CN109787552B - 一种光伏电站的清洗方法及系统 - Google Patents

一种光伏电站的清洗方法及系统 Download PDF

Info

Publication number
CN109787552B
CN109787552B CN201910217174.6A CN201910217174A CN109787552B CN 109787552 B CN109787552 B CN 109787552B CN 201910217174 A CN201910217174 A CN 201910217174A CN 109787552 B CN109787552 B CN 109787552B
Authority
CN
China
Prior art keywords
target
cleaning
dust
photovoltaic power
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910217174.6A
Other languages
English (en)
Other versions
CN109787552A (zh
Inventor
戴从银
陈娟
王哲
纪克鹏
邱旭江
张小蝶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sungrow Renewables Development Co Ltd
Original Assignee
Hefei Sungrow New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Sungrow New Energy Technology Co Ltd filed Critical Hefei Sungrow New Energy Technology Co Ltd
Priority to CN201910217174.6A priority Critical patent/CN109787552B/zh
Publication of CN109787552A publication Critical patent/CN109787552A/zh
Application granted granted Critical
Publication of CN109787552B publication Critical patent/CN109787552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明实施例提供了一种光伏电站的清洗方法及系统,其中,清洗系统包括灰尘损失度检测模块以及清洗时间控制模块,该清洗方法首先获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据。并基于灰尘损失度以及天气数据,确定出待清洗光伏电站的目标清洗时间。然后按照目标清洗时间,对待清洗光伏电站进行清洗。可见,本方案提供了一种光伏电站的清洗方法,能够计算出目标清洗时间,自动进行清洗预警。

Description

一种光伏电站的清洗方法及系统
技术领域
本发明涉及新能源设备清洗技术领域,具体涉及一种光伏电站的清洗方法及系统。
背景技术
随着光伏行业的快速发展,提高发电效率是光伏发电的重要目标。通常,影响光伏发电效率的一个重要因素为光伏组件表面积灰。具体的,积灰不仅降低光的透过率直接影响光电转化效率,同时还增加组件形成热斑的风险,部分灰尘还可能对组件形成腐蚀作用。
因此,需要对光伏组件进行清洗,以消除灰尘。目前光伏电站的清洗方式包括人工清洗、半机械化清洗、机器人清洗。其中,人工清洗和半机械化清洗的清洗周期长,清洗时间点由人工观察判断;机器人清洗的场景受限,适应性差。同时发明人发现,目前没有成熟的灰尘检测及清洗时间点判断的智能预警系统,无法给出清洗收益指标。
因此,如何提供一种光伏电站的清洗方法及系统,能够自动进行清洗预警,是本领域技术人员亟待解决的一大技术难题。
发明内容
有鉴于此,本发明实施例提供了一种光伏电站的清洗方法,能够自动进行清洗预警。
为实现上述目的,本发明实施例提供如下技术方案:
一种光伏电站的清洗方法,应用于光伏电站的清洗系统,所述清洗系统包括灰尘损失度检测模块以及清洗时间控制模块,所述清洗方法包括:
获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据,所述天气数据至少包括所述待清洗光伏电站所在地的实时气象数据以及所述待清洗光伏电站所在地的预报气象数据;
基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间;
按照所述目标清洗时间,对所述待清洗光伏电站进行清洗。
可选的,所述获取待清洗光伏电站的灰尘损失度,包括:
采集所述待清洗光伏电站中干净组件的第一短路电流以及灰尘组件的第二短路电流;
