagaat 240
ctggatgcac agcgtctgga acgttatatc accaaagcaa attatgtgct gcccgaatat 300
gacctggttg cactgggtag ccatccggat aaacagtatg ttggtgatga tgccgaaaat 360
gtgaacaacg tgattattac ccatccgaaa tatgttctgg caagcgttca gagctttagc 420
cagctgcaag aggcaagtga tgagctgctg cgtctgggtt atttccagta ttggtcagca 480
gaaaaactgg ccgaaatgaa aagcgaacgt gcaagccata atctgagcag cattcagcgt 540
aaaaatagct atcgtattat cccgaccaac cattga 576
<210> 63
<211> 258
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 63
Met Thr Ile Gln Ile Val Gln His Asn Leu Glu Tyr Ser Phe Val Thr
1 5 10 15
Pro Lys Glu Thr Ser Asp Phe Val Glu Arg Thr Met Ser Val Phe Asp
20 25 30
Gln Ala Tyr Pro Lys Phe Leu Ile His Asp Val Trp Ala Asp Pro Ala
35 40 45
Ser Leu Ala Leu Phe Glu Ile Tyr Pro Glu Phe Gln Phe Gly Leu Val
50 55 60
Glu Ala Thr Thr Gln Leu Met Ile Ala Gln Gly Asn Cys Ile Pro Leu
65 70 75 80
Thr Tyr Glu Ser Arg Phe Asp Glu Leu Pro Asp Glu Gly Cys Asp Trp
85 90 95
Ala Leu Ala Lys Trp Leu Glu Asp Arg Glu Gln Asn Arg Leu Pro Asn
100 105 110
Ala Leu Cys Val Val Ser Ile Ser Ile Leu Pro Glu Tyr Gln Gly Lys
115 120 125
Asn Leu Ser Gln Tyr Leu Ile Gly Tyr Met Lys Glu Leu Ala Gln Tyr
130 135 140
His Gly Leu Asn Ser Leu Ile Met Ala Ala Arg Pro Ser Leu Lys Tyr
145 150 155 160
Leu Tyr Pro Leu Ile Pro Ile Glu Arg Tyr Ile Thr Trp Arg Asp Lys
165 170 175
Asn Gly Leu Ile Phe Asp Pro Trp Leu Arg Val Asn Val Lys His Gly
180 185 190
Ala Lys Ile Ala Gly Ile Cys Phe Lys Ser Thr Thr Ile Asn Asp Thr
195 200 205
Ile Asp Gly Trp Glu Asp Arg Val Gly Met Arg Phe Pro Glu Thr Gly
210 215 220
Asp Tyr Ile Ile Pro Lys Gly Leu Val Pro Val Lys Ile Asp Tyr Pro
225 230 235 240
Asn Asn Met Gly Ile Tyr Ile Glu Pro Asn Ile Trp Leu Tyr Tyr Asp
245 250 255
Leu Asp
<210> 64
<211> 777
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 64
atgaccattc aaattgtaca gcataattta gagtatagct ttgtaacccc aaaagaaact 60
tctgattttg tggaaaggac gatgagtgtc tttgatcaag catacccaaa atttttgata 120
catgatgtct gggcagatcc agcttcctta gctctatttg aaatttatcc agaattccag 180
tttgggttag tagaagctac cacacagctt atgatagcgc aaggaaactg tatcccttta 240
acttatgaaa gccgttttga tgagttaccg gacgaaggtt gtgactgggc tttagccaag 300
tggcttgaag accgagaaca gaaccgcctg cctaatgcgt tatgtgtagt atcgatttca 360
atcctaccag agtatcaagg caaaaacttg agtcagtatc tgattggata catgaaagaa 420
cttgctcaat accacggtct taattctttg atcatggctg cacgtccaag cctaaaatat 480
ctttacccac ttatacccat agagcggtat attacctggc gagataaaaa tggtcttata 540
tttgaccctt ggttacgagt taatgtcaaa catggggcta aaattgcagg gatctgtttt 600
aaatccacaa caattaatga tactattgac ggttgggaag atagagttgg gatgcgtttt 660
ccagaaactg gtgactatat tattcccaaa ggcttagtac ctgtcaaaat tgactatccc 720
aacaatatgg gaatatacat cgagcctaat atatggttat actatgacct agattaa 777
<210> 65
<211> 777
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 65
atgaccatcc agattgtgca gcataacctg gaatatagct ttgtgacccc gaaagaaacc 60
agcgattttg ttgaacgtac catgagcgtt tttgatcagg catatccgaa atttctgatc 120
catgatgttt gggcagatcc ggcaagcctg gccctgtttg aaatttatcc ggaatttcag 180
tttggtctgg tggaagcaac cacccagctg atgattgcac agggtaattg tattccgctg 240
acctatgaaa gccgttttga tgaactgccg gatgaaggtt gtgattgggc actggcaaaa 300
tggctggaag atcgcgaaca gaatcgtctg ccgaatgccc tgtgtgttgt gagcattagc 360
atcctgccgg aatatcaggg taaaaatctg agccagtatc tgatcggcta tatgaaagaa 420
ctggcacagt atcatggtct gaatagcctg attatggcag cacgtccgag cctgaaatat 480
ctgtatccgc tgattccgat tgaacgctat attacctggc gtgataaaaa cggcctgatt 540
tttgatccgt ggctgcgtgt taatgttaaa catggcgcaa aaattgccgg tatctgcttt 600
aaaagcacca ccattaatga taccattgat ggttgggagg atcgtgttgg tatgcgtttt 660
ccggaaaccg gtgattatat cattccgaaa ggtctggttc cggtgaaaat tgattatccg 720
aataacatgg gcatctacat cgaaccgaat atctggctgt attatgatct ggactga 777
<210> 66
<211> 258
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 66
Met Val Ile Lys Asn Leu Cys Pro Asp Gly Val Thr Pro Ile Trp Asn
1 5 10 15
Lys Ser Gln Met Glu Ser Ser Leu Leu Glu Glu Cys Leu Pro Ala Trp
20 25 30
Val Arg Thr Ser Tyr Ser Thr Phe Val Glu Thr Ile Ser Asp Ser Ala
35 40 45
Phe Pro Cys Phe Trp Gly Thr Ile Gly Glu Gln Lys Gly Met Ile Arg
50 55 60
Tyr Leu Ile Val Ser Ser Leu Thr Asp Pro Ile Leu Val Glu His Thr
65 70 75 80
Leu Glu Gly Ile Tyr Lys Tyr Ile Asp Glu Val Asn Glu Asn Glu Leu
85 90 95
Leu Gln His Glu Asn Ala Asp Leu Leu Thr Leu Val Ile Phe Phe Pro
100 105 110
Pro Glu Pro Thr Val Leu Thr Val Glu Glu Tyr Ala Gly Gln Ala Phe
115 120 125
Asp Phe Leu Asn Ala Leu His Ser Leu Asp Ala Val Ser Cys Pro Cys
130 135 140
His Trp Ser Ala Asp Pro Gln Ser Ala Asn Trp Ser Tyr Ser Leu Gly
145 150 155 160
Gly Cys Ala Leu Phe Val Ser Val Ser Thr Pro Ala Asn Gln Lys Arg
165 170 175
Arg Ser Arg His Leu Gly Ser Gly Met Thr Phe Val Ile Thr Pro Val
180 185 190
Glu Val Leu Leu Asn Lys His Gly Gly Glu Asn Ser Ser Ile Phe Arg
195 200 205
Arg Val Arg Gln Tyr Asp Gly Ile Pro Pro His Pro Asn Leu Leu Ile
210 215 220
Met Pro Gly Asn Gly Lys Val Gly Asn Glu Leu Thr Val Gln Val Leu
225 230 235 240
Pro Asp Asn Asn Asp Ser Glu Ile Ser Phe Asp Phe Gln Tyr Lys Phe
245 250 255
Lys Asp
<210> 67
<211> 777
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 67
atggtaatca agaatttatg tcctgacgga gttacaccaa tctggaacaa aagccagatg 60
gaatcctctc ttctagagga gtgccttcct gcttgggtac gcactagcta ctcaacattt 120
gttgaaacaa tcagcgattc tgccttccct tgcttctggg gaactatcgg ggaacagaag 180
ggaatgatta gatacctgat agtctcatct ttaactgacc cgatcttggt tgagcatacg 240
cttgagggta tctacaaata cattgatgaa gttaatgaaa acgaattgct tcagcacgaa 300
aatgcggatc ttctgacact tgtcatcttt ttcccacctg aaccaacagt tcttacagta 360
gaggaatatg caggtcaagc atttgatttt ttgaatgcgt tacatagcct tgatgcggtg 420
tcttgtccct gccattggtc tgccgatccg cagtctgcta actggtctta ttctctagga 480
gggtgtgcct tatttgttag tgtttccact ccagcaaatc aaaagcggcg atcgcgccac 540
cttgggtcag gaatgacttt tgtcatcaca ccagttgaag tcctcttgaa taaacatggt 600
ggcgagaatt cgagcatttt tcgccgcgtc cgagagtacg acggcattcc acctcaccct 660
aacttattaa ttatgcctgg gaatgggaaa gtcggtaatg aattgacagt gcaagtactt 720
ccagataata acgatagtga gatctcattt gacttccagt ataaatttaa ggattag 777
<210> 68
<211> 777
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 68
atggtgatta aaaacctgtg tccggatggt gttaccccga tttggaataa aagccagatg 60
gaaagcagcc tgctggaaga atgtctgcct gcatgggttc gtaccagcta tagcaccttt 120
gttgaaacca ttagcgatag cgcatttccg tgtttttggg gcaccattgg tgaacagaaa 180
ggtatgattc gttatctgat tgttagcagc ctgaccgatc cgattctggt tgaacatacc 240
ctggaaggta tctacaaata tatcgatgaa gtgaacgaaa acgaactgct gcagcatgaa 300
aatgcagatc tgctgaccct ggttatcttt tttccgcctg aaccgaccgt tctgaccgtt 360
gaagaatatg caggtcaggc atttgatttt ctgaatgcac tgcatagcct ggatgcagtt 420
agctgtccgt gtcattggag cgcagatccg cagagcgcaa attggagcta tagcctgggt 480
ggttgtgcac tgtttgttag cgttagcaca ccggcaaatc agaaacgtcg tagccgtcat 540
ctgggtagcg gtatgacctt tgttattaca ccggttgaag tgctgctgaa taaacatggt 600
ggtgaaaaca gcagcatttt tcgtcgtgtt cgtgaatatg atggtattcc gcctcatccg 660
aatctgctga ttatgcctgg taatggtaaa gtgggtaatg aactgaccgt gcaggttctg 720
ccggataata atgatagcga aatcagcttc gattttcagt ataaattcaa agattga 777
<210> 69
<211> 408
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 69
Met Lys Arg Leu Thr Leu Leu Ile Ile Ala Gly Ile Leu Ser Val Ser
1 5 10 15
Thr Phe Leu Cys Ile Thr Pro Val Ala Leu Ala Asn Ile Thr Asp Tyr
20 25 30
Tyr Leu Lys Asn Glu Lys Leu Ser Gly Gln Phe Ser Val Pro Val Asn
35 40 45
Leu Ser Val Gly Val Arg Phe Ala His Arg Ser Ser Tyr Ala Thr Ala
50 55 60
Ile Asn Phe Pro Thr Gly Leu Asp Ala Asp Ser Val Ala Val Gly Asp
65 70 75 80
Phe Asn Ser Asp Ser Lys Leu Asp Leu Ala Val Thr Asn Trp Phe Asp
85 90 95
Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly Ser Phe Gly Ala
100 105 110
Ala Thr Asn Phe Pro Val Gly Thr Asn Pro Val Phe Val Val Thr Gly
115 120 125
Asp Val Asn Gly Asp Ser Lys Leu Asp Leu Ala Val Ala Asn Phe Ser
130 135 140
Ser Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly Ser Phe Gly
145 150 155 160
Ala Ala Thr Asn Phe Ser Val Gly Thr Asn Pro Tyr Ser Val Ala Ile
165 170 175
Gly Asp Val Asn Asn Asp Ser Glu Leu Asp Leu Ala Phe Thr Asn Trp
180 185 190
Phe Asp Asn Lys Val Leu Val Leu Leu Gly Asn Gly Asn Gly Ser Phe
195 200 205
Gly Ala Ala Ser Ser Phe Pro Val Asp Thr Tyr Ser Ile Ser Val Ala
210 215 220
Ile Ala Asp Phe Asn Ser Asp Ser Lys Leu Asp Leu Ala Ile Thr Asn
225 230 235 240
Trp Val Ser Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly Ser
245 250 255
Phe Gly Ala Ala Thr Asn Phe Pro Val Gly Thr Asn Pro Ile Phe Val
260 265 270
Ala Thr Gly Asp Val Asn Gly Asp Ser Lys Leu Asp Leu Ala Val Ala
275 280 285
Asn Thr Ser Ser Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly
290 295 300
Ser Phe Gly Ala Ala Thr Asn Phe Pro Ala Gly Thr Asn Pro Tyr Ser
305 310 315 320
Val Ala Ile Arg Asp Val Asn Gly Asp Ser Lys Leu Asp Leu Ala Val
325 330 335
Thr Asn Tyr Ser Ser Asn Asn Val Ser Val Leu Pro Gly Asn Gly Asn
340 345 350
Gly Ser Phe Gly Ile Ala Thr Asn Phe Pro Val Gly Thr Asn Pro Glu
355 360 365
Ser Ile Ala Ile Ala Asp Phe Asn Gly Asp Ser Lys Leu Asp Leu Ala
370 375 380
Val Thr Asn Ser Gly Asn Asn Asn Val Ser Ile Leu Leu Asn Asn Phe
385 390 395 400
Gln Gly Leu Pro Lys Asn Lys Ile
405
<210> 70
<211> 1227
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 70
gtgaaaaggc tcactttact aattatagcg gggatattat ctgttagtac atttttatgt 60
ataactcctg ttgcattagc aaatataact gactattatc tgaagaatga aaagctttct 120
gggcaattta gtgttccggt taatttgtcc gtaggagtga gatttgccca caggagtagt 180
tatgctactg ctattaactt cccaactggt cttgatgctg actctgtagc agttggggat 240
ttcaatagcg atagtaagct cgacctggct gttacaaatt ggttcgacaa taacgtctcg 300
gtcttactgg gaaatggtaa tgggtctttt ggcgcagcca ctaactttcc agtcggtact 360
aatcccgtct ttgtagtgac tggggatgta aatggcgaca gcaagcttga cctggctgtt 420
gcaaatttta gtagcaataa cgtctcggtc ttactaggaa atggtaatgg gtcttttggc 480
gcagccacta acttttcagt tggtactaac ccttattctg tagccattgg agatgtgaat 540
aacgatagtg agcttgacct tgcttttaca aattggttcg acaataaggt cttggtttta 600
ctgggaaatg gtaatgggtc ttttggcgca gccagcagct tccctgtcga tacttattcg 660
atttccgtag cgattgcgga ttttaatagc gacagtaagc tcgaccttgc tattacaaat 720
tgggtcagca ataacgtctc ggtcttactg ggaaatggta atgggtcttt tggcgcagcc 780
actaactttc cagtcggtac taatcccata tttgtagcaa ctggggatgt aaatggcgac 840
agcaagcttg acctggctgt tgcaaatact agcagcaata acgtctcggt cttactggga 900
aatggtaatg ggtcttttgg cgcagccact aactttccag ccggtactaa tccctactct 960
gtagcgatta gagatgtgaa tggcgacagt aaacttgacc tggctgttac aaattatagt 1020
agcaataacg tctcggtctt accaggaaat ggtaatgggt cttttggcat agctactaac 1080
tttccagtcg gtactaatcc tgaatctata gcaattgcgg atttcaacgg cgacagcaag 1140
cttgacctgg ctgtcacaaa ttctggcaac aacaacgtct cgatcttgtt gaataatttt 1200
cagggacttc caaaaaataa gatatag 1227
<210> 71
<211> 1227
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 71
atgaaacgtc tgacgctgct gatcattgca ggtattctgt cagttagcac ctttctgtgt 60
attacaccgg ttgcactggc caatattacc gattattatc tgaaaaacga gaaactgagc 120
ggtcagttta gcgttccggt gaatctgtct gttggtgttc gttttgcaca tcgtagcagc 180
tatgcaaccg caattaactt tccgaccggt ctggatgcag atagcgttgc agttggtgat 240
tttaacagcg atagcaaact ggatctggcc gttaccaatt ggtttgataa caatgttagc 300
gtgctgctgg gtaatggcaa tggcagcttt ggtgcagcaa ccaattttcc ggttggcacc 360
aatccggttt ttgttgttac cggtgatgtt aatggtgaca gtaaactgga tttagccgtg 420
gcaaatttta gcagcaataa tgtttcagtt ctgctgggaa acggtaatgg ttcttttggc 480
gcagccacaa actttagcgt tggtacaaat ccgtatagcg tggccattgg tgatgtgaat 540
aatgatagtg aactggacct ggcatttacg aactggttcg ataataaagt tctggtgctg 600
ttaggcaatg gtaatggctc gtttggtgcc gcaagctcat ttccggtgga tacctatagc 660
attagcgttg cgattgcaga tttcaactca gattctaaat tagacctggc gatcaccaat 720
tgggtgtcaa ataatgtgag tgtgttactg gggaatggta acggtagttt tggagctgcg 780
acaaattttc ctgtgggtac aaacccgatt tttgtggcaa ccggtgacgt gaatggcgat 840
tctaagctgg acttagcagt tgcaaatacc agctctaata acgttagcgt tctgttaggt 900
aacgggaacg gctcattcgg tgctgccacg aattttccag caggcaccaa cccgtatagt 960
gttgcaattc gcgacgttaa cggtgatagc aaattagatt tagcggtgac caactatagc 1020
agcaacaacg tgagtgttct gccaggcaac ggtaacggat catttggtat tgcgaccaac 1080
tttccagtag gtacgaatcc ggaaagcatt gcaattgccg attttaatgg ggattccaag 1140
ttagatctgg cagtgacaaa tagcggtaac aataatgtaa gcatactgct gaataacttt 1200
cagggtctgc cgaaaaacaa gatttga 1227
<210> 72
<211> 200
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 72
Met Lys Ser Thr Asn Ile His Tyr Thr Lys His Leu Ile Ser Pro Tyr
1 5 10 15
Asp Arg Tyr Leu Lys Asn Gly His Lys Ser Gly Ile Leu Trp Phe Thr
20 25 30
Gly Leu Ser Gly Ala Gly Lys Thr Thr Leu Ala Leu Lys Leu Glu Gln
35 40 45
Thr Leu Phe Glu Lys Gly Trp Ser Thr Phe Val Leu Asp Gly Asp Ser
50 55 60
Val Arg His Gly Leu Cys Ser Asp Leu Gly Phe Ser Ala Ser Asp Arg
65 70 75 80
Ser Glu Asn Ile Arg Arg Leu Gly Glu Val Ala Lys Leu Phe Ala Glu
85 90 95
Ser Gly Cys Leu Val Ile Thr Ala Phe Ile Ser Pro Tyr Arg Asn Asp
100 105 110
Arg Glu Gln Val Arg Arg Leu Ala Gly Asp Leu Phe His Glu Val Tyr
115 120 125
Ile Ala Thr Pro Leu Glu Leu Cys Glu Gln Arg Asp Pro Lys Gly Leu
130 135 140
Tyr Leu Lys Ala Arg Ser Gly Glu Ile Asp Gly Phe Thr Gly Ile Ser
145 150 155 160
Ala Pro Tyr Glu Pro Pro Asn Ser Pro Asp Leu Trp Val Glu Thr Ser
165 170 175
Glu Leu Thr Val Glu Glu Ser Leu Glu Gln Leu Leu Lys Tyr Val Glu
180 185 190
Asn Lys Phe Thr Ile Phe Lys Gln
195 200
<210> 73
<211> 603
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 73
atgaaatcaa ctaatattca ctatacaaaa catcttatat ctccatatga tcgttatcta 60
aagaatggtc ataaaagcgg gattctatgg tttactggac tgtccggggc tggtaaaaca 120
acattggctt taaaattaga gcagactttg ttcgagaaag gatggtctac ctttgtttta 180
gatggtgata gtgttcgtca tggactgtgt tccgatttag gattttctgc tagtgatcgc 240
tcagaaaata tccgtcgttt gggtgaggtt gccaaactct ttgcggagtc aggatgccta 300
gtgatcactg ccttcatctc accctacagg aatgaccgag aacaggtgcg tagactagct 360
ggagatctat ttcatgaagt atacattgca actccactgg aactttgtga gcagcgtgat 420
ccgaaaggtc tttatctaaa agcacgcagt ggggaaatag atggatttac gggaatcagc 480
gccccttatg aaccacccaa tagcccagat ttatgggtgg aaacatccga actcaccgtc 540
gaggaaagcc tagaacaact actcaaatac gtggaaaaca aattcacaat tttcaaacaa 600
tag 603
<210> 74
<211> 221
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 74
Met Lys Ala Val Val Lys Tyr Thr Ile Phe Glu Lys Pro Gln Pro Ile
1 5 10 15
Arg Ala Ile Lys Arg Leu Glu Arg Asp Val Leu Arg Met Gly Ala Leu
20 25 30
Val Glu Gln Ser Phe Arg Leu Ser His Gln Ala Leu Phe Asn Arg Asp
35 40 45
Leu Thr Ala Ala Glu Gln Ile Arg Arg Leu Asp Lys Lys Ile Asp Arg
50 55 60
Phe Tyr Arg Gln Ile Glu Val Asp Cys Ala Thr Ile Met Ser Ser Gln
65 70 75 80
Ala Pro Thr Asp Gln Glu Ser Arg Cys Leu Ser Ser Phe Met Gln Leu
85 90 95
Val Arg Asp Leu Glu Arg Ile Gly Asp Tyr Ala Lys Asp Leu Ala Glu
100 105 110
Ile Ala Met Lys Ile Phe Pro Tyr Pro Pro His Pro Thr Leu Gly Glu
115 120 125
Val Ala Ile Met Ser Asp His Ala Gln Ser Met Leu Ala Thr Ser Leu
130 135 140
Val Ala Leu Ala Asp Leu Asp Glu Ile Ser Gly Arg Arg Ile Lys Leu
145 150 155 160
Leu Asp Asp Thr Val Asp Asp Ala Tyr Lys Lys Leu Tyr Arg Asn Leu
165 170 175
Ala Gln Gln Lys Asp Val Pro Gly Val Val Glu Pro Ile Leu Leu Leu
180 185 190
Thr Leu Ala Ile Gln Cys Leu Glu Arg Met Ala Asp His Ala Thr Asn
195 200 205
Ile Gly Gln Arg Val Ala Tyr Ile Val Thr Gly Gln Arg
210 215 220
<210> 75
<211> 666
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 75
atgaaagctg ttgtgaaata tacaattttt gaaaaacctc aacctatacg tgccattaaa 60
agactggaac gagatgtttt gcgtatgggt gctttagtag agcagtcatt ccgtctgagt 120
caccaagctc tattcaatcg ggatttaaca gcagctgagc aaatacggag attagacaaa 180
aaaattgatc gcttctacag acaaatagaa gtcgattgtg ccacaattat gagcagtcaa 240
gctcccacag accaagaatc tcggtgttta agctcattca tgcaattagt tagagacttg 300
gaacgtattg gggactatgc caaagatttg gcagaaatag caatgaaaat atttccctat 360
cccccccatc ctactttggg ggaggttgcc attatgtccg atcatgccca atctatgttg 420
gctaccagcc tagtagcttt agcggattta gacgagatta gtggtagaag gattaaatta 480
ttagatgata cagtagatga tgcttacaaa aagttatatc gtaatttggc gcagcagaaa 540
gatgttcccg gggtagtgga gcccatttta ctattaacat tagcaattca gtgtttagag 600
agaatggcag atcatgctac taatattggt caaagggtag catacattgt tacagggcaa 660
agatag 666
<210> 76
<211> 450
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 76
Met Phe Leu Leu Gly Phe Leu Leu Gly Leu Ala Val Gly Phe Gly Phe
1 5 10 15
Trp Leu Trp Gln Gln Phe Gln Leu Asn Ser His Leu Glu Gln Leu Thr
20 25 30
Gln Pro Leu Asn Pro His Ala Glu Lys Ile Leu Leu Pro Leu Leu Ala
35 40 45
Gly Leu His Arg Lys Ile Ser Thr Val Arg Asp Glu Gln Gln Asn Leu
50 55 60
Arg Leu Ser Leu Lys Ala Tyr Glu Gln Leu Leu Asp Ala Ala Pro Leu
65 70 75 80
Gly Tyr Leu Gln Val Asp Glu Glu Asn Gln Leu Leu Trp Cys Asn Gln
85 90 95
Cys Ala Arg Glu Met Leu Tyr Leu Gln Arg Trp Gln Pro Gly Gln Val
100 105 110
Arg Leu Leu Leu Glu Leu Val Arg Ser Tyr Glu Leu Asp Gln Leu Ile
115 120 125
Glu Gln Thr Arg Asp Trp Gln Lys Pro Gln Met Gln Glu Trp Ile Phe
130 135 140
His Pro Ser Arg Asp His Gly Gln Gly Ile Leu Gly Leu Lys Pro Leu
145 150 155 160
Ser Leu Ala Ala Asn Ser Phe Pro Leu Pro Gly Gly Gln Val Gly Val
165 170 175
Phe Leu Glu Ser His Gln Gln Phe Val Asp Ile His Gln Gln Arg Asp
180 185 190
Arg Ser Phe Ser Asp Leu Ala His Glu Leu Arg Thr Pro Leu Thr Ser
195 200 205
Ile Arg Leu Val Ala Glu Thr Leu Gln Thr Arg Leu Asp Pro Pro Leu
210 215 220
Asn Arg Trp Val Ile Arg Leu Met Gln Glu Val Asp Arg Leu Ile Asn
225 230 235 240
Leu Val Gln Asn Trp Leu Asp Leu Thr Gln Met Glu Ile Thr Ser Ser
245 250 255
Ile Gln Leu Asn Leu Glu Met Leu Glu Val Arg Ser Leu Ile Phe Ser
260 265 270
Val Trp Glu Asn Leu Glu Pro Leu Ala Ala Asn Gln His Leu Ser Ile
275 280 285
Ser Tyr Ser Gly Pro Glu Lys Val Tyr Ile Cys Ala Asp Lys Ser Arg
290 295 300
Ile Tyr Gln Val Phe Leu Asn Leu Leu Asp Asn Cys Ile Lys Tyr Ser
305 310 315 320
Asn Leu Asn Gly Thr Ile Phe Ile Glu Met Asn Pro Val Cys Gly Glu
325 330 335
Lys Ser Ile Asn Gly Val Asp Pro Glu Ala Asp Thr Ile Leu Asn Gln
340 345 350
Val Ser Asn Gln Ile Leu Glu Ile Asn Ile Ile Asp Ser Gly Val Gly
355 360 365
Phe Ala Pro Met Asp Leu Pro His Val Phe Gln Arg Phe Tyr Arg Gly
370 375 380
Asp Lys Ala Arg His Arg Glu Ser Arg Ser Glu Asn Glu Thr Val Glu
385 390 395 400
Ile Thr Gly Ser Gly Leu Gly Leu Ser Ile Val Arg Gln Ile Ile Ile
405 410 415
Ala His Gly Gly Lys Ile Arg Ala Met Asn His Pro Asp Thr Gly Gly
420 425 430
Ala Trp Ile Gln Ile His Leu Pro Gln Val Val Gln His Asp Gly Gly
435 440 445
Tyr Phe
450
<210> 77
<211> 1353
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 77
atgttcttat tgggatttct tctgggtttg gcagtcggtt ttggtttttg gctttggcaa 60
caatttcaac ttaacagtca tttggagcag ttaacccaac ccttaaaccc tcacgctgaa 120
aagatattat tacccctatt agctggatta catcgtaaaa tatctaccgt tagagatgag 180
caacaaaact tacgcttgtc actcaaagct tatgaacagt tgctggatgc tgcgcctttg 240
ggatatttac aagtagatga agaaaaccaa ctactatggt gtaatcagtg cgcgcgggaa 300
atgctgtatt tacaaagatg gcaaccgggt caagtgcgcc tgctactgga attagtgaga 360
tcctatgagc tggatcagtt aattgagcaa acccgggatt ggcaaaaacc gcaaatgcaa 420
gagtggattt ttcacccttc ccgagatcat ggtcagggta ttttaggatt aaagccattg 480
tctttagcag ctaacagttt tcccctaccg gggggacaag tgggtgtgtt tctagaaagt 540
caccaacaat ttgtagacat tcatcagcaa cgtgaccgct ctttttcaga cctggcccat 600
gaactgagaa cacctctgac ttccattcgt ctggtcgcag aaaccctgca aactcgctta 660
gatccccctc taaaccgttg ggtcatccgc ttgatgcagg aggttgacag actaattaat 720
ttagtccaaa attggttaga cctgacccag atggaaataa cctcctccat acaactgaat 780
ttggaaatgc tagaagtccg ctccctaatt ttttcagtct gggagaattt agagccccta 840
gccgctaatc agcatcttag tatttcttac tccggcccgg aaaaggtcta tatatgtgct 900
gataagtcca gaatttatca agtgtttctt aatctgttag ataactgtat taaatacagc 960
aacctgaacg gtactatttt cattgaaatg aatccagttt gtggggagaa gtctattaat 1020
ggggttgatc cagaagcaga tacaatatta aaccaagtat caaatcagat tttagaaatt 1080
aacattattg attccggggt tggatttgct cccatggatc taccccatgt ctttcaaaga 1140
ttttatcggg gggacaaagc tagacaccgc gagtcccgct ctgagaatga aacagtagaa 1200
attactggta gtggtttagg gttatccatt gtccgccaaa taattatagc tcatggtggc 1260
aaaatcaggg ccatgaacca tcctgatacc ggtggtgctt ggatacaaat tcatcttccc 1320
caggtggttc aacatgatgg cggatatttc tga 1353
<210> 78
<211> 240
<212> PRT
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 78
Val Asn Gln Ser Ile Val Trp Gln Arg Ala Pro Glu Asn Phe Gln Leu
1 5 10 15
Cys Ala Gln Glu Val His Ile Trp Lys Ile Asn Leu Lys Val Ser Pro
20 25 30
Ser Glu Val Glu Leu Cys Arg Arg Ile Leu Ser Gly Asp Glu Ile Ala
35 40 45
Arg Ala Glu Arg Phe Ser Phe Pro Glu His Gln Glu Arg Phe Ile Val
50 55 60
Gly Arg Ala Phe Leu Arg Lys Ile Leu Ser Arg Tyr Leu Asn Val Glu
65 70 75 80
Ala Gln Ala Ile Glu Phe Glu Tyr Glu Glu Arg Gly Lys Pro Leu Leu
85 90 95
Gly Phe Lys Phe Lys Tyr Ser Gly Ile Cys Phe Asn Leu Ser His Ser
100 105 110
Gln Glu Leu Ala Leu Cys Gly Val Thr His Gln Arg Ser Ile Gly Val
115 120 125
Asp Leu Glu Gly Val Arg His Thr Ser Asp Ile Glu Asn Leu Ala Asn
130 135 140
Arg Phe Phe Ser Val Lys Glu Tyr Gly Val Ile Lys Ser Val Pro Pro
145 150 155 160
Glu Gln Gln Gln Gln Val Phe Phe Arg Tyr Trp Thr Cys Lys Glu Ala
165 170 175
Tyr Leu Lys Ala Ile Gly Lys Gly Leu Ser Glu Leu Ser Gln Ile Glu
180 185 190
Ile Glu Leu Thr Pro Asn Lys Ser Ala Arg Leu Arg Val Leu Gly Asp
195 200 205
Trp Gln Leu Lys Glu Leu Val Pro Ala Asp Asn Phe Ala Ala Ala Val
210 215 220
Val Ile Ala Ser His Asn His Leu Asp Arg Phe Glu Phe Trp Glu Pro
225 230 235 240
<210> 79
<211> 723
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 79
gtgaatcagt ctattgtttg gcaacgggca cctgaaaatt tccagttgtg cgctcaggaa 60
gtacatatct ggaagattaa cctgaaagta tcaccatcag aggtggaact ttgtcgcagg 120
attttatctg gtgatgaaat agctcgtgcg gaaagatttt cttttccgga acatcaagag 180
cgttttattg ttggtcgtgc ctttcttaga aaaatactat caagatattt aaacgtagaa 240
gcacaagcaa tagagtttga gtatgaagag agaggaaaac cactgttagg gttcaagttt 300
aagtactctg gaatatgttt taatttatcc cattctcagg aattagcttt atgcggtgtg 360
actcatcaaa gatccattgg agtagatcta gaaggtgttc gtcacacatc agatatagaa 420
aacctagcca accgcttttt ttcagttaaa gaatatgggg taattaaatc agtacccccg 480
gaacaacaac agcaggtatt tttccgttat tggacttgta aagaggccta tttaaaagct 540
attggaaaag gtttgtctga gttatctcaa atagaaatag aattaacgcc aaataaatct 600
gctaggttgc gtgtattggg agattggcag ttaaaagaac tagtaccagc agataatttt 660
gcagcagcag ttgttatagc tagccataat catttagaca ggtttgagtt ttgggaacct 720
taa 723
<210> 80
<211> 723
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 80
atgaatcaat caatcgtgtg gcagcgtgcg ccggaaaact tccaactgtg tgctcaagaa 60
gtgcatatct ggaaaatcaa cctgaaagtg agcccgtctg aagtggaact gtgccgtcgc 120
attctgagtg gcgatgaaat cgcgcgtgcc gaacgctttt ccttcccgga acatcaggaa 180
cgttttattg tgggtcgtgc attcctgcgc aaaatcctga gccgctatct gaacgttgaa 240
gcacaggcta ttgaatttga atacgaagaa cgtggcaaac cgctgctggg tttcaaattc 300
aaatactctg gcatctgctt caatctgagt cattcccagg aactggcgct gtgtggtgtt 360
acccaccaac gttcaattgg cgtcgatctg gaaggtgtgc gccacacgtc ggacatcgaa 420
aacctggcca atcgtttctt tagcgtcaaa gaatacggcg tgattaaaag cgtgccgccg 480
gaacagcaac agcaagtgtt tttccgctat tggacctgta aagaagcgta cctgaaagcc 540
atcggcaaag gtctgtcaga actgtcgcag attgaaatcg aactgacgcc gaacaaatca 600
gcgcgtctgc gcgttctggg tgattggcaa ctgaaagaac tggtcccggc agacaatttt 660
gctgcagcag ttgtcattgc gagtcataat catctggacc gttttgaatt ttgggaaccg 720
tga 723
<210> 81
<211> 27
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 81
gggctttcat atgttacaaa agattaa 27
<210> 82
<211> 27
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 82
aaagtatgcg gccgcatgct tgagtat 27
<210> 83
<211> 26
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 83
ggcatccatg ggcaagattt acggaa 26
<210> 84
<211> 27
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 84
ggcatctcga gttataaaag cgcttcg 27
<210> 85
<211> 27
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 85
ggttaagatc tgaaattaat acgactc 27
<210> 86
<211> 27
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 86
ttttaagatc ttttcagcaa aaaaccc 27
<210> 87
<211> 30
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 87
atatccatgg gacctggtga tcgcaaagga 30
<210> 88
<211> 29
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>primer
<400> 88
tatctcgaga gtgttgattt cgttggctg 29
<210> 89
<211> 675
<212> DNA
<213>bacillus subtilis (Bacillus subtilis)
<400> 89
atgaagattt acggaattta tatggaccgc ccgctttcac aggaagaaaa tgaacggttc 60
atgactttca tatcacctga aaaacgggag aaatgccgga gattttatca taaagaagat 120
gctcaccgca ccctgctggg agatgtgctc gttcgctcag tcataagcag gcagtatcag 180
ttggacaaat ccgatatccg ctttagcacg caggaatacg ggaagccgtg catccctgat 240
cttcccgacg ctcatttcaa catttctcac tccggccgct gggtcattgg tgcgtttgat 300
tcacagccga tcggcataga tatcgaaaaa acgaaaccga tcagccttga gatcgccaag 360
cgcttctttt caaaaacaga gtacagcgac cttttagcaa aagacaagga cgagcagaca 420
gactattttt atcatctatg gtcaatgaaa gaaagcttta tcaaacagga aggcaaaggc 480
ttatcgcttc cgcttgattc cttttcagtg cgcctgcatc aggacggaca agtatccatt 540
gagcttccgg acagccattc cccatgctat atcaaaacgt atgaggtcga tcccggctac 600
aaaatggctg tatgcgccgc acaccctgat ttccccgagg atatcacaat ggtctcgtac 660
gaagagcttt tataa 675
<210> 90
<211> 224
<212> PRT
<213>bacillus subtilis (Bacillus subtilis)
<400> 90
Met Lys Ile Tyr Gly Ile Tyr Met Asp Arg Pro Leu Ser Gln Glu Glu
1 5 10 15
Asn Glu Arg Phe Met Thr Phe Ile Ser Pro Glu Lys Arg Glu Lys Cys
20 25 30
Arg Arg Phe Tyr His Lys Glu Asp Ala His Arg Thr Leu Leu Gly Asp
35 40 45
Val Leu Val Arg Ser Val Ile Ser Arg Gln Tyr Gln Leu Asp Lys Ser
50 55 60
Asp Ile Arg Phe Ser Thr Gln Glu Tyr Gly Lys Pro Cys Ile Pro Asp
65 70 75 80
Leu Pro Asp Ala His Phe Asn Ile Ser His Ser Gly Arg Trp Val Ile
85 90 95
Gly Ala Phe Asp Ser Gln Pro Ile Gly Ile Asp Ile Glu Lys Thr Lys
100 105 110
Pro Ile Ser Leu Glu Ile Ala Lys Arg Phe Phe Ser Lys Thr Glu Tyr
115 120 125
Ser Asp Leu Leu Ala Lys Asp Lys Asp Glu Gln Thr Asp Tyr Phe Tyr
130 135 140
His Leu Trp Ser Met Lys Glu Ser Phe Ile Lys Gln Glu Gly Lys Gly
145 150 155 160
Leu Ser Leu Pro Leu Asp Ser Phe Ser Val Arg Leu His Gln Asp Gly
165 170 175
Gln Val Ser Ile Glu Leu Pro Asp Ser His Ser Pro Cys Tyr Ile Lys
180 185 190
Thr Tyr Glu Val Asp Pro Gly Tyr Lys Met Ala Val Cys Ala Ala His
195 200 205
Pro Asp Phe Pro Glu Asp Ile Thr Met Val Ser Tyr Glu Glu Leu Leu
210 215 220
<210> 91
<211> 7035
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>sequence of the sxt1 segment after being integrated into E coli lac operon
<400> 91
gtttcatctg tggtgcaacg ggcgctgggt cggttacggc caggacagtc agtggagatg 60
cccaagggca cttcgggtcg aggaacccga cctgcattgg gacgcggcca cggagagcgc 120
gggcaaacgc cggcactata gccagtggag tttgtaaaac gctatttcag agcttggaga 180
gtgtctaaga aagccgggcg atgccaaccc atcccttctt cggctacgtt cgtaatcaag 240
ccacttcctt tttgcattga cgcagggtgt cggaaggcaa ctcgccgaac gcgctcctat 300
agttttcagc gaagcgtccc aaatgtaaga agccgtagtc tagggctatc tcagttatac 360
tacgcacatt ggcactggga tcgttcaagc aggcgcggat gctttcgagc ttgcggttgc 420
ggatgtagtt cttcggcgtg gtgccggcat gcttctcgaa caaattgtag agcgagcgtg 480
gactcatcat cgccagctcc gctaaccgct caaggctgat attccgtttg agattctcct 540
caatgaattg aacgactcgc tcgaaagacg ggttaccttt gctgaaaatt tcacggctga 600
cattgctgcc cagcatttcg agcagcttgg aagcgatgat ccccgcatag tgctcttgga 660
cccgaggcat cgactttgta tgttccgctt cgtcacaaac taacccgagt agattgataa 720
agccatcgag ttgctggaga ttgtgtcgcg cggcgaaacg gataccctcc ctcggcttgt 780
gccaattgtt gtcactgcat gcccgatcaa ggaccactga gggcaattta acgataaatt 840
tctcgcaatc ttctgaatag gtcaggtcgg cttggtcatc cggattgagc agcaatagtt 900
cgcccggcgc aaaatagtgc tcctggccat ggccacgcca caggcaatgg cctttgagta 960
ttatttgcag atgataacag gtctctaatc caggcgagat taccctcacg ctaccgccgt 1020
agctgattcg acacaggtcg aggcatccga agattctgtg gtgcagcctg cctgccgggg 1080
gcccgccctt gggcaggcga atagagtgcg taccgacata ctggttaaca taatcggaga 1140
ctgcataggg ctcggcgtgg acgaagatct gacttttctc gttcaataag caaaaatcca 1200
tagttcacgg ttctcttatt ttaatgtggg ctgcttggtg tgatgtagaa aggcgccaag 1260
tcgatgaaaa tgcaggaatt aattcgcaga tcctggcgga tgagagaaga ttttcagcct 1320
gatacagatt aaatcagaac gcagaagcgg tctgataaaa cagaatttgc ctggcggcag 1380
tagcgcggtg gtcccacctg accccatgcc gaactcagaa gtgaaacgcc gtagcgccga 1440
tggtagtgtg gggtctcccc atgcgagagt agggaactgc caggcatcaa ataaaacgaa 1500
aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc 1560
tgagtaggac aaatccgccg ggagcggatt tgaacgttgc gaagcaacgg cccggagggt 1620
ggcgggcagg acgcccgcca taaactgcca ggcatcaaat taagcagaag gccatcctga 1680
cggatggcct ttttgcgtag atcccagcct tgcaagaagc ggatacagga gtgcaaaaaa 1740
tggctatctc tagaaaggcc taccccttag gctttatgca acagaaacaa taataatgga 1800
gtcatgaaca tgctgcagaa aatcaatcgt tatacccatg gttttgttgc cgttccggtt 1860
attctggcat gtcgtgaaaa aggtgttttt gaactgctgg cagatgaaag tccgctgagc 1920
ctgaatcaga tggttgaaca tctgggtgcc aatagcggtc attttcaggt tgcactgcgt 1980
atgctggaaa gtctgcattg gctgagccgt aataaagaac tgaaatatag cctgaccgca 2040
gaagcagcaa ttcataacaa aattagcgaa gatatcctgc agctgtataa tctgccgatt 2100
cagagctatc tggaaggtaa acagggcaat ctgctgggtc gttggattga acgtagctgt 2160
cagctgtgga atctggataa tccgctgatg gcagattttc tggatggtct gctggttatt 2220
ccgctgctgc tggcactgca taaacataac ctgctggccg attctgaaga taaaccgctg 2280
ctgagcagcc tgagcagtac cgttcaagaa gaactgggta aactgtttct gcatctgggt 2340
tgggcagatc tgacagcagg tcgtctgacc attaccgaac tgggtcgctt tatgggtgaa 2400
cgtgcactga ataccgcaat tgttgcaagc tataccccga tgctgagtcg tattcatgat 2460
gttctgtttg gtaattgcct gagcgttttt cagcgtgatg caagcggtca tgaacgtcat 2520
attgatcgta ccctgaatgt tattggtagc ggttttcagc accagaaata ctttgcagat 2580
ctggaagaaa gcattctgag cgtgtttaat cagctgccgc tggaagaaca gccgaaatac 2640
attaccgata tgggttgtgg tgatggcacc ctgctgaaac gtgtttggga aaccattcag 2700
tttaaaagcg cacgtggtaa agcactggaa cagtatccgc tgcgtctgat tggtgttgat 2760
tataatgaag caagcctgaa agcaaccacc cgtaccctgg caagcctgcc gcatctggtt 2820
ctgcagggtg atattggtaa tccggaacaa atggttcgta gcctggaagc acatggcatt 2880
catgatccgg aaaatattct gcatattcgc agctttctgg atcacgatcg tctgtttatt 2940
ccgcctcaga aacgtaatga actgaaagaa cgtgcccatc tgccgtatca gagtgtttgt 3000