对所述第一短路电流以及所述第二短路电流进行数据清洗,得到目标采样数据;
基于所述目标采样数据,确定出所述灰尘损失度。
可选的,所述对所述第一短路电流以及所述第二短路电流进行数据清洗,得到目标采样数据,包括:
确定所述第一短路电流以及所述第二短路电流大于第一预设短路电流阈值的短路电流为第一目标数据;
获取所述待清洗光伏电站进行预设时间的空白试验对应的干净组件的第三短路电流以及灰尘组件的第四短路电流,确定所述第三短路电流以及所述第四短路电流大于所述第一预设短路电流阈值的短路电流为第二目标数据,确定所述第一目标数据与所述第二目标数据的标准差在预设范围的短路电流为第三目标数据;
创建所述标准差与所述第二目标数据的散点分布图,获取所述散点分布图中离散度转折点对应的短路电流为第四目标数据,确定所述第四目标数据大于第二预设短路电流阈值的短路电流为第五目标数据。
可选的,所述基于所述目标采样数据,确定出所述灰尘损失度,包括:
判断所述第一目标数据的持续时间是否大于第一预设时间,如果否,确定前一天的灰尘损失度为所述灰尘损失度;
如果是,当所述第三目标数据的持续时间小于所述第一预设时间时,基于所述第三目标数据,确定平均灰尘损失度为所述灰尘损失度,当所述第三目标数据的持续时间大于所述第一预设时间时,基于所述第五目标数据,确定出所述灰尘损失度。
可选的,所述基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
基于所述灰尘损失度、历史辐照度、预设光伏发电物理模型以及电价,确定出历史灰尘收益损耗;
基于预测灰尘损失度、预测辐照度、所述预设光伏发电物理模型以及所述电价,确定出未来灰尘收益损耗;
获取所述待清洗光伏电站的单次清洗成本;
基于所述历史灰尘收益损耗、所述未来灰尘收益损耗、所述单次清洗成本以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。
可选的,确定所述预测灰尘损失度以及所述预测辐照度,包括:
基于所述灰尘损失度以及所述预报气象数据,确定所述预测灰尘损失度;
基于所述历史辐照度以及所述预报气象数据,确定所述预测辐照度。
可选的,还包括:
确定多个所述历史灰尘损失度中,符合第一预设条件的所述灰尘损失度为目标灰尘损失度;
确定所述目标灰尘损失度对应的日期为历史清洗时间点。
可选的,所述基于所述历史灰尘收益损耗、所述未来灰尘收益损耗、所述单次清洗成本以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
根据公式
Figure BDA0002002421110000031
确定出间隔n天喷水后的收益损失日平均值,其中,c(n)为间隔n天喷水后的收益损失日平均值,A为所述单次清洗成本,f(t)为灰尘收益损耗的时间函数,d为所述历史清洗时间点,k为预报气象数据可信时间长度,所述灰尘收益损耗的时间函数基于所述历史灰尘收益损耗以及所述未来灰尘收益损耗确定;
确定k天内,所述收益损失日平均值的最小值对应的时间点为第一目标清洗时间,所述第一目标清洗时间小于等于k;
基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。
可选的,所述基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
当所述第一目标清洗时间小于k时,判断k天所述预报气象数据中是否包含雨天,如果是,确定所述雨天对应的时间点为第二目标清洗时间;
计算所述第一目标清洗时间与所述第二目标清洗时间的时间间隔对应的清洗收益;
当所述清洗收益大于所述单次清洗成本时,确定所述第一目标清洗时间为所述目标清洗时间;当所述清洗收益小于等于所述单次清洗成本时,控制所述第二目标清洗时间内不进行清洗;
如果否,确定所述第一目标清洗时间为所述目标清洗时间。
可选的,所述基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,还包括:
当所述第一目标清洗时间等于k时,根据公式
Figure BDA0002002421110000041
计算得到第三目标清洗时间,其中,r为所述历史灰尘收益损耗对应的斜率,A为所述单次清洗成本,k1为第三目标清洗时间;
确定所述第三目标清洗时间为所述目标清洗时间。
一种光伏电站的清洗系统,包括灰尘损失度检测模块、清洗时间控制模块以及执行模块,
所述灰尘损失度检测模块用于,获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据,所述天气数据至少包括所述待清洗光伏电站所在地的实时气象数据以及所述待清洗光伏电站所在地的预报气象数据;
所述清洗时间控制模块用于,基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间;
所述执行模块用于,按照所述目标清洗时间,对所述待清洗光伏电站进行清洗。