gttgatgatc agggtgaact gattcctccg catgttatgg ttcagagcct ggtggaacac 3060
ctggaacgtt ggagccaggt tgttaataaa catggtctga tgattctgga agtgcattgt 3120
ctggaaccgc gtgttgttta tcagtttctg gataaaagcg aaaacctgca ctttgatgca 3180
tttcagggtt ttagccagca gtatctggtt gaagccgaag tttttctgat gagcgcagca 3240
caggttggtc tgtttccgaa actggaactg agcaaacgtt atccgaaaac ctttccgttt 3300
acccgtatta ccctgaacta tttcgaaaaa cgtccgtaca aaatcagcca tgcatatctg 3360
agcgatctgc ctgcactggt tgacctggaa gttaaatgtt ggcctgagaa tctgcgtgca 3420
agcacccatg aaattcgtcg tcgtctggaa ctgaatccgc agggtaacct ggttctgatt 3480
attgaagatc agattatcgg tgccatttac agccagacca ttacaagcac cgaagccctg 3540
gaaaatgtta aatatgcaca ggttccgacc ctgcatacac cgcagggttc agtgattcag 3600
ctgctggccc tgaacattct gccggaattt caggcacgtg gtctgggcaa tgaactgcgt 3660
gattttatgc tgtattattg caccctgaaa ggtggtattg aaagcgttgt tggtgttacc 3720
cgttgtcgca attatgtgaa ttatagccag atgccgatga tggaatatct gaaactgcat 3780
aatgaacagc gtcaactgct ggatccgatt gttggttttc atgttagcgg tggtgcagaa 3840
attcgtggca ttattgcaaa ttatcgtccg gaagatacag ataatctggg tatgggtatt 3900
ctgatcgaat ataacctgcg tgatagcgca ctgcattcac cgggtgatcg taaaggtccg 3960
tatatcaata gcgcaattgg tagcctggtt ccgaaagcga ccagcgcaac caaagaaaac 4020
aaaaccgttg cggatctggt gaaagaatgt attctgaaag tgatgggtag ccagcgtcag 4080
gcagcatatg caccgcagca gaaactgctg gacatgggtc tggatagcct ggatctgctg 4140
gaactgcaga ccctgctgga agaacgtctg ggtattaatc tgagcggcac cttttttctg 4200
caaaaaaaca ccccgaccgc catcattacc tattttcaga atcaggtcgt gcaagagaaa 4260
cagagtgatc tggcaccgcc tgttgatagc gccaatgaaa tcaatacact ggaaaacgtt 4320
gtgaatcagc agaaaattcc gcaggttaca cgtgttgtta ccgaacagca gggacgtaaa 4380
gttctgattg atggtcattg ggttattgat tttgccagct gtaattatct gggcctggac 4440
ctgcatccga aagttaaaga agcaattcct ccggcactgg ataaatgggg cacccatccg 4500
agctggaccc gtctggttgc aagtccggca atttatgagg aactggaaga ggaactgtca 4560
aaactgctgg gtgtgccgga tgttctggtt tttccggcag ttacactgct gcagattggt 4620
attctgcctc tgctgaccgg taataatggt gtgatttttg gcgatattgc agcccatcgt 4680
tgtatttatg aagcatgttg tctggcccag cataaaggtg cacagtttat tcagtatcgt 4740
cataacgacc tgaatgatct ggccgaaaaa ctggccaaat atccgcctga acaggttaaa 4800
atcattgtga tcgatggtgt gtatagcatg agtgccgatt tcccggacct gcctgcatat 4860
gttcatctgg caaaagaata taacgccctg atctatatgg atgatgcaca tggctttggc 4920
attctgggtg aaaatccgag cagcgatatg ccgtatggtt ataaaggtaa tggcatggtg 4980
aactactttg atctgcgttt tgccgaagat aacatcattt atgttgcagg tctgagcaaa 5040
gcctatagca gctatgcagc atttctgacc tgtggtgatc gtcgtattaa aaccaatttt 5100
cgtaatgcat ggaccgcgat ttttagcggt ccgagtccgg ttgcaagcct ggccagcgca 5160
ctggcaggtc tgcaggttaa tcgtcaagaa ggtgaacagc tgcgcaaaca aatctatcat 5220
ctgacacata aactggttac ccaggctcgt gccattggtt ttgaagttga taattatggt 5280
tatgtgccga ttgtgggtgt tctggtgggt gatgcacagc atatgattga tgtgtgccaa 5340
ctgctgtggg aatatggtat cctgattacc cctgcaattt ttccgattgt gccgctgaat 5400
aaatcagcac tgcgttttag cattaccgca gcaaataccg aagaagaaat tgatcaggcc 5460
atcaaaagtc tgaaagcagt ttgggacctg ctgcaaaaac gtaaagccct gccgtgtaaa 5520
caagaagaaa atatcctgaa acattgagaa ggagatatac atatgaccca tgttgccctg 5580
gaacaggcaa ttgcaaaagt tccgcgtagc attcagagcg aactgcgtac cattctggca 5640
cagcatgcag ttattgatag cagcgttgtg gcaagctgga ttgatcgtct gggcaccaat 5700
attagtaccc tgatgatcca gctgctgccg gttgcagcaa cctatgcacg tgttccgatt 5760
agccagtttt atgttggtgc cattgcactg ggcaaaccgc agagtaaaaa tcagctgggt 5820
agcggcaccc tgtattttgg tgcagatatg gaatttgttg gtcaggcact gagctttagc 5880
gttcatgcag aacagagcgc caccattaat gcctggctgc atggcgaaac cggactgcag 5940
gcactggcaa tccatgaagc accgtgtggt tattgtcgcc agtttctgta tgaaatggca 6000
accgtgaatc agaattttgt gctgctggtg aaaagcaatg aaagccagcc ggaacagacc 6060
tataccagca acaaactgcc gcattttctg cctgaaccgt ttggtccagc cgatctgggt 6120
ctgaccggtg gcctgatgca gaccgtgttt cacgatctgg aaacctatag caccgatgat 6180
gttgttctgg cagcactgag tgcagcaaat cagagttatg caccgtatac caaaaacttt 6240
gccggtgttg cactgaaaga tagtcatggt aacattttta caggtcgcta tgccgaaaac 6300
gcagcattta atagcagcat gagcccgatg gaaagcgcac tgacctttat gaatatgaat 6360
cgttattcac agagcctgtt cgatatttgt gatgcagttc tggtagaagt ggaaaccggt 6420
attagtcagc gtccggttac cgaagccttt ctgagtagca ttgcaccgaa agtgaaactg 6480
cgctatgcac cggcaacccc gagcagtaac aaactgtgag aaggagatat acatatgttt 6540
cagaccaaaa gctattatag cgtcgttggc ctggaaaccg aactgattaa aggtaaattc 6600
ttcatgagca acgaactgac caatgaacag gtgtttaaac tggtgtgcat ggaagtgatt 6660
gaaaaaatgg gttttgcaca ctttccgcct attatcctgg tttatgaaat gaccaattcc 6720
ggctttgttg attggtgcga gcagatggtt tttgtggatg ataaaggcaa actggatgag 6780
ggcgaaaaat ttctgctgga ttggatgcgt cgtaatgtgg gtaattttga tctgattcgc 6840
gaactgatgc cggtggcaga acgcctggaa atgaaaatgc gtagctaact cggtaccaaa 6900
ttccagaaaa gaggcctccc gaaagggggg ccttttttcg ttttggtccc gaagttccta 6960
ttctctagaa agtataggaa cttcgaccgc ctgtctattt ctcttacggt tccaacatcc 7020
atataggccg caatt 7035
<210> 92
<211> 12758
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt3 segment version 1 in Escherichia coli xylose operon
<400> 92
ttgcatttcc ttgagcctta tccgacttgt cagtcggata aggcttttta ctttgtctca 60
ggcagttgag ctacgagcct gaagcgttgt tggtgcgttt tatcatgcct ggcgggtagg 120
tcggataagg cgttcacgcc gcatccgaca accacgcagc gttacctgat gtgacgccga 180
caattctcat catcgctaca acatgacctc gctatttaca tcgcgatact cttttggcgt 240
cgtgtcatat gcttttttaa aaacagagta gaaatattgc agcgatggat aaccgcacat 300
ttgcgatatc tcattgatcg acaaggtggt tgaaatcagc agactgcgcg ctttctccag 360
cttctcggca tgaatcatgg catggatggt ttcacccacc tcttctttaa aacgcttctc 420
aagattggag cgcgagatcc cgaccgcatc cagtacctga tccactttaa tccctttaca 480
ggcgtgatta cgaatgtaat gcatggcctg aataacggcg ggatcggtca gcgagcgata 540
atctgttgag cgccgttcaa tgacgcgaac tggtgggacc aaaattcgct gtagcggcat 600
ttcttcttta tctaataatc gatgcaacag ttttgccgcc tgatagccca tttgccgcgc 660
gccctgagcg accgaagaaa gggcgacacg cgacagatag cgggtcagtt cttcgttatc 720
gatgccaatc acgcataatt tttccggtac gggaatatgt agatgttcac atacttgcag 780
aatatgccgc gctcgggcgt cagtaacggc aataatcccg gtttgcggtg gtagcgtttg 840
tagccagtct gccagccgat tttgcgcgtg ttgccagttc tctggcgcgg tttctaaccc 900
ctgataaacc actccgcgat acttttcttc ggcgacaagc tgacgaaatg catattcgcg 960
ctcagtggcc caacgtttgc cgcttgattc cggaagacca taaaaagcaa agcggttaac 1020
gcctttctct tttaaatgca aaaatgcgct ttcaaccagc gcatagttat cggtggcaat 1080
gtaatgaacg ggtgggtaac tttctgcaag gtgatacgag ccgccaaccc caacaatggg 1140
gacgtcgaca tcagccagcg cttgctcgat ctgtttgtcg tcgaagtcgg caatgacgcc 1200
atctcctaac cagtccttga ttttatcaat gcgggcgcgg aaatcttctt caatgaaaat 1260
atcccattcc gattgtgacg cctgtaaata ttcccctacg ccttctacta cctgccggtc 1320
ataggcttta ttggcattga acagtaatgt gatgcggtga cgtttagtaa acatggttct 1380
tttcctgctg aatcatgcaa aaactcaaaa ccggtaatac gtaaccggct ttgagaaaat 1440
ttttatcaaa atcaagaacg gcgtttggtt gcggagtcca tccatactgc cagcaacaga 1500
atcgcacctt taacgatata ctgccagaag gtcggtacat ccatcatact catgccgtta 1560
tccagtgaag ccatgataaa tgcccccatt actgctccgg caacgcttcc cacaccgcca 1620
gccaggctgg tgccgccaat cacgcatgct gcaattgcgt ccagttcggc gatatttccc 1680
gcagaaggtg aaccagcgcc aagtcgagaa ctaaggatta atccggcgat ggctaccatt 1740
aatccgttaa tcgcgaacac ggcaagtttg gtgcgttcaa cgttaatccc ggagagacgt 1800
gctgcttcca gattgccgcc gatggcataa atgcgtcgtc caaatgccgt ccgcgtttcc 1860
ataaacattc cgccgagtaa cagcaacgtc agcagcagaa caggagtggg aacgccacgg 1920
taatcattca acagccagat tgcgcctaat acgatgatag cggttaaagc ctggcgaccg 1980
actactgcgg tagaggccgg agactgcaaa cccaaagcct gacggcgcat tcttccgcgc 2040
cattgccaac caacaaaagc cattaagcca agcgcgccaa tgatgaagcc agtgctggca 2100
ggtagatagc tttgcccaat ttgtgacatc gcggcgctgg tgggggaaac agtcgtgccg 2160
ttggtgatgc caatgagtat gccgcgaaat gccaacatgc ccgcgagggt gacaataaat 2220
gaagggactt tgcggtacgc gacccaccat ccgttccagg caccgagaag cagtcccaga 2280
accaacgtca caatgatggt aagtggcaaa ggccagccta accagacgtc acaaatcgcc 2340
gcgacgccac ctaatagccc catcattgag ccgacggaaa ggtcgatttc agcagaaatt 2400
atgacgaaca ccattcctac cgcgaggatg ccggtaatcg cggtctggcg taacaggttg 2460
gagacgttac gggcgcttaa gtaggcacca tcggtggtcc aggtaaagaa cagcatgatt 2520
gcgatgatag ctgcaatcat cacgaagacc tgcaaattca gtgatttcag cccggagaag 2580
ctaccggatg tcggtacggc caatttcact tcagacggat tgcttttcga catgatgttc 2640
gctcctcaat gcggcttcca tcacctgctc ctgagtcagg ttatgattta tcaggttggc 2700
ttttagtttc ccttcatgca tcaccagtac acgatcgcta aggccgagca cttcaggtaa 2760
ttcggaagag atgacaataa cggcaatacc ctgctggacg agttggttaa ttaatttgta 2820
gatctcgtat ttcgcgccaa tatcgatacc cctggtgggt tcatcaagaa tgagaatgcg 2880
cgggttaagt aacagacagc gagcgaggat cgctttttgc tgattgccgc cgctcaaacg 2940
tccaatagca aggtcggggg acgacgtttt aactttgagt tgctggattg attccagaat 3000
acatttttgc tctgccgcgt catcaagctg gctaatgcca ccggtaaatt tattgagtcg 3060
gcgagggtaa tatttttacc aaccgccatt accggaacga tgccgtcgcg ctttctgtct 3120
tcgggtacca tcgcaatccc ctgggcgatg gcttgctgac agttacgaat atctacctgt 3180
ttgccatcaa tataaatttt tccttcccat tgtccgggcc acacgccaaa caggcactga 3240
atggtctcgg tacgtccggc accaacgagt ccggcaatac ccagtatttc gccacgtttc 3300
agggaaaacg agacatcatt aactcgttta atatgacgat tgaccggatg ccatgccgtc 3360
agatgttcaa tacgtaatat ttcatctccg gtggtatgtg gttcattagg gtaaagcgcg 3420
gttaactctc gcccgaccat catggtgata atatcgtctt cactcattcc ggcagcatca 3480
cgcgtaccaa tgtgctgtcc gtcgcgaata acgcaaatcg tatcggaaat cgctttgact 3540
tcgttgagtt tgtgcgaaat ataaatacag gcgataccgt gctgttgtag atcgcgaata 3600
atatccagta aaaccgacgt ttcctgctca gttaatgagg ctgtcggttc atcgagaatt 3660
aacaagcgca cctgtttatt aagtgccttg gcaatttcaa ccagttgttg ttgcccaagc 3720
cctaaatcgc caacgcgggt atcaggtgaa atggataaac tgacctgtgc gagcagcttc 3780
tgacagcgta gcgtcatcag gtcataatcc ataatgccat tgtgggttat ttcgttaccc 3840
aggaagatat tttccagcac ggtcaattct ttcaccaggg ccaattcctg atgaatgatg 3900
gcgatacctt tgcgttcggt atcgcggatg tgactcgcct gaatctcttc tcccgcaaaa 3960
ataatttcgc cttcgtagga gccatgggga taaataccac acagcacttt catcagcgtt 4020
gatttaccag acccattttc cccacaaagt gagacgattt cgccagcatt caaccgcaag 4080
cagacgttat caatcgcctt cacactgccg aaggttttgg taatgttctt catttcaagt 4140
agataaggca taacgactcc acctaagcca attcattcac gcggcatgga gagaaatcac 4200
gcccccgctc cgcgccgggc gtaacgctta cagctcgctc tctttgtgga atccgtcttt 4260
aattaccgta tctttgatgt tgtttttatt cacatcgatc ggtgtcagga ggcgggaggg 4320
gacatctttc aggccattat tcagtgaggt ccagccttgc aagaagcgga tacaggagtg 4380
caaaaaatgg ctatctctag aaaggcctac cccttaggct ttatgcaaca gaaacaataa 4440
taatggagtc atgaacatat ggtgattaaa aacctgtgtc cggatggtgt taccccgatt 4500
tggaataaaa gccagatgga aagcagcctg ctggaagaat gtctgcctgc atgggttcgt 4560
accagctata gcacctttgt tgaaaccatt agcgatagcg catttccgtg tttttggggc 4620
accattggtg aacagaaagg tatgattcgt tatctgattg ttagcagcct gaccgatccg 4680
attctggttg aacataccct ggaaggtatc tacaaatata tcgatgaagt gaacgaaaac 4740
gaactgctgc agcatgaaaa tgcagatctg ctgaccctgg ttatcttttt tccgcctgaa 4800
ccgaccgttc tgaccgttga agaatatgca ggtcaggcat ttgattttct gaatgcactg 4860
catagcctgg atgcagttag ctgtccgtgt cattggagcg cagatccgca gagcgcaaat 4920
tggagctata gcctgggtgg ttgtgcactg tttgttagcg ttagcacacc ggcaaatcag 4980
aaacgtcgta gccgtcatct gggtagcggt atgacctttg ttattacacc ggttgaagtg 5040
ctgctgaata aacatggtgg tgaaaacagc agcatttttc gtcgtgttcg tgaatatgat 5100
ggtattccgc ctcatccgaa tctgctgatt atgcctggta atggtaaagt gggtaatgaa 5160
ctgaccgtgc aggttctgcc ggataataat gatagcgaaa tcagcttcga ttttcagtat 5220
aaattcaaag attgagaagg agatatacat atgaccatcc agattgtgca gcataacctg 5280
gaatatagct ttgtgacccc gaaagaaacc agcgattttg ttgaacgtac catgagcgtt 5340
tttgatcagg catatccgaa atttctgatc catgatgttt gggcagatcc ggcaagcctg 5400
gccctgtttg aaatttatcc ggaatttcag tttggtctgg tggaagcaac cacccagctg 5460
atgattgcac agggtaattg tattccgctg acctatgaaa gccgttttga tgaactgccg 5520
gatgaaggtt gtgattgggc actggcaaaa tggctggaag atcgcgaaca gaatcgtctg 5580
ccgaatgccc tgtgtgttgt gagcattagc atcctgccgg aatatcaggg taaaaatctg 5640
agccagtatc tgatcggcta tatgaaagaa ctggcacagt atcatggtct gaatagcctg 5700
attatggcag cacgtccgag cctgaaatat ctgtatccgc tgattccgat tgaacgctat 5760
attacctggc gtgataaaaa cggcctgatt tttgatccgt ggctgcgtgt taatgttaaa 5820
catggcgcaa aaattgccgg tatctgcttt aaaagcacca ccattaatga taccattgat 5880
ggttgggagg atcgtgttgg tatgcgtttt ccggaaaccg gtgattatat cattccgaaa 5940
ggtctggttc cggtgaaaat tgattatccg aataacatgg gcatctacat cgaaccgaat 6000
atctggctgt attatgatct ggactgagaa ggagatatac atatgatcaa catcgaacag 6060
tttcgccaag aaatcgaaga ttggattatt aacgttgtca gcattccgaa cccgctgacc 6120
ggtaattttc ctccgtgtcc gtatgcaaaa gcagcatggc tgaataatcg tgttagcgtg 6180
cgttggtttc atggtccgga actgcctgaa ctgctgatgg aacaaattcg tacatggaac 6240
aacgatttcg agatggtgat ttttggttgc gatcctcaga atctggatgc acagcgtctg 6300
gaacgttata tcaccaaagc aaattatgtg ctgcccgaat atgacctggt tgcactgggt 6360
agccatccgg ataaacagta tgttggtgat gatgccgaaa atgtgaacaa cgtgattatt 6420
acccatccga aatatgttct ggcaagcgtt cagagcttta gccagctgca agaggcaagt 6480
gatgagctgc tgcgtctggg ttatttccag tattggtcag cagaaaaact ggccgaaatg 6540
aaaagcgaac gtgcaagcca taatctgagc agcattcagc gtaaaaatag ctatcgtatt 6600
atcccgacca accattgaga aggagatata catatgctga ccgcagaaca gaaacaggca 6660
tataccaatg atggctattt taccgtggaa gaagcagttc cgaaagcact gattgaagaa 6720
attcgccatg aagtggaact gatcaccgag cagaaacgtg gtggtgtgct ggcaggcgat 6780
tatgaatggt ggtcagaaca caccattccg gatccggttc gttatcagaa aattatccag 6840
cgtctgctgg aactgccgac cgttatgggt ccggttcagg ccctgattgg tagcgatatt 6900
tttctgttaa ttaccgacct ggcaattatt cgtgcaggca ccggttatat tgcatggcat 6960
caggatcatg gctatgttgt tgaagttctg aacgccctgg caagcatgag caaaaatgag 7020
ctgaatgatg atgcactgcg cctgctggtg ccggttgcaa atcaggcaat ggtgtttatt 7080
accatctatc tgcaggatac cgataacacc atgggcacca tgcgtgtgat tccgagcagc 7140
catcagtggg aacatagtct ggatagcagc agcgccaatt cactgaatgc agaaatttgt 7200
ctgagcctgc ctggtggtgc agcaatgttt tataccccga ccgtttggca taccgcagca 7260
gcaaatacca gcattaccga ttatcgtatg ctgacgctga tcttcaccaa aaacaacatt 7320
aaaccgctgc tggttgatgc cctgaaacgt attatttgag aaggagatat acatatgaca 7380
accaccgatc cgatcctgat taataactgg catgttgtgg caaatgtcga ggattgtaaa 7440
ccgggtagca ttacccgtag ccgtttactg ggtgttaaac tggttctgtg gcgtagctat 7500
gaacagaata gcccgattca ggtttggctg gattattgtc cgcatcgtgg tgttccgctg 7560
agcatgggtg aaattaccaa taataccctg gtttgtccgt atcatggctg gcgttataat 7620
gaagcaggta aatgtattca gattccggca catccgggta tggttccgcc tgcaagcgca 7680
gaagcacgta cctatcatag ccaagaacgt tatggtctgg tttgggtttg tctgggtgat 7740
ccggttaatg atattccgtc atttccggaa tgggatgatc cgaattatca caaaacctac 7800
accaaaagct atctgattaa agcaagcgcc tttcgcgtta tggataattc actggatgtt 7860
agccattttc cgtttattca tgatggctgg ctgggcgatc gtaactatac caaagtggaa 7920
gaatttgaag tgaaactgga taaagatggt ctgacgatgg gcaaatatca gtttcagacc 7980
agccgtattg tgagccatat tgaagatgat agctgggtga attggtttcg tctgagccat 8040
ccgctgtgtc agtattgtgt tagcgaaagt ccggaaatgc gtattgttga tctgatgacc 8100
attacgccga ttgatgaaga aaatagcgtt ctgcgcatgc tgatcatgtg gaatggttat 8160
gaaaccctgg aaagcaaaat gctgacagag tatgatgaaa cgatcgaaca ggatattcgt 8220
attctgcatg cccagcagcc ggtgcgtctg ccgctgctga caccgaagca gattaatacc 8280
cagctgttta gccatgaaat tcatgttccg agcgatcgtt gtaccctggc atatcgtcgt 8340
tggctgaaac aactgggtgt gacctatggt gtttgttgag aaggagatat acatatggca 8400
ggtaaactgg atggtaaggt tgcaattatt accggtgcaa gcagcggtat tggtgaagcc 8460
accgcatttg cactggcagc agaaggtgca aaagttgcaa ttgcagcccg tcgtgcagaa 8520
ctgttacatg cactggccaa acgtattgaa gcaagcggtg gtcaggcact gccgattgtt 8580
accgatatca ccgatgaaag ccaggttaat catctggttc agaaaaccaa agttgaactg 8640
ggtcatgttg atatcctggt gaataatgca ggtattggcg tttttggtgc aatcgatacc 8700
ggtaatccgg cagattggcg tcgtgcattt gatgttaatg tgctgggtgt tctgtatgca 8760
attcatgcag ttctgccttt actgaaagca cagaaaagcg gtcatattgt gaatattagc 8820
agcgtggatg gtcgtattgc acagagcggt gcagttgttt atagcgcagc aaaaagcggt 8880
gttaatgccc tgagcgaagc actgcgtcaa gaagtgagcc tggataatat tcgtgtgacc 8940
attattgaac cgggtctggt agataccccg tttaatgatc tgattagtga tccgattacc 9000
aaacagctga gcaaagaaca gctgtcaacc attactccgc tgcagagcga agatattgca 9060
cgtgccatta tctatgcagt tacccagccg gatcatgtta acgttaatga aattctgatt 9120
cgtccgaccg cagaggataa ttgagaagga gatatacata tgaacctgac cctgaacaaa 9180
gaagaaaaac agctgctgac ggcatatagc ggcaccgaac tgcagctgac agcagatgtt 9240
ctggttattg gtggtggtcc ggcagccgca tgggcagctt gggcagcagg cgcacagggt 9300
gtgaaagtta ttattgtgga taaaggtttt ctgggcacca gcggtgccgc agccgcaagc 9360
ggtaatagcg ttatggcacc gtcaccggaa aattgggaaa aagatgtgag cgaatgttac 9420
agcaaaggta ataatctggc aaatctgcgt tggattgaac gtgttattga aaaagcctgg 9480
ctgtcactgc cgctggttga agattggggt tatcgttttc ctaaagaaaa tggtgaaagc 9540
gtgcgtcaga gctattatgg tcctgaatat atgcgtgttc tgcggaaaaa tctgctgcgc 9600
gttggtgttc agatctttga tcagtcaccg gcactggaat tactgctggc acaggatggt 9660
agcgttgccg gtgcacgtgg tgtgcagcgt cagaatcatc gtacatatac cgttcgtgcc 9720
ggtgccgttg ttctggccaa tggtggttgc gcatttctga gtaaagcact gggttgtaat 9780
accaataccg gtgatggtct gttaatggca gttgaagccg gtggtgaact gagcagtatg 9840
gaagccagca gccattatac cattagcacc gcctttaatg caaccgttac ccgtgcagct 9900
ccgttttatt gggcaagcta taccgatgaa gctggcaatg atctgggtgg ctatattaac 9960
ggtcgtcgtg atccgagctt tctgccgaac gcactgctga aaggtccggt ttatgcacgt 10020
ctggatcgtg caacaccgga aattcaggcg ctggtagaaa aaagccattt tattgcattt 10080
ctgccgtaca agaaagccgg tattgatccg tataccgaac gtgttccggt taccctggtg 10140
ctggaaggca ccgtgcgtgg caccggtggt attcgcattg ttaatgattc atgtggcacc 10200
aaagttccgg gactgtatgc agcgggtgat gcagcaagcc gtgaatttct ggcaggcatt 10260
gccagcggtg gtgatggacc gaatgcagca tgggcaattt caaccggtca gtgggcaggc 10320
gaaggtgcag cagcctttgc aaaaagtctg ggtgcacatg ttcatgaacg cgttgttcgt 10380
ccggcaggcc aggcaggtct gcgtagtcag tatccgggta gcgaaacctt tgatagtgaa 10440
gcagttgttc gtggcgttca ggcagaaatg tttccgctgg aaaaaaacta tctgcgctgt 10500
gaacagggac tgctggatag cctggcaaaa ctggaaatgc tgtggcagca ggttcagggt 10560
aatccgaaac aggatacagt tcgtgatctg gaattttcac gtcgtgcggc agcactggtt 10620
agcgtggcac gttgggcata ttttagcgca ctgcatcgta aagaaacccg tagcgaacat 10680
atccgtattg attacccgga aacggatccg aatcaactgt attatcaggc aaccggtggc 10740
ctggaacgtc tgtgggtgcg tcgtgattgg gttaaagatg caagcgccac ccctccggtg 10800
ctgaccacct gagaaggaga tatacatatg attgaactgg tgagccataa gctgtgcatt 10860
aattgtaatg tttgtgttca ggtgtgcccg accaatgttt ttgatgcagt gccgaatcag 10920
cctccggcaa ttgcacgcca agaagattgt cagacctgtt ttatttgtga agcatattgt 10980
cctgcagatg cgctgtatgt tgcaccgcag agccatacca atgttgcagt taacgaagat 11040
gatttaatcg acagcggcat tatgggtgaa tatcgtcgca ttctgggttg gggctatggt 11100
cgtaaaaaca atagcgaact ggataccgac cataaactgc gtctgtttga atgagaagga 11160
gatatacata tgtcatttca gaaatttgtg caagaagcag cctataaagt cgcaccgttt 11220
aaaccgaatc gttttgccaa aattagcgag cgtgaagata aatgtgcaat tccggttccg 11280
gcatggcgtg cactgctggc caatcgtgac ctgtttacct ggaaaggtat tccgtttctg 11340
aaaggttgta ccgaaattgc actgtatagc atgctgctgt atgaactgcg tccgaaaacg 11400
attattgaaa ttggtgcgct gagcggtggt agcgcaattt ggctggcaga tcatctggaa 11460
ctgtttcaga ttgaaggttg cgtgtattgc attgatattg atctgtctct gctggacgaa 11520
aaagcaaaaa ccgatagccg tgttcatttt ctggaaggtg attgcaataa tatgggtgca 11580
attatgtcaa gcgagctgct gagtggtctg gcacatcctt ggctgattgt tgaagatgca 11640
catgcaaatg ccgttggtgt ggttgaatat tttcacgaaa acggtctgaa aagtggcgat 11700
tacctgatcg tggaagatac caataaaaca atgtgggaac tggatcgcga agaactggac 11760
cgtgatgacc tggatgaaca agaactgatc gaaaaaggtg agcagaaatt agcagaactg 11820
aaaagctggc tgatgctgca tgagaatgaa tatctgatag atacctacta tcaggatatg 11880
tatggctata atggtagccg taattggaac agcattctga aacgtgtgga aaagaacttt 11940
taatctaact aaaaacaccc taacgggtgt tttttctttt ctggtctccc cgaagttcct 12000
attctctaga aagtatagga acttcgctgg attgggccgc gaaattaacc ggcctgagca 12060
atgtcccagc tttaatcgct gcagctcaac aggctgatga aagtgccgag ccagtttggt 12120
ttctgcctta tctttccggc gagcgtacgc cacacaataa tccccaggcg aagggggttt 12180
tctttggttt gactcatcaa catggcccca atgaactggc gcgagcagtg ctggaaggcg 12240
tgggttatgc gctggcagat ggcatggatg tcgtgcatgc ctgcggtatt aaaccgcaaa 12300
gtgttacgtt gattgggggc ggggcgcgta gtgagtactg gcgtcagatg ctggcggata 12360
tcagcggtca gcagctcgat taccgtacgg gaggggatgt ggggccagca ctgggcgcag 12420
caaggctggc gcagatcgcg gcgaatccag agaaatcgct cattgaattg ttgccgcaac 12480
taccgttaga acagtcgcat ctaccagatg cgcagcgtta tgccgcttat cagccacgac 12540
gagaaacgtt ccgtcgcctc tatcagcaac ttctgccatt aatggcgtaa acgttatccc 12600
ctgcctgacc gggtggggga taattcacat ctatatatct cagtaattaa ttaatattta 12660
gtatgaattt attctgaaaa tcatttgtta atggcatttt tcagttttgt ctttcgttgg 12720
ttactcgtaa tgtatcgctg gtagatatgg agatcgtt 12758
<210> 93
<211> 7185
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt3 segment version 2 in Escherichia coli xylose operon
<400> 93
ggtgtcagga ggcgggaggg gacatctttc aggccattat tcagtgaggt ccagccttgc 60
aagaagcgga tacaggagtg caaaaaatgg ctatctctag aaaggcctac cccttaggct 120
ttatgcaaca gaaacaataa taatggagtc atgaacatat ggtgattaaa aacctgtgtc 180
cggatggtgt taccccgatt tggaataaaa gccagatgga aagcagcctg ctggaagaat 240
gtctgcctgc atgggttcgt accagctata gcacctttgt tgaaaccatt agcgatagcg 300
catttccgtg tttttggggc accattggtg aacagaaagg tatgattcgt tatctgattg 360
ttagcagcct gaccgatccg attctggttg aacataccct ggaaggtatc tacaaatata 420
tcgatgaagt gaacgaaaac gaactgctgc agcatgaaaa tgcagatctg ctgaccctgg 480
ttatcttttt tccgcctgaa ccgaccgttc tgaccgttga agaatatgca ggtcaggcat 540
ttgattttct gaatgcactg catagcctgg atgcagttag ctgtccgtgt cattggagcg 600
cagatccgca gagcgcaaat tggagctata gcctgggtgg ttgtgcactg tttgttagcg 660
ttagcacacc ggcaaatcag aaacgtcgta gccgtcatct gggtagcggt atgacctttg 720
ttattacacc ggttgaagtg ctgctgaata aacatggtgg tgaaaacagc agcatttttc 780
gtcgtgttcg tgaatatgat ggtattccgc ctcatccgaa tctgctgatt atgcctggta 840
atggtaaagt gggtaatgaa ctgaccgtgc aggttctgcc ggataataat gatagcgaaa 900
tcagcttcga ttttcagtat aaattcaaag attgagaagg agatatacat atgaccatcc 960
agattgtgca gcataacctg gaatatagct ttgtgacccc gaaagaaacc agcgattttg 1020
ttgaacgtac catgagcgtt tttgatcagg catatccgaa atttctgatc catgatgttt 1080
gggcagatcc ggcaagcctg gccctgtttg aaatttatcc ggaatttcag tttggtctgg 1140
tggaagcaac cacccagctg atgattgcac agggtaattg tattccgctg acctatgaaa 1200
gccgttttga tgaactgccg gatgaaggtt gtgattgggc actggcaaaa tggctggaag 1260
atcgcgaaca gaatcgtctg ccgaatgccc tgtgtgttgt gagcattagc atcctgccgg 1320
aatatcaggg taaaaatctg agccagtatc tgatcggcta tatgaaagaa ctggcacagt 1380
atcatggtct gaatagcctg attatggcag cacgtccgag cctgaaatat ctgtatccgc 1440
tgattccgat tgaacgctat attacctggc gtgataaaaa cggcctgatt tttgatccgt 1500
ggctgcgtgt taatgttaaa catggcgcaa aaattgccgg tatctgcttt aaaagcacca 1560
ccattaatga taccattgat ggttgggagg atcgtgttgg tatgcgtttt ccggaaaccg 1620
gtgattatat cattccgaaa ggtctggttc cggtgaaaat tgattatccg aataacatgg 1680
gcatctacat cgaaccgaat atctggctgt attatgatct ggactgagaa ggagatatac 1740
atatgctgac cgcagaacag aaacaggcat ataccaatga tggctatttt accgtggaag 1800
aagcagttcc gaaagcactg attgaagaaa ttcgccatga agtggaactg atcaccgagc 1860
agaaacgtgg tggtgtgctg gcaggcgatt atgaatggtg gtcagaacac accattccgg 1920
atccggttcg ttatcagaaa attatccagc gtctgctgga actgccgacc gttatgggtc 1980
cggttcaggc cctgattggt agcgatattt ttctgttaat taccgacctg gcaattattc 2040
gtgcaggcac cggttatatt gcatggcatc aggatcatgg ctatgttgtt gaagttctga 2100
acgccctggc aagcatgagc aaaaatgagc tgaatgatga tgcactgcgc ctgctggtgc 2160
cggttgcaaa tcaggcaatg gtgtttatta ccatctatct gcaggatacc gataacacca 2220
tgggcaccat gcgtgtgatt ccgagcagcc atcagtggga acatagtctg gatagcagca 2280
gcgccaattc actgaatgca gaaatttgtc tgagcctgcc tggtggtgca gcaatgtttt 2340
ataccccgac cgtttggcat accgcagcag caaataccag cattaccgat tatcgtatgc 2400
tgacgctgat cttcaccaaa aacaacatta aaccgctgct ggttgatgcc ctgaaacgta 2460
ttatttgaga aggagatata catatgacaa ccaccgatcc gatcctgatt aataactggc 2520
atgttgtggc aaatgtcgag gattgtaaac cgggtagcat tacccgtagc cgtttactgg 2580
gtgttaaact ggttctgtgg cgtagctatg aacagaatag cccgattcag gtttggctgg 2640
attattgtcc gcatcgtggt gttccgctga gcatgggtga aattaccaat aataccctgg 2700
tttgtccgta tcatggctgg cgttataatg aagcaggtaa atgtattcag attccggcac 2760
atccgggtat ggttccgcct gcaagcgcag aagcacgtac ctatcatagc caagaacgtt 2820
atggtctggt ttgggtttgt ctgggtgatc cggttaatga tattccgtca tttccggaat 2880
gggatgatcc gaattatcac aaaacctaca ccaaaagcta tctgattaaa gcaagcgcct 2940
ttcgcgttat ggataattca ctggatgtta gccattttcc gtttattcat gatggctggc 3000
tgggcgatcg taactatacc aaagtggaag aatttgaagt gaaactggat aaagatggtc 3060
tgacgatggg caaatatcag tttcagacca gccgtattgt gagccatatt gaagatgata 3120
gctgggtgaa ttggtttcgt ctgagccatc cgctgtgtca gtattgtgtt agcgaaagtc 3180
cggaaatgcg tattgttgat ctgatgacca ttacgccgat tgatgaagaa aatagcgttc 3240
tgcgcatgct gatcatgtgg aatggttatg aaaccctgga aagcaaaatg ctgacagagt 3300
atgatgaaac gatcgaacag gatattcgta ttctgcatgc ccagcagccg gtgcgtctgc 3360
cgctgctgac accgaagcag attaataccc agctgtttag ccatgaaatt catgttccga 3420
gcgatcgttg taccctggca tatcgtcgtt ggctgaaaca actgggtgtg acctatggtg 3480
tttgttgaga aggagatata catatggcag gtaaactgga tggtaaggtt gcaattatta 3540
ccggtgcaag cagcggtatt ggtgaagcca ccgcatttgc actggcagca gaaggtgcaa 3600
aagttgcaat tgcagcccgt cgtgcagaac tgttacatgc actggccaaa cgtattgaag 3660
caagcggtgg tcaggcactg ccgattgtta ccgatatcac cgatgaaagc caggttaatc 3720
atctggttca gaaaaccaaa gttgaactgg gtcatgttga tatcctggtg aataatgcag 3780
gtattggcgt ttttggtgca atcgataccg gtaatccggc agattggcgt cgtgcatttg 3840
atgttaatgt gctgggtgtt ctgtatgcaa ttcatgcagt tctgccttta ctgaaagcac 3900
agaaaagcgg tcatattgtg aatattagca gcgtggatgg tcgtattgca cagagcggtg 3960
cagttgttta tagcgcagca aaaagcggtg ttaatgccct gagcgaagca ctgcgtcaag 4020
aagtgagcct ggataatatt cgtgtgacca ttattgaacc gggtctggta gataccccgt 4080
ttaatgatct gattagtgat ccgattacca aacagctgag caaagaacag ctgtcaacca 4140
ttactccgct gcagagcgaa gatattgcac gtgccattat ctatgcagtt acccagccgg 4200
atcatgttaa cgttaatgaa attctgattc gtccgaccgc agaggataat tgagaaggag 4260
atatacatat gaacctgacc ctgaacaaag aagaaaaaca gctgctgacg gcatatagcg 4320
gcaccgaact gcagctgaca gcagatgttc tggttattgg tggtggtccg gcagccgcat 4380
gggcagcttg ggcagcaggc gcacagggtg tgaaagttat tattgtggat aaaggttttc 4440
tgggcaccag cggtgccgca gccgcaagcg gtaatagcgt tatggcaccg tcaccggaaa 4500
attgggaaaa agatgtgagc gaatgttaca gcaaaggtaa taatctggca aatctgcgtt 4560
ggattgaacg tgttattgaa aaagcctggc tgtcactgcc gctggttgaa gattggggtt 4620
atcgttttcc taaagaaaat ggtgaaagcg tgcgtcagag ctattatggt cctgaatata 4680
tgcgtgttct gcggaaaaat ctgctgcgcg ttggtgttca gatctttgat cagtcaccgg 4740
cactggaatt actgctggca caggatggta gcgttgccgg tgcacgtggt gtgcagcgtc 4800
agaatcatcg tacatatacc gttcgtgccg gtgccgttgt tctggccaat ggtggttgcg 4860
catttctgag taaagcactg ggttgtaata ccaataccgg tgatggtctg ttaatggcag 4920
ttgaagccgg tggtgaactg agcagtatgg aagccagcag ccattatacc attagcaccg 4980
cctttaatgc aaccgttacc cgtgcagctc cgttttattg ggcaagctat accgatgaag 5040
ctggcaatga tctgggtggc tatattaacg gtcgtcgtga tccgagcttt ctgccgaacg 5100
cactgctgaa aggtccggtt tatgcacgtc tggatcgtgc aacaccggaa attcaggcgc 5160
tggtagaaaa aagccatttt attgcatttc tgccgtacaa gaaagccggt attgatccgt 5220
ataccgaacg tgttccggtt accctggtgc tggaaggcac cgtgcgtggc accggtggta 5280
ttcgcattgt taatgattca tgtggcacca aagttccggg actgtatgca gcgggtgatg 5340
cagcaagccg tgaatttctg gcaggcattg ccagcggtgg tgatggaccg aatgcagcat 5400
gggcaatttc aaccggtcag tgggcaggcg aaggtgcagc agcctttgca aaaagtctgg 5460
gtgcacatgt tcatgaacgc gttgttcgtc cggcaggcca ggcaggtctg cgtagtcagt 5520
atccgggtag cgaaaccttt gatagtgaag cagttgttcg tggcgttcag gcagaaatgt 5580
ttccgctgga aaaaaactat ctgcgctgtg aacagggact gctggatagc ctggcaaaac 5640
tggaaatgct gtggcagcag gttcagggta atccgaaaca ggatacagtt cgtgatctgg 5700
aattttcacg tcgtgcggca gcactggtta gcgtggcacg ttgggcatat tttagcgcac 5760
tgcatcgtaa agaaacccgt agcgaacata tccgtattga ttacccggaa acggatccga 5820
atcaactgta ttatcaggca accggtggcc tggaacgtct gtgggtgcgt cgtgattggg 5880
ttaaagatgc aagcgccacc cctccggtgc tgaccacctg agaaggagat atacatatga 5940
ttgaactggt gagccataag ctgtgcatta attgtaatgt ttgtgttcag gtgtgcccga 6000
ccaatgtttt tgatgcagtg ccgaatcagc ctccggcaat tgcacgccaa gaagattgtc 6060
agacctgttt tatttgtgaa gcatattgtc ctgcagatgc gctgtatgtt gcaccgcaga 6120
gccataccaa tgttgcagtt aacgaagatg atttaatcga cagcggcatt atgggtgaat 6180
atcgtcgcat tctgggttgg ggctatggtc gtaaaaacaa tagcgaactg gataccgacc 6240
ataaactgcg tctgtttgaa tgagaaggag atatacatat gtcatttcag aaatttgtgc 6300
aagaagcagc ctataaagtc gcaccgttta aaccgaatcg ttttgccaaa attagcgagc 6360
gtgaagataa atgtgcaatt ccggttccgg catggcgtgc actgctggcc aatcgtgacc 6420
tgtttacctg gaaaggtatt ccgtttctga aaggttgtac cgaaattgca ctgtatagca 6480
tgctgctgta tgaactgcgt ccgaaaacga ttattgaaat tggtgcgctg agcggtggta 6540
gcgcaatttg gctggcagat catctggaac tgtttcagat tgaaggttgc gtgtattgca 6600
ttgatattga tctgtctctg ctggacgaaa aagcaaaaac cgatagccgt gttcattttc 6660
tggaaggtga ttgcaataat atgggtgcaa ttatgtcaag cgagctgctg agtggtctgg 6720
cacatccttg gctgattgtt gaagatgcac atgcaaatgc cgttggtgtg gttgaatatt 6780
ttcacgaaaa cggtctgaaa agtggcgatt acctgatcgt ggaagatacc aataaaacaa 6840
tgtgggaact ggatcgcgaa gaactggacc gtgatgacct ggatgaacaa gaactgatcg 6900
aaaaaggtga gcagaaatta gcagaactga aaagctggct gatgctgcat gagaatgaat 6960
atctgataga tacctactat caggatatgt atggctataa tggtagccgt aattggaaca 7020
gcattctgaa acgtgtggaa aagaactttt aatctaacta aaaacaccct aacgggtgtt 7080
ttttcttttc tggtctcccc gaagttccta ttctctagaa agtataggaa cttcgctgga 7140
ttgggccgcg aaattaaccg gcctgagcaa tgtcccagct ttaat 7185
<210> 94
<211> 5599
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt3 segment version 3 in Escherichia coli xylose operon
<400> 94
ggtgtcagga ggcgggaggg gacatctttc aggccattat tcagtgaggt ccagccttgc 60
aagaagcgga tacaggagtg caaaaaatgg ctatctctag aaaggcctac cccttaggct 120
ttatgcaaca gaaacaataa taatggagtc atgaacatgc tgaccgcaga acagaaacag 180
gcatatacca atgatggcta ttttaccgtg gaagaagcag ttccgaaagc actgattgaa 240
gaaattcgcc atgaagtgga actgatcacc gagcagaaac gtggtggtgt gctggcaggc 300
gattatgaat ggtggtcaga acacaccatt ccggatccgg ttcgttatca gaaaattatc 360
cagcgtctgc tggaactgcc gaccgttatg ggtccggttc aggccctgat tggtagcgat 420