基于上述技术方案,本发明实施例提供了一种光伏电站的清洗方法,应用于光伏电站的清洗系统,所述清洗系统包括灰尘损失度检测模块以及清洗时间控制模块,该清洗方法首先获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据。并基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。然后按照所述目标清洗时间,对所述待清洗光伏电站进行清洗。可见,本方案提供了一种光伏电站的清洗方法,能够计算出目标清洗时间,自动进行清洗预警。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种光伏电站的清洗方法的流程示意图;
图2为本发明实施例提供的一种光伏电站的清洗方法的又一流程示意图;
图3为本发明实施例提供的一种光伏电站的清洗方法的又一流程示意图;
图4为本发明实施例提供的一种光伏电站的清洗方法的又一流程示意图;
图5为本发明实施例提供的一种光伏电站的清洗方法的又一流程示意图;
图6为本发明实施例提供的一种光伏电站的清洗系统的框架图;
图7为本发明实施例提供的一种光伏电站的清洗方法应用的实施例的示意图。
具体实施方式
正如背景技术所述,现有技术中通常采用如下方法进行灰尘度测试:
1.组件短路电流比较法:检测干净组件与灰尘组件短路电流,然后通过计算得出灰尘损失度,运用每天水洗的方式保持干净组件的洁净度;
2.直测法:通过特定光源照射灰尘玻璃,并用光敏元件接收散射和反射的光强,从而计算灰尘损失度。
常用的确定清洗时间点的方法如下:
1.灰尘损失阈值方法:测量灰尘损失度,计算灰尘造成的发电量收益损失,再结合清洗成本,制定清洗的灰尘损失度阈值,当灰尘损失度或灰尘造成的发电量累积收益损失到达阈值后则进行清洗提示。
2.收益最大化方法:测量灰尘损失度,结合气象数据采用平均替代的方法,计算一个清洗周期内的光伏电站总发电量收益函数与清洗成本函数之差的日均最大值,得出最佳的清洗周期。
3.灰尘损失加清洗成本最小值:测量灰尘损失度,通过灰尘损失度等环境数据计算灰尘造成的收益损失,在结合清洗成本,计算总经济损失的最小值,得出最佳的清洗周期。
然而,发明人发现,上述测试方法均存在一定的缺陷,如下:
灰尘检测方法:
1.短路电流比较法:数据处理方法较为简单,只剔除了相对误差为负数的情况,未能根据不同天气类型进行数据剔除,在天气变化时的准确度差。
2.直测法:只能得到灰尘透光率的损失,不能直接表征灰尘带来发电量的损失。
清洗时间点判断方法:
1.通过阈值确定清洗周期,可能会导致资源浪费。
2.收益最大化的方法:该方法后一个清洗周期内日理论发电量近似成一个定值,灰尘遮挡损失也近似成线性增加。其无法表征日发电量随天气动态变化、灰尘累积动态变化的过程。
3.灰尘损失加清洗成本最小值:把灰尘带来的收益损失率(即灰尘造成电站的收益损失在时间轴上的斜率)近似成线性,在天气变化剧烈或多雨的季节会造成很大的偏差。
有鉴于此,请参阅图1,图1为本发明实施例提供的一种光伏电站的清洗方法的流程示意图,该清洗方法应用于光伏电站的清洗系统,所述清洗系统包括灰尘损失度检测模块以及清洗时间控制模块,所述清洗方法包括:
S11、获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据;
其中,所述天气数据至少包括所述待清洗光伏电站所在地的实时气象数据以及所述待清洗光伏电站所在地的预报气象数据。
S12、基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间;
S13、按照所述目标清洗时间,对所述待清洗光伏电站进行清洗。
即,本清洗方法基于灰尘损失度检测模块以及清洗时间控制模块。其中,灰尘损失度检测用于检测现场组件的积灰造成的发电量损失情况,经过检测计算后把损失度的数据传送给清洗时间控制模块。清洗时间控制模块计算出目标清洗时间作为最佳的清洗时间点,并且判断当日是否需要清洗,输出清洗指令,对所述待清洗光伏电站进行清洗。
具体的,如图2所示,本实施提供了一种所述获取待清洗光伏电站的灰尘损失度的具体实现方式,包括:
S21、采集所述待清洗光伏电站中干净组件的第一短路电流以及灰尘组件的第二短路电流;
S22、对所述第一短路电流以及所述第二短路电流进行数据清洗,得到目标采样数据;
其中,如图3所示,本实施还提供了一种对所述第一短路电流以及所述第二短路电流进行数据清洗,得到目标采样数据的具体实现方法,如下:
S31、确定所述第一短路电流以及所述第二短路电流大于第一预设短路电流阈值的短路电流为第一目标数据;
S32、获取所述待清洗光伏电站进行预设时间的空白试验对应的干净组件的第三短路电流以及灰尘组件的第四短路电流,确定所述第三短路电流以及所述第四短路电流大于所述第一预设短路电流阈值的短路电流为第二目标数据,确定所述第一目标数据与所述第二目标数据的标准差在预设范围的短路电流为第三目标数据;