atttttctgt taattaccga cctggcaatt attcgtgcag gcaccggtta tattgcatgg 480
catcaggatc atggctatgt tgttgaagtt ctgaacgccc tggcaagcat gagcaaaaat 540
gagctgaatg atgatgcact gcgcctgctg gtgccggttg caaatcaggc aatggtgttt 600
attaccatct atctgcagga taccgataac accatgggca ccatgcgtgt gattccgagc 660
agccatcagt gggaacatag tctggatagc agcagcgcca attcactgaa tgcagaaatt 720
tgtctgagcc tgcctggtgg tgcagcaatg ttttataccc cgaccgtttg gcataccgca 780
gcagcaaata ccagcattac cgattatcgt atgctgacgc tgatcttcac caaaaacaac 840
attaaaccgc tgctggttga tgccctgaaa cgtattattt gagaaggaga tatacatatg 900
acaaccaccg atccgatcct gattaataac tggcatgttg tggcaaatgt cgaggattgt 960
aaaccgggta gcattacccg tagccgttta ctgggtgtta aactggttct gtggcgtagc 1020
tatgaacaga atagcccgat tcaggtttgg ctggattatt gtccgcatcg tggtgttccg 1080
ctgagcatgg gtgaaattac caataatacc ctggtttgtc cgtatcatgg ctggcgttat 1140
aatgaagcag gtaaatgtat tcagattccg gcacatccgg gtatggttcc gcctgcaagc 1200
gcagaagcac gtacctatca tagccaagaa cgttatggtc tggtttgggt ttgtctgggt 1260
gatccggtta atgatattcc gtcatttccg gaatgggatg atccgaatta tcacaaaacc 1320
tacaccaaaa gctatctgat taaagcaagc gcctttcgcg ttatggataa ttcactggat 1380
gttagccatt ttccgtttat tcatgatggc tggctgggcg atcgtaacta taccaaagtg 1440
gaagaatttg aagtgaaact ggataaagat ggtctgacga tgggcaaata tcagtttcag 1500
accagccgta ttgtgagcca tattgaagat gatagctggg tgaattggtt tcgtctgagc 1560
catccgctgt gtcagtattg tgttagcgaa agtccggaaa tgcgtattgt tgatctgatg 1620
accattacgc cgattgatga agaaaatagc gttctgcgca tgctgatcat gtggaatggt 1680
tatgaaaccc tggaaagcaa aatgctgaca gagtatgatg aaacgatcga acaggatatt 1740
cgtattctgc atgcccagca gccggtgcgt ctgccgctgc tgacaccgaa gcagattaat 1800
acccagctgt ttagccatga aattcatgtt ccgagcgatc gttgtaccct ggcatatcgt 1860
cgttggctga aacaactggg tgtgacctat ggtgtttgtt gagaaggaga tatacatatg 1920
gcaggtaaac tggatggtaa ggttgcaatt attaccggtg caagcagcgg tattggtgaa 1980
gccaccgcat ttgcactggc agcagaaggt gcaaaagttg caattgcagc ccgtcgtgca 2040
gaactgttac atgcactggc caaacgtatt gaagcaagcg gtggtcaggc actgccgatt 2100
gttaccgata tcaccgatga aagccaggtt aatcatctgg ttcagaaaac caaagttgaa 2160
ctgggtcatg ttgatatcct ggtgaataat gcaggtattg gcgtttttgg tgcaatcgat 2220
accggtaatc cggcagattg gcgtcgtgca tttgatgtta atgtgctggg tgttctgtat 2280
gcaattcatg cagttctgcc tttactgaaa gcacagaaaa gcggtcatat tgtgaatatt 2340
agcagcgtgg atggtcgtat tgcacagagc ggtgcagttg tttatagcgc agcaaaaagc 2400
ggtgttaatg ccctgagcga agcactgcgt caagaagtga gcctggataa tattcgtgtg 2460
accattattg aaccgggtct ggtagatacc ccgtttaatg atctgattag tgatccgatt 2520
accaaacagc tgagcaaaga acagctgtca accattactc cgctgcagag cgaagatatt 2580
gcacgtgcca ttatctatgc agttacccag ccggatcatg ttaacgttaa tgaaattctg 2640
attcgtccga ccgcagagga taattgagaa ggagatatac atatgaacct gaccctgaac 2700
aaagaagaaa aacagctgct gacggcatat agcggcaccg aactgcagct gacagcagat 2760
gttctggtta ttggtggtgg tccggcagcc gcatgggcag cttgggcagc aggcgcacag 2820
ggtgtgaaag ttattattgt ggataaaggt tttctgggca ccagcggtgc cgcagccgca 2880
agcggtaata gcgttatggc accgtcaccg gaaaattggg aaaaagatgt gagcgaatgt 2940
tacagcaaag gtaataatct ggcaaatctg cgttggattg aacgtgttat tgaaaaagcc 3000
tggctgtcac tgccgctggt tgaagattgg ggttatcgtt ttcctaaaga aaatggtgaa 3060
agcgtgcgtc agagctatta tggtcctgaa tatatgcgtg ttctgcggaa aaatctgctg 3120
cgcgttggtg ttcagatctt tgatcagtca ccggcactgg aattactgct ggcacaggat 3180
ggtagcgttg ccggtgcacg tggtgtgcag cgtcagaatc atcgtacata taccgttcgt 3240
gccggtgccg ttgttctggc caatggtggt tgcgcatttc tgagtaaagc actgggttgt 3300
aataccaata ccggtgatgg tctgttaatg gcagttgaag ccggtggtga actgagcagt 3360
atggaagcca gcagccatta taccattagc accgccttta atgcaaccgt tacccgtgca 3420
gctccgtttt attgggcaag ctataccgat gaagctggca atgatctggg tggctatatt 3480
aacggtcgtc gtgatccgag ctttctgccg aacgcactgc tgaaaggtcc ggtttatgca 3540
cgtctggatc gtgcaacacc ggaaattcag gcgctggtag aaaaaagcca ttttattgca 3600
tttctgccgt acaagaaagc cggtattgat ccgtataccg aacgtgttcc ggttaccctg 3660
gtgctggaag gcaccgtgcg tggcaccggt ggtattcgca ttgttaatga ttcatgtggc 3720
accaaagttc cgggactgta tgcagcgggt gatgcagcaa gccgtgaatt tctggcaggc 3780
attgccagcg gtggtgatgg accgaatgca gcatgggcaa tttcaaccgg tcagtgggca 3840
ggcgaaggtg cagcagcctt tgcaaaaagt ctgggtgcac atgttcatga acgcgttgtt 3900
cgtccggcag gccaggcagg tctgcgtagt cagtatccgg gtagcgaaac ctttgatagt 3960
gaagcagttg ttcgtggcgt tcaggcagaa atgtttccgc tggaaaaaaa ctatctgcgc 4020
tgtgaacagg gactgctgga tagcctggca aaactggaaa tgctgtggca gcaggttcag 4080
ggtaatccga aacaggatac agttcgtgat ctggaatttt cacgtcgtgc ggcagcactg 4140
gttagcgtgg cacgttgggc atattttagc gcactgcatc gtaaagaaac ccgtagcgaa 4200
catatccgta ttgattaccc ggaaacggat ccgaatcaac tgtattatca ggcaaccggt 4260
ggcctggaac gtctgtgggt gcgtcgtgat tgggttaaag atgcaagcgc cacccctccg 4320
gtgctgacca cctgagaagg agatatacat atgattgaac tggtgagcca taagctgtgc 4380
attaattgta atgtttgtgt tcaggtgtgc ccgaccaatg tttttgatgc agtgccgaat 4440
cagcctccgg caattgcacg ccaagaagat tgtcagacct gttttatttg tgaagcatat 4500
tgtcctgcag atgcgctgta tgttgcaccg cagagccata ccaatgttgc agttaacgaa 4560
gatgatttaa tcgacagcgg cattatgggt gaatatcgtc gcattctggg ttggggctat 4620
ggtcgtaaaa acaatagcga actggatacc gaccataaac tgcgtctgtt tgaatgagaa 4680
ggagatatac atatgtcatt tcagaaattt gtgcaagaag cagcctataa agtcgcaccg 4740
tttaaaccga atcgttttgc caaaattagc gagcgtgaag ataaatgtgc aattccggtt 4800
ccggcatggc gtgcactgct ggccaatcgt gacctgttta cctggaaagg tattccgttt 4860
ctgaaaggtt gtaccgaaat tgcactgtat agcatgctgc tgtatgaact gcgtccgaaa 4920
acgattattg aaattggtgc gctgagcggt ggtagcgcaa tttggctggc agatcatctg 4980
gaactgtttc agattgaagg ttgcgtgtat tgcattgata ttgatctgtc tctgctggac 5040
gaaaaagcaa aaaccgatag ccgtgttcat tttctggaag gtgattgcaa taatatgggt 5100
gcaattatgt caagcgagct gctgagtggt ctggcacatc cttggctgat tgttgaagat 5160
gcacatgcaa atgccgttgg tgtggttgaa tattttcacg aaaacggtct gaaaagtggc 5220
gattacctga tcgtggaaga taccaataaa acaatgtggg aactggatcg cgaagaactg 5280
gaccgtgatg acctggatga acaagaactg atcgaaaaag gtgagcagaa attagcagaa 5340
ctgaaaagct ggctgatgct gcatgagaat gaatatctga tagataccta ctatcaggat 5400
atgtatggct ataatggtag ccgtaattgg aacagcattc tgaaacgtgt ggaaaagaac 5460
ttttaatcta actaaaaaca ccctaacggg tgttttttct tttctggtct ccccgaagtt 5520
cctattctct agaaagtata ggaacttcgc tggattgggc cgcgaaatta accggcctga 5580
gcaatgtccc agctttaat 5599
<210> 95
<211> 7064
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt1 segment in E coli lac operon
<400> 95
atgaccatga ttacggattc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 60
ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 120
gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 180
tttgcctggt ttccggcacc agaagcggtg ccggaaagct ggctggagtg cgatcttcct 240
gaggccgata ctgtcgtcgt cccctcaaac tggcagatgc acggttacga tgcgcccatc 300
tacaccaacg tgacctatcc cattacggtc aatccgccgt ttgttcccac ggagaatccg 360
acgggttgtt actcgctcac atttaatgtt gatgaaagct ggctacagga aggccagacg 420
cgaattattt ttgatggcgt taactcggcg tttcatctgt ggtgcaacgg gcgctgggtc 480
ggttacggcc aggacagtca gtggagatgc ccaagggcac ttcgggtcga ggaacccgac 540
ctgcattggg acgcggccac ggagagcgcg ggcaaacgcc ggcactatag ccagtggagt 600
ttgtaaaacg ctatttcaga gcttggagag tgtctaagaa agccgggcga tgccaaccca 660
tcccttcttc ggctacgttc gtaatcaagc cacttccttt ttgcattgac gcagggtgtc 720
ggaaggcaac tcgccgaacg cgctcctata gttttcagcg aagcgtccca aatgtaagaa 780
gccgtagtct agggctatct cagttatact acgcacattg gcactgggat cgttcaagca 840
ggcgcggatg ctttcgagct tgcggttgcg gatgtagttc ttcggcgtgg tgccggcatg 900
cttctcgaac aaattgtaga gcgagcgtgg actcatcatc gccagctccg ctaaccgctc 960
aaggctgata ttccgtttga gattctcctc aatgaattga acgactcgct cgaaagacgg 1020
gttacctttg ctgaaaattt cacggctgac attgctgccc agcatttcga gcagcttgga 1080
agcgatgatc cccgcatagt gctcttggac ccgaggcatc gactttgtat gttccgcttc 1140
gtcacaaact aacccgagta gattgataaa gccatcgagt tgctggagat tgtgtcgcgc 1200
ggcgaaacgg ataccctccc tcggcttgtg ccaattgttg tcactgcatg cccgatcaag 1260
gaccactgag ggcaatttaa cgataaattt ctcgcaatct tctgaatagg tcaggtcggc 1320
ttggtcatcc ggattgagca gcaatagttc gcccggcgca aaatagtgct cctggccatg 1380
gccacgccac aggcaatggc ctttgagtat tatttgcaga tgataacagg tctctaatcc 1440
aggcgagatt accctcacgc taccgccgta gctgattcga cacaggtcga ggcatccgaa 1500
gattctgtgg tgcagcctgc ctgccggggg cccgcccttg ggcaggcgaa tagagtgcgt 1560
accgacatac tggttaacat aatcggagac tgcatagggc tcggcgtgga cgaagatctg 1620
acttttctcg ttcaataagc aaaaatccat agttcacggt tctcttattt taatgtgggc 1680
tgcttggtgt gatgtagaaa ggcgccaagt cgatgaaaat gcaggaatta attcgcagat 1740
cctggcggat gagagaagat tttcagcctg atacagatta aatcagaacg cagaagcggt 1800
ctgataaaac agaatttgcc tggcggcagt agcgcggtgg tcccacctga ccccatgccg 1860
aactcagaag tgaaacgccg tagcgccgat ggtagtgtgg ggtctcccca tgcgagagta 1920
gggaactgcc aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg cctttcgttt 1980
tatctgttgt ttgtcggtga acgctctcct gagtaggaca aatccgccgg gagcggattt 2040
gaacgttgcg aagcaacggc ccggagggtg gcgggcagga cgcccgccat aaactgccag 2100
gcatcaaatt aagcagaagg ccatcctgac ggatggcctt tttgcgtaga tcccagcctt 2160
gcaagaagcg gatacaggag tgcaaaaaat ggctatctct agaaaggcct accccttagg 2220
ctttatgcaa cagaaacaat aataatggag tcatgaacat gctgcagaaa atcaatcgtt 2280
atacccatgg ttttgttgcc gttccggtta ttctggcatg tcgtgaaaaa ggtgtttttg 2340
aactgctggc agatgaaagt ccgctgagcc tgaatcagat ggttgaacat ctgggtgcca 2400
atagcggtca ttttcaggtt gcactgcgta tgctggaaag tctgcattgg ctgagccgta 2460
ataaagaact gaaatatagc ctgaccgcag aagcagcaat tcataacaaa attagcgaag 2520
atatcctgca gctgtataat ctgccgattc agagctatct ggaaggtaaa cagggcaatc 2580
tgctgggtcg ttggattgaa cgtagctgtc agctgtggaa tctggataat ccgctgatgg 2640
cagattttct ggatggtctg ctggttattc cgctgctgct ggcactgcat aaacataacc 2700
tgctggccga ttctgaagat aaaccgctgc tgagcagcct gagcagtacc gttcaagaag 2760
aactgggtaa actgtttctg catctgggtt gggcagatct gacagcaggt cgtctgacca 2820
ttaccgaact gggtcgcttt atgggtgaac gtgcactgaa taccgcaatt gttgcaagct 2880
ataccccgat gctgagtcgt attcatgatg ttctgtttgg taattgcctg agcgtttttc 2940
agcgtgatgc aagcggtcat gaacgtcata ttgatcgtac cctgaatgtt attggtagcg 3000
gttttcagca ccagaaatac tttgcagatc tggaagaaag cattctgagc gtgtttaatc 3060
agctgccgct ggaagaacag ccgaaataca ttaccgatat gggttgtggt gatggcaccc 3120
tgctgaaacg tgtttgggaa accattcagt ttaaaagcgc acgtggtaaa gcactggaac 3180
agtatccgct gcgtctgatt ggtgttgatt ataatgaagc aagcctgaaa gcaaccaccc 3240
gtaccctggc aagcctgccg catctggttc tgcagggtga tattggtaat ccggaacaaa 3300
tggttcgtag cctggaagca catggcattc atgatccgga aaatattctg catattcgca 3360
gctttctgga tcacgatcgt ctgtttattc cgcctcagaa acgtaatgaa ctgaaagaac 3420
gtgcccatct gccgtatcag agtgtttgtg ttgatgatca gggtgaactg attcctccgc 3480
atgttatggt tcagagcctg gtggaacacc tggaacgttg gagccaggtt gttaataaac 3540
atggtctgat gattctggaa gtgcattgtc tggaaccgcg tgttgtttat cagtttctgg 3600
ataaaagcga aaacctgcac tttgatgcat ttcagggttt tagccagcag tatctggttg 3660
aagccgaagt ttttctgatg agcgcagcac aggttggtct gtttccgaaa ctggaactga 3720
gcaaacgtta tccgaaaacc tttccgttta cccgtattac cctgaactat ttcgaaaaac 3780
gtccgtacaa aatcagccat gcatatctga gcgatctgcc tgcactggtt gacctggaag 3840
ttaaatgttg gcctgagaat ctgcgtgcaa gcacccatga aattcgtcgt cgtctggaac 3900
tgaatccgca gggtaacctg gttctgatta ttgaagatca gattatcggt gccatttaca 3960
gccagaccat tacaagcacc gaagccctgg aaaatgttaa atatgcacag gttccgaccc 4020
tgcatacacc gcagggttca gtgattcagc tgctggccct gaacattctg ccggaatttc 4080
aggcacgtgg tctgggcaat gaactgcgtg attttatgct gtattattgc accctgaaag 4140
gtggtattga aagcgttgtt ggtgttaccc gttgtcgcaa ttatgtgaat tatagccaga 4200
tgccgatgat ggaatatctg aaactgcata atgaacagcg tcaactgctg gatccgattg 4260
ttggttttca tgttagcggt ggtgcagaaa ttcgtggcat tattgcaaat tatcgtccgg 4320
aagatacaga taatctgggt atgggtattc tgatcgaata taacctgcgt gatagcgcac 4380
tgcattcacc gggtgatcgt aaaggtccgt atatcaatag cgcaattggt agcctggttc 4440
cgaaagcgac cagcgcaacc aaagaaaaca aaaccgttgc ggatctggtg aaagaatgta 4500
ttctgaaagt gatgggtagc cagcgtcagg cagcatatgc accgcagcag aaactgctgg 4560
acatgggtct ggatagcctg gatctgctgg aactgcagac cctgctggaa gaacgtctgg 4620
gtattaatct gagcggcacc ttttttctgc aaaaaaacac cccgaccgcc atcattacct 4680
attttcagaa tcaggtcgtg caagagaaac agagtgatct ggcaccgcct gttgatagcg 4740
ccaatgaaat caatacactg gaaaacgttg tgaatcagca gaaaattccg caggttacac 4800
gtgttgttac cgaacagcag ggacgtaaag ttctgattga tggtcattgg gttattgatt 4860
ttgccagctg taattatctg ggcctggacc tgcatccgaa agttaaagaa gcaattcctc 4920
cggcactgga taaatggggc acccatccga gctggacccg tctggttgca agtccggcaa 4980
tttatgagga actggaagag gaactgtcaa aactgctggg tgtgccggat gttctggttt 5040
ttccggcagt tacactgctg cagattggta ttctgcctct gctgaccggt aataatggtg 5100
tgatttttgg cgatattgca gcccatcgtt gtatttatga agcatgttgt ctggcccagc 5160
ataaaggtgc acagtttatt cagtatcgtc ataacgacct gaatgatctg gccgaaaaac 5220
tggccaaata tccgcctgaa caggttaaaa tcattgtgat cgatggtgtg tatagcatga 5280
gtgccgattt cccggacctg cctgcatatg ttcatctggc aaaagaatat aacgccctga 5340
tctatatgga tgatgcacat ggctttggca ttctgggtga aaatccgagc agcgatatgc 5400
cgtatggtta taaaggtaat ggcatggtga actactttga tctgcgtttt gccgaagata 5460
acatcattta tgttgcaggt ctgagcaaag cctatagcag ctatgcagca tttctgacct 5520
gtggtgatcg tcgtattaaa accaattttc gtaatgcatg gaccgcgatt tttagcggtc 5580
cgagtccggt tgcaagcctg gccagcgcac tggcaggtct gcaggttaat cgtcaagaag 5640
gtgaacagct gcgcaaacaa atctatcatc tgacacataa actggttacc caggctcgtg 5700
ccattggttt tgaagttgat aattatggtt atgtgccgat tgtgggtgtt ctggtgggtg 5760
atgcacagca tatgattgat gtgtgccaac tgctgtggga atatggtatc ctgattaccc 5820
ctgcaatttt tccgattgtg ccgctgaata aatcagcact gcgttttagc attaccgcag 5880
caaataccga agaagaaatt gatcaggcca tcaaaagtct gaaagcagtt tgggacctgc 5940
tgcaaaaacg taaagccctg ccgtgtaaac aagaagaaaa tatcctgaaa cattgagaag 6000
gagatataca tatgacccat gttgccctgg aacaggcaat tgcaaaagtt ccgcgtagca 6060
ttcagagcga actgcgtacc attctggcac agcatgcagt tattgatagc agcgttgtgg 6120
caagctggat tgatcgtctg ggcaccaata ttagtaccct gatgatccag ctgctgccgg 6180
ttgcagcaac ctatgcacgt gttccgatta gccagtttta tgttggtgcc attgcactgg 6240
gcaaaccgca gagtaaaaat cagctgggta gcggcaccct gtattttggt gcagatatgg 6300
aatttgttgg tcaggcactg agctttagcg ttcatgcaga acagagcgcc accattaatg 6360
cctggctgca tggcgaaacc ggactgcagg cactggcaat ccatgaagca ccgtgtggtt 6420
attgtcgcca gtttctgtat gaaatggcaa ccgtgaatca gaattttgtg ctgctggtga 6480
aaagcaatga aagccagccg gaacagacct ataccagcaa caaactgccg cattttctgc 6540
ctgaaccgtt tggtccagcc gatctgggtc tgaccggtgg cctgatgcag accgtgtttc 6600
acgatctgga aacctatagc accgatgatg ttgttctggc agcactgagt gcagcaaatc 6660
agagttatgc accgtatacc aaaaactttg ccggtgttgc actgaaagat agtcatggta 6720
acatttttac aggtcgctat gccgaaaacg cagcatttaa tagcagcatg agcccgatgg 6780
aaagcgcact gacctttatg aatatgaatc gttattcaca gagcctgttc gatatttgtg 6840
atgcagttct ggtagaagtg gaaaccggta ttagtcagcg tccggttacc gaagcctttc 6900
tgagtagcat tgcaccgaaa gtgaaactgc gctatgcacc ggcaaccccg agcagtaaca 6960
aactgtgact cggtaccaaa ttccagaaaa gaggcctccc gaaagggggg ccttttttcg 7020
ttttggtccc gaagttccta ttctctagaa agtataggaa cttc 7064
<210> 96
<211> 4413