S33、创建所述标准差与所述第二目标数据的散点分布图,获取所述散点分布图中离散度转折点对应的短路电流为第四目标数据,确定所述第四目标数据大于第二预设短路电流阈值的短路电流为第五目标数据。
S23、基于所述目标采样数据,确定出所述灰尘损失度。
相应的,如图4所示,本实施例还提供了一种基于所述目标采样数据,确定出所述灰尘损失度的具体实现方法,如下:
S41、判断所述第一目标数据的持续时间是否大于第一预设时间;
S42、如果否,确定前一天的灰尘损失度为所述灰尘损失度;
S43、如果是,当所述第三目标数据的持续时间小于所述第一预设时间时,基于所述第三目标数据,确定平均灰尘损失度为所述灰尘损失度,当所述第三目标数据的持续时间大于所述第一预设时间时,基于所述第五目标数据,确定出所述灰尘损失度。
示意性的,对每天的两组短路电流数据进行清洗,进行三次数据清洗。
第一步清洗:设置短路电流阈值I1(为组件标定电流的十分之一左右),清洗短路电流小于阈值的数据(按组清除)——去除光照太弱,逆变器还没有启动时记录的数据;
第二步清洗:进行一段时间的空白试验并进行第一步清洗,采用正太分布的方法,计算两组电流相对误差的标准差,取置信区间(-2σ—2σ)的数据;
第三步清洗:考虑到电流的绝对值小时造成相对误差的准确度变差,因此每天的数据进行第一步清洗后,同样采用正太分布的方法,计算两组电流相对误差的方差与短路电流的散点分布图,找出离散度转折点对应的短路电流I2,清洗短路电流小于阈值I2的数据。
具体的,如第一步清洗后数据的持续时间不足第一预设时间,如2小时,则灰尘损失度取上一天的灰尘损失度,如进行完一二三步的数据清洗后,数据的持续时间不足第一预设时间,则只进行一二步清洗,计算平均灰尘损失度,如数据的持续时间大于第一预设时间,则进行一二三步的数据清洗后再计算灰尘损失度。
在此基础上,如图5所示,本实施还提供了一种基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间的具体实现方式,包括:
S51、基于所述灰尘损失度、历史辐照度、预设光伏发电物理模型以及电价,确定出历史灰尘收益损耗;
S52、基于预测灰尘损失度、预测辐照度、所述预设光伏发电物理模型以及所述电价,确定出未来灰尘收益损耗;
其中,可以基于所述灰尘损失度以及所述预报气象数据,确定所述预测灰尘损失度。基于所述历史辐照度以及所述预报气象数据,确定所述预测辐照度。
S53、获取所述待清洗光伏电站的单次清洗成本;
S54、基于所述历史灰尘收益损耗、所述未来灰尘收益损耗、所述单次清洗成本以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。
具体的,结合图6,图6为本发明实施例提供的一种光伏电站的清洗系统的框架图,该光伏电站的清洗系统包含历史灰尘收益损耗计算模块、未来收益损耗预测模块,天气处理程序及最佳清洗时间点计算四个模块。其输入数据有:来自灰尘检测装置的灰尘损失度,来自气象仪的辐照度数据,来自天气预报的天气类型数据、气温数据和风力数据,及来自人工设定的电价数据、单次清洗成本数据。
首先,确定多个所述历史灰尘损失度中,符合第一预设条件的所述灰尘损失度为目标灰尘损失度。然后确定所述目标灰尘损失度对应的日期为历史清洗时间点。
需要说明的是,实际情况中上次清洗时间点可能是真正的清洗活动,也可能是下雨带来的清洗效果。因此根据历史灰尘损失度,从今天往前寻找灰尘损失度突降的点作为上次的清洗时间点(历史清洗时间点)。
其次,确定上次清洗时间点后,历史灰尘收益损耗计算模块把历史灰尘损失度、历史辐照度、温度、电价带入光伏发电物理模型,计算出间隔天数d天的历史灰尘收益损耗。
未来灰尘收益损耗计算模块根据历史灰尘损失度和天气预报预测未来灰尘损失度,根据历史辐照度和天气预报预测未来辐照度(如有功率预测系统可直接取数值天气预报中的预测辐照度),然后把未来灰尘损失度、未来辐照度、预报温度和电价带入光伏发电物理模型计算出未来灰尘收益损耗。
然后,基于所述历史灰尘收益损耗、所述未来灰尘收益损耗、所述单次清洗成本以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。
具体的,根据公式
Figure BDA0002002421110000091
确定出间隔n天喷水后的收益损失日平均值。
其中,c(n)为间隔n天喷水后的收益损失日平均值,A为所述单次清洗成本,f(t)为灰尘收益损耗的时间函数,d为所述历史清洗时间点,k为预报气象数据可信时间长度,所述灰尘收益损耗的时间函数基于所述历史灰尘收益损耗以及所述未来灰尘收益损耗确定。
然后,确定k天内,所述收益损失日平均值的最小值对应的时间点为第一目标清洗时间,所述第一目标清洗时间小于等于k,例如,c(2)最小,则认为第二天为第一目标清洗时间。
之后,结合图7,基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。
具体的,基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
当所述第一目标清洗时间小于k时,判断k天所述预报气象数据中是否包含雨天,如果是,确定所述雨天对应的时间点为第二目标清洗时间;
计算所述第一目标清洗时间与所述第二目标清洗时间的时间间隔对应的清洗收益;
当所述清洗收益大于所述单次清洗成本时,确定所述第一目标清洗时间为所述目标清洗时间;当所述清洗收益小于等于所述单次清洗成本时,控制所述第二目标清洗时间内不进行清洗;
如果否,确定所述第一目标清洗时间为所述目标清洗时间。
除此,基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,还包括:
当所述第一目标清洗时间等于k时,根据公式
Figure BDA0002002421110000101
计算得到第三目标清洗时间,其中,r为所述历史灰尘收益损耗对应的斜率,A为所述单次清洗成本,k1为第三目标清洗时间;
确定所述第三目标清洗时间为所述目标清洗时间。
可见,本方案提供了一种光伏电站的清洗方法,能够采用短路电流比较法进行灰尘检测,并根据采集到的电流数据的不同进行数据剔除处理,增加其准确度,特别是在天气变化时的准确度。然后采用光伏发电的物理模型,结合天气预报,灰尘检测数据,单次清洗成本,计算清洗时间点——在灰尘损失加清洗成本最小值线性法的基础上加上逐天校验法,比较计算结果给出最优解。
之后,利用逐天校验法,判断当天是否清洗,并给出清洗指令。最后,控制逻辑接收到清洗指令后执行清洗动作,实现了自动进行清洗预警。
在上述实施例的基础上,本实施例还提供了一种光伏电站的清洗系统,包括灰尘损失度检测模块、清洗时间控制模块以及执行模块,
所述灰尘损失度检测模块用于,获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据,所述天气数据至少包括所述待清洗光伏电站所在地的实时气象数据以及所述待清洗光伏电站所在地的预报气象数据;
所述清洗时间控制模块用于,基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间;
所述执行模块用于,按照所述目标清洗时间,对所述待清洗光伏电站进行清洗。
该光伏电站的清洗系统的工作原理请参见上述方法实施例,在此不进行重复叙述。
综上,本发明实施例提供了一种光伏电站的清洗方法,应用于光伏电站的清洗系统,所述清洗系统包括灰尘损失度检测模块以及清洗时间控制模块,该清洗方法首先获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据。并基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。然后按照所述目标清洗时间,对所述待清洗光伏电站进行清洗。可见,本方案提供了一种光伏电站的清洗方法,能够计算出目标清洗时间,自动进行清洗预警。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种光伏电站的清洗方法,其特征在于,应用于光伏电站的清洗系统,所述清洗系统包括灰尘损失度检测模块以及清洗时间控制模块,所述清洗方法包括:
获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据,所述天气数据至少包括所述待清洗光伏电站所在地的实时气象数据以及所述待清洗光伏电站所在地的预报气象数据;
基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间;
按照所述目标清洗时间,对所述待清洗光伏电站进行清洗;
所述基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
根据预设公式
Figure FDA0002571147000000011
确定出间隔n天喷水后的收益损失日平均值,其中,c(n)为间隔n天喷水后的收益损失日平均值,A为单次清洗成本,f(t)为灰尘收益损耗的时间函数,d为历史清洗时间点,k为预报气象数据可信时间长度,所述灰尘收益损耗的时间函数基于历史灰尘收益损耗以及未来灰尘收益损耗确定;
确定k天内,所述收益损失日平均值的最小值对应的时间点为第一目标清洗时间;
基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的所述目标清洗时间。
2.根据权利要求1所述的光伏电站的清洗方法,其特征在于,所述获取待清洗光伏电站的灰尘损失度,包括:
采集所述待清洗光伏电站中干净组件的第一短路电流以及灰尘组件的第二短路电流;
对所述第一短路电流以及所述第二短路电流进行数据清洗,得到目标采样数据;
基于所述目标采样数据,确定出所述灰尘损失度。
3.根据权利要求2所述的光伏电站的清洗方法,其特征在于,所述对所述第一短路电流以及所述第二短路电流进行数据清洗,得到目标采样数据,包括:
确定所述第一短路电流以及所述第二短路电流大于第一预设短路电流阈值的短路电流为第一目标数据;