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt4 segment in Escherichia coli Melibiose operon
<400> 96
aagcctgccg tcagggcaat atcgagaata cttttatcgg tatcgctcag ccagccttgc 60
aagaagcgga tacaggagtg caaaaaatgg ctatctctag aaaggcctac cccttaggct 120
ttatgcaaca gaaacaataa taatggagtc atgaacatat ggaaaccacg agcaaaaaat 180
tcaaaagcga tctgattctg gaagcacgtg caagcctgaa actgggtatt ccgctggtta 240
ttagccagat gtgtgaaacc ggtatttata ccgcaaatgc agttatgatg ggtctgctgg 300
gcacccaggt tctggcagcc ggtgctctgg gtgcactggc atttctgacc ctgctgtttg 360
catgtcatgg tattctgagc gttggtggta gcctggcagc ggaagcattt ggtgcaaaca 420
aaattgatga agttagccgt attgcaagcg gtcagatttg gctggcagtt accctgagcc 480
tgcctgcaat gctgctgctg tggcatggtg ataccattct gctgttattt ggtcaagaag 540
aaagcaacgt tctgctgacc aaaacctatc tgcatagcat tctgtggggt tttccggcag 600
cactgagtat tctgacactg cgtggtattg ccagcgcact gaatgttccg cgtctgatta 660
ccattaccat gctgacccag ctgattctga ataccgcagc agattatgtt ctgatctttg 720
gtaaatttgg tctgccgcag ctgggtctgg caggtattgg ttgggcaacc gcactgggtt 780
tttgggttag ctttaccctg ggtctgatcc tgctgatttt tagcctgaaa gtgcgtgatt 840
ataaactgtt tcgttatctg caccagttcg acaagcagat ctttgtgaaa atctttcaga 900
ccggttggcc gatgggtttt cagtggggtg cagaaacagc actgtttaat gttaccgcat 960
gggttgcagg ttatctgggc accgttaccc tggcagcaca tgatattggt tttcagacag 1020
cagaactggc aatggttatc ccgctgggtg ttggtaatgt tgcaatgacc cgtgttggtc 1080
agagcattgg tgaaaaaaat ccactgggtg cccgtcgtgt tgcaagcatt ggtattacca 1140
ttgttggtat ttatgccagc attgttgccc tggttttttg gctgtttccg tatcagattg 1200
caggcattta tctgaacatt aataacccgg aaaacattga agccatcaaa aaagccacca 1260
cctttattcc actggcaggt ctgtttcaga tgttttatag cattcagatc attatcgttg 1320
gtgcgctggt tggtctgcgt gatacctttg ttccggttag catgaatctg attgtttggg 1380
gtctgggttt agcaggtagc tattttatgg caattattct gggttggggt ggtattggta 1440
tctggctggc catggttctg agtccgctgc tgagcgcagt tattctgacc gttcgttttt 1500
atcgcgtgat tgataatctg ctggccaaca gtgatgatat gctgcagaat gcaagcgtta 1560
ccaccctggg atgagaagga gatatacata tgaaacgtct gacgctgctg atcattgcag 1620
gtattctgtc agttagcacc tttctgtgta ttacaccggt tgcactggcc aatattaccg 1680
attattatct gaaaaacgag aaactgagcg gtcagtttag cgttccggtg aatctgtctg 1740
ttggtgttcg ttttgcacat cgtagcagct atgcaaccgc aattaacttt ccgaccggtc 1800
tggatgcaga tagcgttgca gttggtgatt ttaacagcga tagcaaactg gatctggccg 1860
ttaccaattg gtttgataac aatgttagcg tgctgctggg taatggcaat ggcagctttg 1920
gtgcagcaac caattttccg gttggcacca atccggtttt tgttgttacc ggtgatgtta 1980
atggtgacag taaactggat ttagccgtgg caaattttag cagcaataat gtttcagttc 2040
tgctgggaaa cggtaatggt tcttttggcg cagccacaaa ctttagcgtt ggtacaaatc 2100
cgtatagcgt ggccattggt gatgtgaata atgatagtga actggacctg gcatttacga 2160
actggttcga taataaagtt ctggtgctgt taggcaatgg taatggctcg tttggtgccg 2220
caagctcatt tccggtggat acctatagca ttagcgttgc gattgcagat ttcaactcag 2280
attctaaatt agacctggcg atcaccaatt gggtgtcaaa taatgtgagt gtgttactgg 2340
ggaatggtaa cggtagtttt ggagctgcga caaattttcc tgtgggtaca aacccgattt 2400
ttgtggcaac cggtgacgtg aatggcgatt ctaagctgga cttagcagtt gcaaatacca 2460
gctctaataa cgttagcgtt ctgttaggta acgggaacgg ctcattcggt gctgccacga 2520
attttccagc aggcaccaac ccgtatagtg ttgcaattcg cgacgttaac ggtgatagca 2580
aattagattt agcggtgacc aactatagca gcaacaacgt gagtgttctg ccaggcaacg 2640
gtaacggatc atttggtatt gcgaccaact ttccagtagg tacgaatccg gaaagcattg 2700
caattgccga ttttaatggg gattccaagt tagatctggc agtgacaaat agcggtaaca 2760
ataatgtaag catactgctg aataactttc agggtctgcc gaaaaacaag atttgagaag 2820
gagatataca tatgaccaat accgaacgtg gtctggccga aattaccagc accggttata 2880
aaagcgaact gcgtagcgaa gcccgtgtta gcctgcagct ggcaattcct ctggttctgg 2940
ttgaaatttg tggcaccagc attaatgttg ttgatgttgt gatgatgggt ttactgggta 3000
cacaagtgtt agcagcgggt gccctgggag caattgcctt cctgagcgtt agcaatacct 3060
gctataatat gctgctgagt ggtgttgcaa aagcaagcga agcctttgga gccaataaaa 3120
tcgatcaggt ttcacgtatt gcctcaggcc agatttggtt agccctgacc ctgtcattac 3180
cagccatgct gttactgtgg tatatggata ccatcctggt tctgtttggt caggttgaaa 3240
gcaataccct gattgcgaaa acatacctgc attcaattgt gtggggcttt cctgccgcag 3300
ttggtatcct gattctgcgt ggcatagcaa gtgcagttaa cgttcctcag ctggttaccg 3360
tgaccatgct ggttggcctg gtgctgaatg caccggctaa ttatgtgctg atgttcggca 3420
aattcggttt accggaatta ggcctggctg gcattggctg ggccagcaca ctggtgtttt 3480
ggattagttt tctggttggt gttgtgctgc tgatattttc accgaaagtt cgcgactaca 3540
aactgttccg ctatttacat cagtttgatc gtcagaccgt ggttgagatt tttcagacgg 3600
gctggcctat gggcttcctg ctgggtgtgg aaagcgttgt tctgagcctg accgcatggc 3660
tgaccggcta tctgggtaca gtgaccttag cagcccatga aattgcaatc cagactgccg 3720
aactggcgat tgtgattccg ttaggtattg gcaatgttgc cgttacccgt gtgggccaga 3780
caatcggcga aaaaaacccg ctgggagcac gccgtgcagc cctgattggc attatgattg 3840
gtggcattta tgcgagcctg gttgcagtga ttttttggtt attcccttat caaatcgcag 3900
gcctgtacct gaaaattaac gatccggaat caatggaagc agttaaaacc gcaacaaact 3960
ttctgttttt agctggcctg ttccagtttt ttcatagcgt gcagattatt gttgtgggtg 4020
ttctgattgg cctgcaggat acctttatcc ctctgctgat gaatctggtg ggctggggac 4080
tgggcctggc ggtttcctat tatatgggta ttatcctgtg ctggggtggc atgggcatct 4140
ggttaggtct ggtactgtca ccgctgctgt caggcctgat cctgatggtg cgcttttatc 4200
aagaaattgc caatcgcatt gcgaatagcg acgatggcca agaaagcatt agcattgata 4260
atgttgaaga actgagctaa tagaccaacc ccttgcggcc tcaatcgggg gggatggggt 4320
tttttgtcga agttcctatt ctctagaaag tataggaact tcgcaaccgt ctgctgaagg 4380
aagccatctg acacttaaag ccatcgttgc gct 4413
<210> 97
<211> 7377
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt2 segment in E. coli. maltose operon
<400> 97
ctgtgaacta aaccgaggtc atgtaaggaa tttcgtgatg ttgcttgcaa ccagccttgc 60
aagaagcgga tacaggagtg caaaaaatgg ctatctctag aaaggcctac cccttaggct 120
ttatgcaaca gaaacaataa taatggagtc atgaacatga ttgataccat tagcgttctg 180
ctgcgtgaat ggaccgttat ttttctgacc ggtctggcat tttggctgtg ggaaattcgt 240
agtccgctgc atcagattga atacaaagcc aaatttttca aagaactggg ttgggcaggt 300
atcagctttg tttttcgtat tgtttatgcc tatgttagcg tggccattat caaactgctg 360
agcagcctgt ttatgggtga aagcgcaaat tttgccggtg ttatgtatgt tccgctgtgg 420
ctgcgtatta ttaccgcata tattctgcag gatctgaccg attatctgct gcatcgtacc 480
atgcatagca atcagtttct gtggctgacc cataaatggc atcatagcac caaacagagt 540
tggtggctga gcggtaataa agatagcttt accggtggtc tgctgtatac cgttaccgca 600
ctgtggtttc cgctgctgga tattccgagc gaagttatga gcgttgttgc agttcatcag 660
gtgattcata acaactggat tcacctgaat gtgaaatgga atagctggct gggtattatc 720
gaatggattt atgttacacc gcgtatccat accctgcatc atctggatac cggtggtcgt 780
aatctgagca gtatgtttac ctttattgat cgtctgtttg gcacctatgt gtttccggaa 840
aactttgata tcgaaaaaag caaaaaccgc ctggatgatc agagcgttac cgttaaaacc 900
attctgggtt tctgagaagg agatatacat atgctgaaag attttaacca gttcctgatt 960
cgtaccctgg catttgtttt tgcctttggc atttttctga caaccggtgt tggtattgca 1020
aaagcagatt atctggtgaa aggtggcaaa attaccaatg ttcagaatac cagcagcaac 1080
ggtgataatt atgcagttag cattagcggt ggttttggtc cgtgtgcaga tcgtgttatt 1140
attctgccga ccagcggtgt tattaatcgt gatattcaca tgcgtggtta tgaagcagca 1200
ctgaccgcac tgagcaatgg ttttctggtt gatatctatg attataccgg tagcagctgt 1260
agcaatggtg gccagctgac cattaccaat cagctgggta aactgattag caattgagaa 1320
ggagatatac atatgaccaa tcagaacaac caagagctgg aaaatgatct gccgattgca 1380
aaacagccgt gtccggttaa tagctataat gaatgggata ccctggaaga agttattgtt 1440
ggtagcgttg aaggtgcaat gctgcctgca ctggaaccga ttaacaaatg gacctttccg 1500
tttgaagaac tggaaagcgc acagaaaatt ctgagcgaac gtggtggtgt tccgtatccg 1560
cctgaaatga ttaccctggc acataaagaa ctgaacgagt ttattcatat cctggaagcc 1620
gaaggtgtta aagttcgtcg tgttaaaccg gttgatttta gcgttccgtt tagcacaccg 1680
gcatggcagg ttggtagcgg tttttgtgca gcaaatccgc gtgatgtttt tctggttatt 1740
ggcaacgaaa ttatcgaagc accgatggca gatcgtaatc gttattttga aacctgggca 1800
tatcgcgaaa tgctgaaaga atattttcag gcaggcgcaa aatggaccgc agcaccgaaa 1860
ccgcagctgt ttgatgcaca gtatgatttc aattttcagt ttccgcagct gggtgaaccg 1920
cctcgttttg ttgttaccga atttgaaccg acctttgatg cagccgattt tgttcgttgt 1980
ggtcgtgata tttttggcca gaaaagccat gttaccaatg gtctgggtat tgaatggctg 2040
cagcgtcatc tggaagatga atatcgcatt catatcatcg aaagccattg tccggaagca 2100
ctgcatattg ataccaccct gatgccgctg gcaccgggta aaattctggt taatccggaa 2160
tttgtggacg tgaataaact gccgaaaatt ctgaaaagct gggatattct ggttgcaccg 2220
tatccgaatc atattccgca gaatcagctg cgtctggtta gcgaatgggc aggtctgaat 2280
gttctgatgc tggatgaaga acgtgtgatc gtggaaaaaa atcaagagca gatgatcaaa 2340
gccctgaaag attggggttt taaaccgatt gtttgccact tcgaaagcta ttatccgttt 2400
ctgggtagct ttcattgtgc aaccctggat gttcgtcgtc gtggcaccct gcagagctat 2460
ttttgagaag gagatataca tatgacgacc gcagatctga ttctgatcaa taattggtat 2520
gttgtggcca aggtggaaga ttgtaaaccg ggtagcatta ccaccgcact gctgctgggt 2580
gttaaactgg ttctgtggcg tagccgtgaa cagaatagcc cgattcagat ttggcaggat 2640
tattgtccgc atcgtggtgt tgcactgagc atgggtgaaa ttgtgaataa taccctggtt 2700
tgtccgtatc atggttggcg ttataatcag gcaggtaaat gtgttcatat tccggcacat 2760
ccggatatga cccctccggc aagcgcacag gcaaaaatct atcattgtca agaacgttat 2820
ggtctggttt gggtttgtct gggtgatccg gttaatgata ttccgagtct gccggaatgg 2880
gatgatccga attatcataa tacctgcacc aagagctact ttatccaggc aagcgcattt 2940
cgtgtgatgg ataactttat tgatgtgagc cattttccgt ttgtgcatga tggtggtctg 3000
ggcgatcgta atcatgcaca gattgaagaa tttgaggtga aagtggataa agacggtatt 3060
agcattggca atctgaaact gcagatgcct cgttttaata gcagcaatga agatgatagc 3120
tggaccctgt atcagcgtat tagccatccg ctgtgtcagt attatatcac cgaaagcagc 3180
gaaattcgta cagcagatct gatgctggtt accccgattg atgaagataa ttcactggtt 3240
cgtatgctgg tgacctggaa tcgtagcgaa attctggaaa gcaccgttct ggaagaattt 3300
gatgaaacca ttgaacagga tatcccgatt attcatagcc agcagcctgc acgtctgccg 3360
ctgctgccga gcaagcagat taatatgcag tggctgagcc aagaaattca tgttccgagc 3420
gatcgttgta ccgttgcata tcgtcgttgg ctgaaagaac tgggcgttac ctatggtgtt 3480
tgttgagaag gagatataca tatgcagatt ctgggtatca gcgcctatta tcatgatagc 3540
gcagcagcaa tggttattga tggtgaaatt gttgcagcag cacaagaaga acgttttagc 3600
cgtcgtaaac atgatgcagg ttttccgacc ggtgcaatta cctattgtct gaaacaggtt 3660
ggcaccaaac tgcagtatat tgatcagatc gtgttctatg ataaaccgct ggtgaaattt 3720
gaacgtctgc tggaaaccta tctggcctat gcaccgaaag gttttggtag ttttattacc 3780
gcaatgccgg tgtggctgaa agagaaactg tatctgaaaa ccctgctgaa aaaagaactg 3840
gcactgctgg gtgaatgtaa agcaagccag ctgcctccgc tgctgtttac cagccatcat 3900
caggcacatg cagcagcagc attttttccg agcccgtttc agcgtgcagc agttctgtgt 3960
ctggatggtg ttggtgaatg ggcaaccacc agtgtttggc tgggtgaagg taataaactg 4020
acaccgcagt gggaaattga ttttccgcat agcctgggcc tgctgtatag cgcatttacc 4080
tattataccg gctttaaagt gaacagcggt gagtataaac tgatgggtct ggcaccgtat 4140
ggtgaaccga aatatgttga tcagattctg aaacatctgc tggatctgaa agaagatggc 4200
acctttcgtc tgaacatgga ttatttcaat tataccgttg gtctgaccat gaccaaccat 4260
aaatttcata gcatgtttgg tggtccgcct cgtcaggcag aaggtaaaat tagccagcgt 4320
gatatggatc tggcaagcag cattcagaaa gttaccgaag aagtgattct gcgtctggca 4380
cgtaccatta agaaagaatt aggtgttgaa tacctgtgtc tggcaggcgg tgttggtctg 4440
aattgtgttg caaatggtcg tattctgcgt gagagcgatt ttaaagatat ttggattcag 4500
cctgcagccg gtgatgcagg tagcgcagtt ggtgcagcac tggcaatttg gcatgaatat 4560
cataaaaaac cgcgtaccag caccgcaggc gatcgtatga aaggtagcta tctgggtccg 4620
agctttagcg aagcagaaat tctgcagttt ctgaacagcg tgaatattcc gtatcatcgt 4680
tgtgtggata atgaactgat ggcacgtctg gcggaaattc tggatcaggg taatgttgtt 4740
ggttggttta gcggtcgtat ggaatttggt ccgcgtgcac tgggtggtcg tagcattatt 4800
ggtgatagcc gtagcccgaa aatgcagagc gttatgaatc tgaaaatcaa atatcgcgaa 4860
agcttccgtc cgtttgcacc gagcgttctg gcagaacgtg ttagcgatta ttttgatctg 4920
gatcgtccga gcccgtatat gctgctggtt gcacaggtta aagaaaatct gcatattccg 4980
atgacccaag aacagcatga actgtttggt atcgaaaaac tgaatgttcc gcgtagccag 5040
attccggcag ttacccatgt tgattatagc gcacgtattc agaccgttca taaagaaacc 5100
aatccgcgtt attatgaact gatccgtcat tttgaagcac gtaccggttg tgcagttctg 5160
gttaatacca gctttaatgt tcgtggtgaa ccgattgtgt gtacaccgga agatgcatat 5220
cgttgtttta tgcgtaccga gatggattac ctggtgatgg aaaattttct gctggtgaaa 5280
agcgaacagc ctcgtggtaa tagtgatgaa agctggcaga aagaatttga gctggattga 5340
gaaggagata tacatatgga acaaattaaa gaactggata agaaaggcct gcgtgaattt 5400
ggtctgattg gtggtagcat tgttgccgtt ctgtttggtt ttctgctgcc ggttattcgt 5460
catcatagcc tgagcgttat tccgtgggtt gttgcaggtt ttctgtggat ttgggcaatt 5520
attgcaccga ccaccctgag ctttatctat cagatttgga tgcgtattgg tctggtgctg 5580
ggttggattc agacccgtat tattctgggt gttctgttct atattatgat taccccgatc 5640
ggttttattc gtcgtctgct gaatcaggat ccgatgaccc gtatttttga accggaactg 5700
ccgacctatc gtcagctgag caaaagccgt accacccaga gcatggaaaa accgttctga 5760
gaaggagata tacatatgtt aaaagacacc tgggatttta tcaaggatat cgcaggcttt 5820
atcaaagaac agaaaaacta tctgctgatt ccgctgatta ttaccctggt tagcctgggt 5880
gcactgattg tttttgcaca gagcagcgca attgcaccgt ttatctatac cctgttttga 5940
gaaggagata tacatatgag caacttcaaa ggcagcgtta aaattgcact gatgggcatt 6000
ctgatttttt gcggtctgat ttttggtgtg gcctttgttg aaattggtct gcgtattgca 6060
ggcattgaac atattgcctt tcatagcatt gatgaacatc gtggttgggt tggtcgtccg 6120
catgttagcg gttggtatcg taccgaaggt gaagcacata ttcagatgaa tagtgatggt 6180
tttcgtgatc gcgaacacat taaagtgaaa ccggaaaata cctttcgtat tgccctgctg 6240
ggtgatagct ttgttgaaag catgcaggtt ccgctggaac agaatctggc agcagttatt 6300
gaaggcgaaa ttagcagctg tattgcactg gcaggtcgta aagccgaagt tattaacttt 6360
ggtgttaccg gttatggcac cgatcaagaa ctgattaccc tgcgtgaaaa agtgtgggat 6420
tatagtccgg atattgttgt gctggatttc tataccggta acgatattgt tgataatagc 6480
cgtgcactgt cccagaaatt ctatccgaat gaactgggta gcctgaaacc gttttttatc 6540
ctgcgtgatg gtaatctggt tgttgatgca agctttatca acaccgataa ctatcgtagc 6600
aaactgacct ggtggggtaa aacctatatg aaaatcaaag atcatagccg cattctgcag 6660
gtcctgaata tggttcgtga tgcactgaat aatagcagcc gtggttttag cagccaggca 6720
attgaagaac cgctgtttag tgatggtaaa caggatacca aactgagcgg cttcttcgat 6780
atctataaac cgcctaccga tccggaatgg cagcaggcct ggcaggttac cgaaaaactg 6840
attagtagca tgcagcatga agtgaccgcc aaaaaagccg attttctggt tgttaccttt 6900
ggcggtccgt ttcagcgcga accgctggtt cgtcagaaag aaatgcaaga actgggtctg 6960
accgattggt tttatccgga aaaacgtatt acccgtctgg gtgaagatga aggttttagc 7020
gtgctgaatc tgagcccgaa tctgcaggtt tatagcgaac agaataatgc ctgtctgtat 7080
ggttttgatg atacccaggg ttgtgttggt cattggaatg cactgggtca tcaggttgca 7140
ggtaaaatga ttgcaagcaa aatttgtcag cagcagatgc gtgaaagcat tctgccgcat 7200
aaacatgatc cgagcagcca gagcagcccg attacccaga gcgttattca gtaatactct 7260
aaccccatcg gccgtcttag gggttttttg tcgaagttcc tattctctag aaagtatagg 7320
aacttcgacc tgtggggtga ctttgccgcc gctgccgtga tgtctgcatt accgatc 7377
<210> 98
<211> 6062
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>sequence of the sxt2 segment in maltose operon is integrated into after missing sxtL
<400> 98
ctgtgaacta aaccgaggtc atgtaaggaa tttcgtgatg ttgcttgcaa ccagccttgc 60
aagaagcgga tacaggagtg caaaaaatgg ctatctctag aaaggcctac cccttaggct 120
ttatgcaaca gaaacaataa taatggagtc atgaacatga ttgataccat tagcgttctg 180
ctgcgtgaat ggaccgttat ttttctgacc ggtctggcat tttggctgtg ggaaattcgt 240
agtccgctgc atcagattga atacaaagcc aaatttttca aagaactggg ttgggcaggt 300