获取所述待清洗光伏电站进行预设时间的空白试验对应的干净组件的第三短路电流以及灰尘组件的第四短路电流,确定所述第三短路电流以及所述第四短路电流大于所述第一预设短路电流阈值的短路电流为第二目标数据,确定所述第一目标数据与所述第二目标数据的标准差在预设范围的短路电流为第三目标数据;
创建所述标准差与所述第二目标数据的散点分布图,获取所述散点分布图中离散度转折点对应的短路电流为第四目标数据,确定所述第四目标数据大于第二预设短路电流阈值的短路电流为第五目标数据。
4.根据权利要求3所述的光伏电站的清洗方法,其特征在于,所述基于所述目标采样数据,确定出所述灰尘损失度,包括:
判断所述第一目标数据的持续时间是否大于第一预设时间,如果否,确定前一天的灰尘损失度为所述灰尘损失度;
如果是,当所述第三目标数据的持续时间小于所述第一预设时间时,基于所述第三目标数据,确定平均灰尘损失度为所述灰尘损失度,当所述第三目标数据的持续时间大于所述第一预设时间时,基于所述第五目标数据,确定出所述灰尘损失度。
5.根据权利要求1所述的光伏电站的清洗方法,其特征在于,所述基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
基于所述灰尘损失度、历史辐照度、预设光伏发电物理模型以及电价,确定出历史灰尘收益损耗;
基于预测灰尘损失度、预测辐照度、所述预设光伏发电物理模型以及所述电价,确定出未来灰尘收益损耗;
获取所述待清洗光伏电站的单次清洗成本;
基于所述历史灰尘收益损耗、所述未来灰尘收益损耗、所述单次清洗成本以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间。
6.根据权利要求5所述的光伏电站的清洗方法,其特征在于,确定所述预测灰尘损失度以及所述预测辐照度,包括:
基于所述灰尘损失度以及所述预报气象数据,确定所述预测灰尘损失度;
基于所述历史辐照度以及所述预报气象数据,确定所述预测辐照度。
7.根据权利要求5所述的光伏电站的清洗方法,其特征在于,还包括:
确定多个所述灰尘损失度中,符合第一预设条件的所述灰尘损失度为目标灰尘损失度;
确定所述目标灰尘损失度对应的日期为历史清洗时间点。
8.根据权利要求7所述的光伏电站的清洗方法,其特征在于,所述基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:
当所述第一目标清洗时间小于k时,判断k天所述预报气象数据中是否包含雨天,如果是,确定所述雨天对应的时间点为第二目标清洗时间;
计算所述第一目标清洗时间与所述第二目标清洗时间的时间间隔对应的清洗收益;
当所述清洗收益大于所述单次清洗成本时,确定所述第一目标清洗时间为所述目标清洗时间;当所述清洗收益小于等于所述单次清洗成本时,控制所述第二目标清洗时间内不进行清洗;
如果否,确定所述第一目标清洗时间为所述目标清洗时间。
9.根据权利要求8所述的光伏电站的清洗方法,其特征在于,所述基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,还包括:
当所述第一目标清洗时间等于k时,根据公式
Figure FDA0002571147000000041
计算得到第三目标清洗时间,其中,r为所述历史灰尘收益损耗对应的斜率,A为所述单次清洗成本,k1为第三目标清洗时间;
确定所述第三目标清洗时间为所述目标清洗时间。
10.一种光伏电站的清洗系统,其特征在于,包括灰尘损失度检测模块、清洗时间控制模块以及执行模块,
所述灰尘损失度检测模块用于获取待清洗光伏电站的灰尘损失度以及待清洗光伏电站所在地的天气数据,所述天气数据至少包括所述待清洗光伏电站所在地的实时气象数据以及所述待清洗光伏电站所在地的预报气象数据;
所述清洗时间控制模块用于基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间;
所述执行模块用于按照所述目标清洗时间,对所述待清洗光伏电站进行清洗,所述基于所述灰尘损失度以及所述天气数据,确定出所述待清洗光伏电站的目标清洗时间,包括:根据预设公式
Figure FDA0002571147000000042
确定出间隔n天喷水后的收益损失日平均值,其中,c(n)为间隔n天喷水后的收益损失日平均值,A为单次清洗成本,f(t)为灰尘收益损耗的时间函数,d为历史清洗时间点,k为预报气象数据可信时间长度,所述灰尘收益损耗的时间函数基于历史灰尘收益损耗以及未来灰尘收益损耗确定;确定k天内,所述收益损失日平均值的最小值对应的时间点为第一目标清洗时间;基于所述第一目标清洗时间以及所述天气数据,确定出所述待清洗光伏电站的所述目标清洗时间。