atcagctttg tttttcgtat tgtttatgcc tatgttagcg tggccattat caaactgctg 360
agcagcctgt ttatgggtga aagcgcaaat tttgccggtg ttatgtatgt tccgctgtgg 420
ctgcgtatta ttaccgcata tattctgcag gatctgaccg attatctgct gcatcgtacc 480
atgcatagca atcagtttct gtggctgacc cataaatggc atcatagcac caaacagagt 540
tggtggctga gcggtaataa agatagcttt accggtggtc tgctgtatac cgttaccgca 600
ctgtggtttc cgctgctgga tattccgagc gaagttatga gcgttgttgc agttcatcag 660
gtgattcata acaactggat tcacctgaat gtgaaatgga atagctggct gggtattatc 720
gaatggattt atgttacacc gcgtatccat accctgcatc atctggatac cggtggtcgt 780
aatctgagca gtatgtttac ctttattgat cgtctgtttg gcacctatgt gtttccggaa 840
aactttgata tcgaaaaaag caaaaaccgc ctggatgatc agagcgttac cgttaaaacc 900
attctgggtt tctgagaagg agatatacat atgctgaaag attttaacca gttcctgatt 960
cgtaccctgg catttgtttt tgcctttggc atttttctga caaccggtgt tggtattgca 1020
aaagcagatt atctggtgaa aggtggcaaa attaccaatg ttcagaatac cagcagcaac 1080
ggtgataatt atgcagttag cattagcggt ggttttggtc cgtgtgcaga tcgtgttatt 1140
attctgccga ccagcggtgt tattaatcgt gatattcaca tgcgtggtta tgaagcagca 1200
ctgaccgcac tgagcaatgg ttttctggtt gatatctatg attataccgg tagcagctgt 1260
agcaatggtg gccagctgac cattaccaat cagctgggta aactgattag caattgagaa 1320
ggagatatac atatgaccaa tcagaacaac caagagctgg aaaatgatct gccgattgca 1380
aaacagccgt gtccggttaa tagctataat gaatgggata ccctggaaga agttattgtt 1440
ggtagcgttg aaggtgcaat gctgcctgca ctggaaccga ttaacaaatg gacctttccg 1500
tttgaagaac tggaaagcgc acagaaaatt ctgagcgaac gtggtggtgt tccgtatccg 1560
cctgaaatga ttaccctggc acataaagaa ctgaacgagt ttattcatat cctggaagcc 1620
gaaggtgtta aagttcgtcg tgttaaaccg gttgatttta gcgttccgtt tagcacaccg 1680
gcatggcagg ttggtagcgg tttttgtgca gcaaatccgc gtgatgtttt tctggttatt 1740
ggcaacgaaa ttatcgaagc accgatggca gatcgtaatc gttattttga aacctgggca 1800
tatcgcgaaa tgctgaaaga atattttcag gcaggcgcaa aatggaccgc agcaccgaaa 1860
ccgcagctgt ttgatgcaca gtatgatttc aattttcagt ttccgcagct gggtgaaccg 1920
cctcgttttg ttgttaccga atttgaaccg acctttgatg cagccgattt tgttcgttgt 1980
ggtcgtgata tttttggcca gaaaagccat gttaccaatg gtctgggtat tgaatggctg 2040
cagcgtcatc tggaagatga atatcgcatt catatcatcg aaagccattg tccggaagca 2100
ctgcatattg ataccaccct gatgccgctg gcaccgggta aaattctggt taatccggaa 2160
tttgtggacg tgaataaact gccgaaaatt ctgaaaagct gggatattct ggttgcaccg 2220
tatccgaatc atattccgca gaatcagctg cgtctggtta gcgaatgggc aggtctgaat 2280
gttctgatgc tggatgaaga acgtgtgatc gtggaaaaaa atcaagagca gatgatcaaa 2340
gccctgaaag attggggttt taaaccgatt gtttgccact tcgaaagcta ttatccgttt 2400
ctgggtagct ttcattgtgc aaccctggat gttcgtcgtc gtggcaccct gcagagctat 2460
ttttgagaag gagatataca tatgacgacc gcagatctga ttctgatcaa taattggtat 2520
gttgtggcca aggtggaaga ttgtaaaccg ggtagcatta ccaccgcact gctgctgggt 2580
gttaaactgg ttctgtggcg tagccgtgaa cagaatagcc cgattcagat ttggcaggat 2640
tattgtccgc atcgtggtgt tgcactgagc atgggtgaaa ttgtgaataa taccctggtt 2700
tgtccgtatc atggttggcg ttataatcag gcaggtaaat gtgttcatat tccggcacat 2760
ccggatatga cccctccggc aagcgcacag gcaaaaatct atcattgtca agaacgttat 2820
ggtctggttt gggtttgtct gggtgatccg gttaatgata ttccgagtct gccggaatgg 2880
gatgatccga attatcataa tacctgcacc aagagctact ttatccaggc aagcgcattt 2940
cgtgtgatgg ataactttat tgatgtgagc cattttccgt ttgtgcatga tggtggtctg 3000
ggcgatcgta atcatgcaca gattgaagaa tttgaggtga aagtggataa agacggtatt 3060
agcattggca atctgaaact gcagatgcct cgttttaata gcagcaatga agatgatagc 3120
tggaccctgt atcagcgtat tagccatccg ctgtgtcagt attatatcac cgaaagcagc 3180
gaaattcgta cagcagatct gatgctggtt accccgattg atgaagataa ttcactggtt 3240
cgtatgctgg tgacctggaa tcgtagcgaa attctggaaa gcaccgttct ggaagaattt 3300
gatgaaacca ttgaacagga tatcccgatt attcatagcc agcagcctgc acgtctgccg 3360
ctgctgccga gcaagcagat taatatgcag tggctgagcc aagaaattca tgttccgagc 3420
gatcgttgta ccgttgcata tcgtcgttgg ctgaaagaac tgggcgttac ctatggtgtt 3480
tgttgagaag gagatataca tatgcagatt ctgggtatca gcgcctatta tcatgatagc 3540
gcagcagcaa tggttattga tggtgaaatt gttgcagcag cacaagaaga acgttttagc 3600
cgtcgtaaac atgatgcagg ttttccgacc ggtgcaatta cctattgtct gaaacaggtt 3660
ggcaccaaac tgcagtatat tgatcagatc gtgttctatg ataaaccgct ggtgaaattt 3720
gaacgtctgc tggaaaccta tctggcctat gcaccgaaag gttttggtag ttttattacc 3780
gcaatgccgg tgtggctgaa agagaaactg tatctgaaaa ccctgctgaa aaaagaactg 3840
gcactgctgg gtgaatgtaa agcaagccag ctgcctccgc tgctgtttac cagccatcat 3900
caggcacatg cagcagcagc attttttccg agcccgtttc agcgtgcagc agttctgtgt 3960
ctggatggtg ttggtgaatg ggcaaccacc agtgtttggc tgggtgaagg taataaactg 4020
acaccgcagt gggaaattga ttttccgcat agcctgggcc tgctgtatag cgcatttacc 4080
tattataccg gctttaaagt gaacagcggt gagtataaac tgatgggtct ggcaccgtat 4140
ggtgaaccga aatatgttga tcagattctg aaacatctgc tggatctgaa agaagatggc 4200
acctttcgtc tgaacatgga ttatttcaat tataccgttg gtctgaccat gaccaaccat 4260
aaatttcata gcatgtttgg tggtccgcct cgtcaggcag aaggtaaaat tagccagcgt 4320
gatatggatc tggcaagcag cattcagaaa gttaccgaag aagtgattct gcgtctggca 4380
cgtaccatta agaaagaatt aggtgttgaa tacctgtgtc tggcaggcgg tgttggtctg 4440
aattgtgttg caaatggtcg tattctgcgt gagagcgatt ttaaagatat ttggattcag 4500
cctgcagccg gtgatgcagg tagcgcagtt ggtgcagcac tggcaatttg gcatgaatat 4560
cataaaaaac cgcgtaccag caccgcaggc gatcgtatga aaggtagcta tctgggtccg 4620
agctttagcg aagcagaaat tctgcagttt ctgaacagcg tgaatattcc gtatcatcgt 4680
tgtgtggata atgaactgat ggcacgtctg gcggaaattc tggatcaggg taatgttgtt 4740
ggttggttta gcggtcgtat ggaatttggt ccgcgtgcac tgggtggtcg tagcattatt 4800
ggtgatagcc gtagcccgaa aatgcagagc gttatgaatc tgaaaatcaa atatcgcgaa 4860
agcttccgtc cgtttgcacc gagcgttctg gcagaacgtg ttagcgatta ttttgatctg 4920
gatcgtccga gcccgtatat gctgctggtt gcacaggtta aagaaaatct gcatattccg 4980
atgacccaag aacagcatga actgtttggt atcgaaaaac tgaatgttcc gcgtagccag 5040
attccggcag ttacccatgt tgattatagc gcacgtattc agaccgttca taaagaaacc 5100
aatccgcgtt attatgaact gatccgtcat tttgaagcac gtaccggttg tgcagttctg 5160
gttaatacca gctttaatgt tcgtggtgaa ccgattgtgt gtacaccgga agatgcatat 5220
cgttgtttta tgcgtaccga gatggattac ctggtgatgg aaaattttct gctggtgaaa 5280
agcgaacagc ctcgtggtaa tagtgatgaa agctggcaga aagaatttga gctggattga 5340
gaaggagata tacatatgga acaaattaaa gaactggata agaaaggcct gcgtgaattt 5400
ggtctgattg gtggtagcat tgttgccgtt ctgtttggtt ttctgctgcc ggttattcgt 5460
catcatagcc tgagcgttat tccgtgggtt gttgcaggtt ttctgtggat ttgggcaatt 5520
attgcaccga ccaccctgag ctttatctat cagatttgga tgcgtattgg tctggtgctg 5580
ggttggattc agacccgtat tattctgggt gttctgttct atattatgat taccccgatc 5640
ggttttattc gtcgtctgct gaatcaggat ccgatgaccc gtatttttga accggaactg 5700
ccgacctatc gtcagctgag caaaagccgt accacccaga gcatggaaaa accgttctga 5760
gaaggagata tacatatgtt aaaagacacc tgggatttta tcaaggatat cgcaggcttt 5820
atcaaagaac agaaaaacta tctgctgatt ccgctgatta ttaccctggt tagcctgggt 5880
gcactgattg tttttgcaca gagcagcgca attgcaccgt ttatctatac cctgttttga 5940
tactctaacc ccatcggccg tcttaggggt tttttgtcga agttcctatt ctctagaaag 6000
tataggaact tcacctgtgg ggtgactttg ccgccgctgc cgtgatgtct gcattaccga 6060
tc 6062
<210> 99
<211> 5462
<212> DNA
<213>artificial sequence (Artificial Sequence)
<220>
<223>it is integrated into the sequence of the sxt2 segment in maltose operon
<400> 99
ctgtgaacta aaccgaggtc atgtaaggaa tttcgtgatg ttgcttgcaa ccagccttgc 60
aagaagcgga tacaggagtg caaaaaatgg ctatctctag aaaggcctac cccttaggct 120
ttatgcaaca gaaacaataa taatggagtc atgaacatga ttgataccat tagcgttctg 180
ctgcgtgaat ggaccgttat ttttctgacc ggtctggcat tttggctgtg ggaaattcgt 240
agtccgctgc atcagattga atacaaagcc aaatttttca aagaactggg ttgggcaggt 300
atcagctttg tttttcgtat tgtttatgcc tatgttagcg tggccattat caaactgctg 360
agcagcctgt ttatgggtga aagcgcaaat tttgccggtg ttatgtatgt tccgctgtgg 420
ctgcgtatta ttaccgcata tattctgcag gatctgaccg attatctgct gcatcgtacc 480
atgcatagca atcagtttct gtggctgacc cataaatggc atcatagcac caaacagagt 540
tggtggctga gcggtaataa agatagcttt accggtggtc tgctgtatac cgttaccgca 600
ctgtggtttc cgctgctgga tattccgagc gaagttatga gcgttgttgc agttcatcag 660
gtgattcata acaactggat tcacctgaat gtgaaatgga atagctggct gggtattatc 720
gaatggattt atgttacacc gcgtatccat accctgcatc atctggatac cggtggtcgt 780
aatctgagca gtatgtttac ctttattgat cgtctgtttg gcacctatgt gtttccggaa 840
aactttgata tcgaaaaaag caaaaaccgc ctggatgatc agagcgttac cgttaaaacc 900
attctgggtt tctgagaagg agatatacat atgctgaaag attttaacca gttcctgatt 960
cgtaccctgg catttgtttt tgcctttggc atttttctga caaccggtgt tggtattgca 1020
aaagcagatt atctggtgaa aggtggcaaa attaccaatg ttcagaatac cagcagcaac 1080
ggtgataatt atgcagttag cattagcggt ggttttggtc cgtgtgcaga tcgtgttatt 1140
attctgccga ccagcggtgt tattaatcgt gatattcaca tgcgtggtta tgaagcagca 1200
ctgaccgcac tgagcaatgg ttttctggtt gatatctatg attataccgg tagcagctgt 1260
agcaatggtg gccagctgac cattaccaat cagctgggta aactgattag caattgagaa 1320
ggagatatac atatgaccaa tcagaacaac caagagctgg aaaatgatct gccgattgca 1380
aaacagccgt gtccggttaa tagctataat gaatgggata ccctggaaga agttattgtt 1440
ggtagcgttg aaggtgcaat gctgcctgca ctggaaccga ttaacaaatg gacctttccg 1500
tttgaagaac tggaaagcgc acagaaaatt ctgagcgaac gtggtggtgt tccgtatccg 1560
cctgaaatga ttaccctggc acataaagaa ctgaacgagt ttattcatat cctggaagcc 1620
gaaggtgtta aagttcgtcg tgttaaaccg gttgatttta gcgttccgtt tagcacaccg 1680
gcatggcagg ttggtagcgg tttttgtgca gcaaatccgc gtgatgtttt tctggttatt 1740
ggcaacgaaa ttatcgaagc accgatggca gatcgtaatc gttattttga aacctgggca 1800
tatcgcgaaa tgctgaaaga atattttcag gcaggcgcaa aatggaccgc agcaccgaaa 1860
ccgcagctgt ttgatgcaca gtatgatttc aattttcagt ttccgcagct gggtgaaccg 1920
cctcgttttg ttgttaccga atttgaaccg acctttgatg cagccgattt tgttcgttgt 1980
ggtcgtgata tttttggcca gaaaagccat gttaccaatg gtctgggtat tgaatggctg 2040
cagcgtcatc tggaagatga atatcgcatt catatcatcg aaagccattg tccggaagca 2100
ctgcatattg ataccaccct gatgccgctg gcaccgggta aaattctggt taatccggaa 2160
tttgtggacg tgaataaact gccgaaaatt ctgaaaagct gggatattct ggttgcaccg 2220
tatccgaatc atattccgca gaatcagctg cgtctggtta gcgaatgggc aggtctgaat 2280
gttctgatgc tggatgaaga acgtgtgatc gtggaaaaaa atcaagagca gatgatcaaa 2340
gccctgaaag attggggttt taaaccgatt gtttgccact tcgaaagcta ttatccgttt 2400
ctgggtagct ttcattgtgc aaccctggat gttcgtcgtc gtggcaccct gcagagctat 2460
ttttgagaag gagatataca tatgacgacc gcagatctga ttctgatcaa taattggtat 2520
gttgtggcca aggtggaaga ttgtaaaccg ggtagcatta ccaccgcact gctgctgggt 2580
gttaaactgg ttctgtggcg tagccgtgaa cagaatagcc cgattcagat ttggcaggat 2640
tattgtccgc atcgtggtgt tgcactgagc atgggtgaaa ttgtgaataa taccctggtt 2700
tgtccgtatc atggttggcg ttataatcag gcaggtaaat gtgttcatat tccggcacat 2760
ccggatatga cccctccggc aagcgcacag gcaaaaatct atcattgtca agaacgttat 2820
ggtctggttt gggtttgtct gggtgatccg gttaatgata ttccgagtct gccggaatgg 2880
gatgatccga attatcataa tacctgcacc aagagctact ttatccaggc aagcgcattt 2940
cgtgtgatgg ataactttat tgatgtgagc cattttccgt ttgtgcatga tggtggtctg 3000
ggcgatcgta atcatgcaca gattgaagaa tttgaggtga aagtggataa agacggtatt 3060
agcattggca atctgaaact gcagatgcct cgttttaata gcagcaatga agatgatagc 3120
tggaccctgt atcagcgtat tagccatccg ctgtgtcagt attatatcac cgaaagcagc 3180
gaaattcgta cagcagatct gatgctggtt accccgattg atgaagataa ttcactggtt 3240
cgtatgctgg tgacctggaa tcgtagcgaa attctggaaa gcaccgttct ggaagaattt 3300
gatgaaacca ttgaacagga tatcccgatt attcatagcc agcagcctgc acgtctgccg 3360
ctgctgccga gcaagcagat taatatgcag tggctgagcc aagaaattca tgttccgagc 3420
gatcgttgta ccgttgcata tcgtcgttgg ctgaaagaac tgggcgttac ctatggtgtt 3480
tgttgagaag gagatataca tatgcagatt ctgggtatca gcgcctatta tcatgatagc 3540
gcagcagcaa tggttattga tggtgaaatt gttgcagcag cacaagaaga acgttttagc 3600
cgtcgtaaac atgatgcagg ttttccgacc ggtgcaatta cctattgtct gaaacaggtt 3660
ggcaccaaac tgcagtatat tgatcagatc gtgttctatg ataaaccgct ggtgaaattt 3720
gaacgtctgc tggaaaccta tctggcctat gcaccgaaag gttttggtag ttttattacc 3780
gcaatgccgg tgtggctgaa agagaaactg tatctgaaaa ccctgctgaa aaaagaactg 3840
gcactgctgg gtgaatgtaa agcaagccag ctgcctccgc tgctgtttac cagccatcat 3900
caggcacatg cagcagcagc attttttccg agcccgtttc agcgtgcagc agttctgtgt 3960
ctggatggtg ttggtgaatg ggcaaccacc agtgtttggc tgggtgaagg taataaactg 4020
acaccgcagt gggaaattga ttttccgcat agcctgggcc tgctgtatag cgcatttacc 4080
tattataccg gctttaaagt gaacagcggt gagtataaac tgatgggtct ggcaccgtat 4140
ggtgaaccga aatatgttga tcagattctg aaacatctgc tggatctgaa agaagatggc 4200
acctttcgtc tgaacatgga ttatttcaat tataccgttg gtctgaccat gaccaaccat 4260
aaatttcata gcatgtttgg tggtccgcct cgtcaggcag aaggtaaaat tagccagcgt 4320
gatatggatc tggcaagcag cattcagaaa gttaccgaag aagtgattct gcgtctggca 4380
cgtaccatta agaaagaatt aggtgttgaa tacctgtgtc tggcaggcgg tgttggtctg 4440
aattgtgttg caaatggtcg tattctgcgt gagagcgatt ttaaagatat ttggattcag 4500
cctgcagccg gtgatgcagg tagcgcagtt ggtgcagcac tggcaatttg gcatgaatat 4560
cataaaaaac cgcgtaccag caccgcaggc gatcgtatga aaggtagcta tctgggtccg 4620
agctttagcg aagcagaaat tctgcagttt ctgaacagcg tgaatattcc gtatcatcgt 4680
tgtgtggata atgaactgat ggcacgtctg gcggaaattc tggatcaggg taatgttgtt 4740
ggttggttta gcggtcgtat ggaatttggt ccgcgtgcac tgggtggtcg tagcattatt 4800
ggtgatagcc gtagcccgaa aatgcagagc gttatgaatc tgaaaatcaa atatcgcgaa 4860
agcttccgtc cgtttgcacc gagcgttctg gcagaacgtg ttagcgatta ttttgatctg 4920
gatcgtccga gcccgtatat gctgctggtt gcacaggtta aagaaaatct gcatattccg 4980
atgacccaag aacagcatga actgtttggt atcgaaaaac tgaatgttcc gcgtagccag 5040
attccggcag ttacccatgt tgattatagc gcacgtattc agaccgttca taaagaaacc 5100
aatccgcgtt attatgaact gatccgtcat tttgaagcac gtaccggttg tgcagttctg 5160
gttaatacca gctttaatgt tcgtggtgaa ccgattgtgt gtacaccgga agatgcatat 5220
cgttgtttta tgcgtaccga gatggattac ctggtgatgg aaaattttct gctggtgaaa 5280
agcgaacagc ctcgtggtaa tagtgatgaa agctggcaga aagaatttga gctggattga 5340
tactctaacc ccatcggccg tcttaggggt tttttgtcga agttcctatt ctctagaaag 5400
tataggaact tcacctgtgg ggtgactttg ccgccgctgc cgtgatgtct gcattaccga 5460
tc 5462
<210> 100
<211> 112
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 100
agtccagcct tgcaagaagc ggatacagga gtgcaaaaaa tggctatctc tagaaaggcc 60
taccccttag gctttatgca acagaaacaa taataatgga gtcatgaaca tg 112
<210> 101
<211> 114
<212> DNA
<213>cyanobacteria intends column spore algae T3 (Cylindrospermopsis raciborskii T3)
<400> 101
agtccagcct tgcaagaagc ggatacagga gtgcaaaaaa tggctatctc tagaaaggcc 60
taccccttag gctttatgca acagaaacaa taataatgga gtcatgaaca tatg 114
88

Claims (23)

1. a kind of method that N-STX is produced in host cell, method includes the following steps:
(A) under conditions of being suitble to production N-STX, host cell is cultivated in the medium in the presence of following substrate, The host cell includes coding PPT enzyme and the nucleic acid molecules for encoding Sxt polypeptide A, B, D, G, H, I, S, T, U, V, W and X:
(i) S-adenosylmethionine,
(ii) arginine
(iii) acetyl coenzyme A, malonyl coenzyme A or propionyl coenzyme A, and
(iv) carbamyl phosphate ester,
And wherein, the host cell does not include the nucleic acid molecules of coding Sxt peptide C, F, J, K, L, M, P, Q, R and ORF24; And optionally
(B) N-STX is separated and/or purified from the host cell or the culture medium.
2. a kind of method for producing N-STX or its analog or variant, method includes the following steps:
(A) following substrate is contacted with SxtA, B, D, G, H, I, S, T, U, V, W and X polypeptide in reaction medium:
(i) S-adenosylmethionine,
(ii) arginine
(iii) acetyl coenzyme A, malonyl coenzyme A or propionyl coenzyme A, and
(iv) carbamyl phosphate ester,
And optionally
(B) N-STX or its analog or variant are separated and/or purified from the reaction medium.
3. according to the method described in claim 2, wherein, the reaction medium additionally comprises PPT enzyme.
4. a kind of method for producing N-STX or its analog or variant in host cell, this method includes following step It is rapid:
(A) it under conditions of being suitble to production N-STX or its analog or variant, is being cultivated in the presence of following substrate Host cell is cultivated in base, the host cell includes the nucleic acid point of coding Sxt polypeptide A, B, D, G, H, I, S, T, U, V, W and X Son:
(i) S-adenosylmethionine,
(ii) arginine
(iii) acetyl coenzyme A, malonyl coenzyme A or propionyl coenzyme A, and
(iv) carbamyl phosphate ester;And optionally
(B) N-STX or its analog or variant are separated and/or purified from the host cell or the culture medium.
5. according to the method described in claim 4, wherein, the host cell additionally comprises the nucleic acid molecules of coding PPT enzyme.
6. the method according to any one of claim 2-5, wherein the substrate not with one in Sxt peptide C, J and K The a variety of or all contacts of kind and/or the host cell do not include one of coding Sxt peptide C, J and K or a variety of or institute Some nucleic acid molecules.
7. the method according to any one of claim 2-6, wherein the substrate is not and in Sxt polypeptide Q, R and ORF24 One or more or all contacts and/or the host cell do not include coding one of Sxt polypeptide Q, R and ORF24 or A variety of or all nucleic acid molecules.
8. the method according to any one of claim 2-7, wherein the substrate not with one or more in (a)-(c) Any Sxt polypeptide contact in a:
(a) C, Q, R and ORF24;
(b) L, Q, R and ORF24;Or
(c) J, K, L, Q, R and ORF24;
And/or the host cell does not include the nucleic acid of any Sxt polypeptide in one or more of coding (a)-(c) Molecule.
9. the method according to any one of claim 2-8, wherein the substrate not with one in Sxt polypeptide F, M and P The a variety of or all contacts of kind and/or the host cell do not include one of coding Sxt polypeptide F, M and P or a variety of or institute Some nucleic acid molecules.
10. method according to any of the preceding claims, wherein the substrate in addition with selected from by SxtC, E, J, K, in addition one of group of L and R (preferably C and/or E) composition or the contact of a variety of Sxt polypeptides and/or the host cell wrap One of the Sxt peptide C containing coding, E, J, K, L and R (preferably C and/or E) or a variety of nucleic acid molecules.
11. method according to any of the preceding claims, wherein the substrate not with selected from by SxtF, M, N, O, P, a variety of or all Sxt polypeptides of one of group of Y, Z, ORF3, ORF4, ORF29, ORF34, OMPR or HISA composition connect Touching and/or the host cell do not include coding Sxt polypeptide F, M, N, O, P, Y, Z, ORF3, ORF4, ORF29, ORF34, OMPR Or the nucleic acid molecules that one of HISA is a variety of or all.
12. method according to any of the preceding claims, wherein the substrate in addition with SxtN and/or SxtDIOX Contact and/or the host cell additionally comprise the nucleic acid molecules of coding SxtN and/or SxtDIOX.
13. according to claim 1 or method described in any one of 4-12, wherein the host cell is prokaryotic host cell, Preferred bacterium cell, most preferably Bacillus coli cells.
14. according to claim 1 or method described in any one of 4-13, wherein the host cell is heterotrophic organism.
15. according to claim 1 or method described in any one of 4-14, wherein the host cell is recombinant host cell.
16. method according to any of the preceding claims, wherein by the N-STX or its analog or Variant or its pharmaceutically acceptable salt are configured to pharmaceutical composition.
17. according to the method for claim 16, wherein the preparation steps include new Saxidomus will separate or purifying Toxin or its analog or variant are mixed with one or more pharmaceutically acceptable carriers, adjuvant and/or excipient.
18. the N-STX or its analog or variant that pass through method production described in any one of preceding claims.
19. a kind of host cell comprising coding Sxt polypeptide A, the nucleic acid molecules of B, D, G, H, I, S, T, U, V, W and X, wherein The host cell, which does not include, encodes nucleic acid molecules below:
(i) one of Sxt peptide C, J or K are a variety of or all;
(ii) one of Sxt polypeptide Q, R and ORF24 are a variety of or all;
(iii) one of Sxt peptide C, Q, R and ORF24 are a variety of or all;
(iv) one of Sxt polypeptide L, Q, R and ORF24 are a variety of or all;
(v) one of Sxt polypeptide J, K, L, Q, R and ORF24 are a variety of or all;Or
(vi) one of Sxt polypeptide F, M and P are a variety of or all.
20. host cell according to claim 19, wherein the host cell additionally comprise coding selected from by SxtC, E, the nucleic acid molecules of one of group of J, K, L and/or R (preferably C and/or E) composition or a variety of Sxt polypeptides.
21. host cell described in 9 or 20 according to claim 1, wherein the host cell additionally comprise coding SxtN and/ Or the nucleic acid molecules of SxtDIOX.
22. host cell described in any one of 9-20 according to claim 1, wherein the host cell does not include coding choosing One of group of free F, M, N, O, P, Y, Z, ORF3, ORF4, ORF29, ORF34, OMPR or HISA composition or a variety of or institute There are the nucleic acid molecules of Sxt polypeptide.
23. host cell described in any one of 9-22 according to claim 1, wherein the host cell is that prokaryotic hosts are thin Born of the same parents, preferred bacterium cell, most preferably Bacillus coli cells.
CN201780023087.6A 2016-02-12 2017-02-10 Method Pending CN109790558A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1602576.9A GB201602576D0 (en) 2016-02-12 2016-02-12 Process
GB1602576.9 2016-02-12
PCT/EP2017/053077 WO2017137606A1 (en) 2016-02-12 2017-02-10 Process

Publications (1)

Publication Number Publication Date
CN109790558A true CN109790558A (en) 2019-05-21

Family

ID=55697646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780023087.6A Pending CN109790558A (en) 2016-02-12 2017-02-10 Method

Country Status (14)

Country Link
US (2) US10920256B2 (en)
EP (2) EP3414334B1 (en)
JP (1) JP2019504650A (en)
KR (1) KR20190006478A (en)
CN (1) CN109790558A (en)
AU (2) AU2017218598B2 (en)
BR (1) BR112018016346A2 (en)
CA (1) CA3014109A1 (en)
CL (1) CL2018002149A1 (en)
EA (1) EA201891805A1 (en)
GB (3) GB201602576D0 (en)
IL (1) IL261106A (en)
MX (1) MX2018009676A (en)
WO (1) WO2017137606A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097415A (en) * 2018-08-08 2018-12-28 浙江海洋大学 A method of saxitoxin is prepared using malicious ocean sulfurous acid bacillus fermentation is produced
CN115466219A (en) * 2022-07-28 2022-12-13 中国科学院天津工业生物技术研究所 Preparation method of 1- [3- (2-amino-4-ethyl-1H-imidazole-5-yl) propyl ] guanidine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230145895A1 (en) * 2020-03-26 2023-05-11 The Cawthron Institute Trust Board Preparation of neosaxitoxin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903530A (en) * 2007-10-12 2010-12-01 加利福尼亚大学董事会 Microorganism engineered to produce isopropanol
US8957207B2 (en) * 2009-03-24 2015-02-17 Proteus S.A. Methods for producing phycotoxins

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511241A (en) 1993-04-08 1996-11-26 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Method for synthesizing 4- and / or 5- (di) -substituted 2-aminoimidazole from 2-aminoimidazole and aldehyde
AU7389098A (en) 1997-05-16 1998-12-08 Brigham And Women's Hospital Local anesthetic formulations
JP4289694B2 (en) 1998-04-03 2009-07-01 正昭 児玉 Novel saxitoxin derivative and method for producing the same
US20040029210A1 (en) 2000-12-12 2004-02-12 Robillot Cedric Emile Francois Assay for paralytic shellfish toxin
JP2003012699A (en) 2001-07-04 2003-01-15 Japan Science & Technology Corp Method for manufacturing anti-paralytic shellfish poison antibody, new antibody, elisa measuring kit using the antibody, and system-labeling poison standard sample prepared by the manufacturing method
EP1443932B1 (en) 2001-11-15 2012-12-26 Micro Algae Corporation Pharmaceutical compositions containing 3,4-propinoperhydropurines and uses thereof for blocking neuronal transmission
US20030148359A1 (en) 2002-01-11 2003-08-07 Yale University Saxitoxin detection and assay method
AU2003901897A0 (en) 2003-02-12 2003-05-08 Australian Institute Of Marine Science Conjugate
CN101039674A (en) 2004-09-21 2007-09-19 埃斯蒂文博士实验室股份有限公司 Tetrodotoxin and its derivatives for the treatment of central-nervously derived neuropathic pain
US20100075992A1 (en) 2004-09-22 2010-03-25 Laboratorios Del Dr. Esteve S.A. Tetrodotoxin and its derivatives for the treament of peripheral-nervously derived neuropathi pain
RU2277097C1 (en) 2004-12-27 2006-05-27 Институт Молекулярной Генетики Российской Академии Наук (Имг Ран) [3h]-saxitoxin dihydrochloride highly labeled with tritium
WO2006084765A1 (en) * 2005-02-11 2006-08-17 Wex Pharmaceuticals, Inc. Use of sodium channel blockers and their analogues for the treatment of nicotine dependency
US20100144767A1 (en) 2005-08-25 2010-06-10 Wex Pharmaceuticals, Inc. Use of sodium channel blockers for the treatment of visceral pain or pain caused by cancer treatment
EP1931349A4 (en) 2005-08-25 2009-08-05 Wex Pharmaceuticals Inc Use of sodium channel blockers for the management of musculoskeletal pain
EP1844781A1 (en) 2006-02-22 2007-10-17 Wex Pharmaceuticals Inc. Use of sodium channel blockers for the treatment of preterm labor
EP1844782A1 (en) 2006-03-27 2007-10-17 Wex Pharmaceuticals, Inc Use of 4,9-anhydro-tetrodotoxin for the treatment of diseases related to the voltage-gated sodium channel subunit Nav1.6
CN103271920A (en) 2006-03-27 2013-09-04 威克斯医药有限公司 Use of sodium channel blockers for the treatment of neuropathic pain developing as a consequence of chemotherapy
DK2279265T3 (en) 2008-04-24 2014-12-08 Newsouth Innovations Pty Ltd Cyanobacterial saxitoxin gene cluster and detecting cyanotoksiske organisms
CL2009000723A1 (en) 2009-03-24 2009-06-19 Proteus Sa Industrial purification method of biologically active phycotoxins comprising providing an adequate amount of a source of phycotoxins such as the cultivation of a cyanobacterial clone.
US9174999B2 (en) 2009-05-07 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for studying, imaging, and treating pain
CN102892454B (en) 2010-01-26 2016-01-20 迈克尔·A·埃文斯 For the method for denervation, device and medicament
ES2484315T3 (en) 2010-02-10 2014-08-11 Phytotox Limited Treatment of loss of sense of touch with saxitoxin derivatives
WO2012155202A1 (en) 2011-05-16 2012-11-22 Newsouth Innovations Pty Limited Detection of saxitoxin-producing dinoflagellates
EP2638908A1 (en) 2012-03-16 2013-09-18 Phytotox SpA Paralytic Shellfish Poison
EP2841071A1 (en) 2012-04-23 2015-03-04 The Children's Medical Center Corporation Formulations and methods for delaying onset of chronic neuropathic pain
WO2014168721A2 (en) 2013-04-12 2014-10-16 Tufts Medical Center Methods and systems for designing and/or characterizing soluble lipidated ligand agents
AU2015243437B2 (en) 2014-04-09 2019-08-29 Siteone Therapeutics, Inc. 10',11'-modified saxitoxins useful for the treatment of pain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903530A (en) * 2007-10-12 2010-12-01 加利福尼亚大学董事会 Microorganism engineered to produce isopropanol
US8957207B2 (en) * 2009-03-24 2015-02-17 Proteus S.A. Methods for producing phycotoxins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELISABETH CAN˜ETE 等: "Improvements in the use of neuroblastoma x glioma hybrid cells", 《TOXICON》 *
宋伦 等: "黄渤海贝毒机理及产毒藻类的研究现状", 《水产科学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097415A (en) * 2018-08-08 2018-12-28 浙江海洋大学 A method of saxitoxin is prepared using malicious ocean sulfurous acid bacillus fermentation is produced
CN115466219A (en) * 2022-07-28 2022-12-13 中国科学院天津工业生物技术研究所 Preparation method of 1- [3- (2-amino-4-ethyl-1H-imidazole-5-yl) propyl ] guanidine
CN115466219B (en) * 2022-07-28 2023-09-08 中国科学院天津工业生物技术研究所 Preparation method of 1- [3- (2-amino-4-ethyl-1H-imidazol-5-yl) propyl ] guanidine

Also Published As

Publication number Publication date
US10920256B2 (en) 2021-02-16
MX2018009676A (en) 2019-06-06
US20210108239A1 (en) 2021-04-15
IL261106A (en) 2018-10-31
CA3014109A1 (en) 2017-08-17
EP3414334A1 (en) 2018-12-19
EP4279577A2 (en) 2023-11-22
EP3414334C0 (en) 2023-10-11
GB2552859B (en) 2019-09-18
GB2569907A (en) 2019-07-03
AU2017218598A1 (en) 2018-10-04
GB201903649D0 (en) 2019-05-01
JP2019504650A (en) 2019-02-21
AU2017218598B2 (en) 2021-05-06
GB2552859A (en) 2018-02-14
GB201702275D0 (en) 2017-03-29
WO2017137606A1 (en) 2017-08-17
GB201602576D0 (en) 2016-03-30
US11566271B2 (en) 2023-01-31
EP4279577A3 (en) 2024-01-24
GB2569907B (en) 2020-04-08
EA201891805A1 (en) 2019-02-28
KR20190006478A (en) 2019-01-18
EP3414334B1 (en) 2023-10-11
US20190048375A1 (en) 2019-02-14
AU2021201969A1 (en) 2021-04-29
AU2021201969B2 (en) 2023-02-02
BR112018016346A2 (en) 2019-01-22
CL2018002149A1 (en) 2019-02-15

Similar Documents

Publication Publication Date Title
US20210198711A1 (en) Production of steviol glycosides in recombinant hosts
KR102491060B1 (en) Compositions and methods for making (r)-reticuline and precursors thereof
AU2021201969B2 (en) Process
AU2021201338A1 (en) Complete genome sequence of the methanogen methanobrevibacter ruminantium
CN110218244B (en) Compound ilamycin F and application thereof
KR20200111172A (en) Nepetalactol redox enzyme, nepetalactol synthase, and microorganisms capable of producing nepetalactone
CN107771214A (en) For with the microorganism modified caused by 2,4 dihydroxy butyric acid of the optimization of row&#39;s thing outside increased 2,4 dihydroxy butyric acid
CN113227364A (en) Cells and methods for producing ursodeoxycholic acid and its precursors
AU2022256122A1 (en) Novel Proteins From Anaerobic Fungi And Uses Thereof
CN114286858B (en) Folic acid producing strain, and preparation and application thereof
KR20210097723A (en) Engineered biosynthetic pathway for production of 1,5-diaminopentane by fermentation
CN110777155A (en) Minimal mycin biosynthesis gene cluster, recombinant bacterium and application thereof
CN114958627A (en) Construction method and application of recombinant schizochytrium limacinum engineering bacterium for high yield of tocopherol
KR20200134333A (en) Biosynthetic pathway engineered for histamine production by fermentation
CN111117942B (en) Genetic engineering bacterium for producing lincomycin and construction method and application thereof
CN115335514A (en) Biosynthesis of mogrosides
KR20020029767A (en) Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
CN112375725B (en) Metabolic engineering strain for producing vitamin B6 and construction method and application thereof
CN107208149A (en) The biomarker of colorectal cancer relevant disease
KR100861771B1 (en) 2-epi-5-epi-valiolone synthase for validamycin biosynthesis and method for preparing the same
CN110551739A (en) Pyrazolomycin biosynthesis gene cluster, recombinant bacterium and application thereof
CN114250172B (en) Sea bacillus and application thereof
CN115247179B (en) Polyketide skeleton and biosynthetic gene cluster of post-modifier thereof and application thereof
KR100889800B1 (en) Validamycin biosynthesis gene cluster and it?s primer
KR20230079107A (en) Genetically modified Methylobacillus bacteria with improved properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190521

WD01 Invention patent application deemed withdrawn after publication