CN201910217174.6A 2019-03-21 2019-03-21 一种光伏电站的清洗方法及系统 Active CN109787552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910217174.6A CN109787552B (zh) 2019-03-21 2019-03-21 一种光伏电站的清洗方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910217174.6A CN109787552B (zh) 2019-03-21 2019-03-21 一种光伏电站的清洗方法及系统

Publications (2)

Publication Number Publication Date
CN109787552A CN109787552A (zh) 2019-05-21
CN109787552B true CN109787552B (zh) 2020-11-10

Family

ID=66490166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910217174.6A Active CN109787552B (zh) 2019-03-21 2019-03-21 一种光伏电站的清洗方法及系统

Country Status (1)

Country Link
CN (1) CN109787552B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266095B (zh) * 2019-07-24 2021-07-13 合肥阳光新能源科技有限公司 一种光伏发电系统及其清洗控制方法
CN110649883B (zh) * 2019-09-29 2021-09-10 合肥阳光新能源科技有限公司 清洗方法、装置和计算机设备
CN111245355B (zh) * 2020-01-14 2021-10-22 合肥阳光新能源科技有限公司 清洗装置的控制方法、清洗装置及可读存储介质
TWI740649B (zh) * 2020-09-17 2021-09-21 行政院原子能委員會核能研究所 找出發電設備的最佳清理時間點之方法
CN112520266A (zh) * 2020-12-14 2021-03-19 佛山市金净创环保技术有限公司 一种自动清洁的垃圾桶
CN113420197B (zh) * 2021-06-15 2024-03-26 深圳市朗驰欣创科技股份有限公司 光伏组件清洗检测方法、装置、终端设备及存储介质
CN113437939B (zh) * 2021-06-25 2023-01-10 阳光新能源开发股份有限公司 表征灰尘引起发电量损失的方法和积灰检测系统
CN114048434A (zh) * 2021-11-05 2022-02-15 合肥阳光智维科技有限公司 清洗光伏组件的决策方法、评价方法、装置及清洗系统
CN114118550A (zh) * 2021-11-15 2022-03-01 新奥数能科技有限公司 一种分布式光伏电站的清洗策略确定方法及装置
CN115392791B (zh) 2022-10-21 2023-01-24 成都秦川物联网科技股份有限公司 基于物联网的智慧城市公用设施管理方法、系统和介质
CN117057782B (zh) * 2023-09-07 2024-09-06 港华数智能源科技(深圳)有限公司 光伏组件的清洁周期计算方法、系统及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671488B2 (ja) * 2012-03-14 2015-02-18 東京エレクトロン株式会社 太陽電池モジュールの効能監視システム及びその監視方法
US20170194906A1 (en) * 2015-12-31 2017-07-06 UKC Electronics (H.K.) Co., Ltd. Method and system for determining time point to clean solar cell module and solar cell module system by using the same
CN106529723A (zh) * 2016-11-10 2017-03-22 上海许继电气有限公司 基于监控平台实现光伏电站清洗周期估计的方法
CN107133713A (zh) * 2017-03-13 2017-09-05 华电电力科学研究院 一种光伏电站智能清洗决策系统的建立方法
CN107679672A (zh) * 2017-10-20 2018-02-09 中冶华天南京电气工程技术有限公司 一种基于积尘发电损失预测的光伏电站清洗时机辅助决策方法
CN108111124A (zh) * 2018-01-18 2018-06-01 中兴能源(天津)有限公司 一种光伏组件灰尘遮挡检测系统
CN108399493B (zh) * 2018-02-02 2022-07-12 上海电气分布式能源科技有限公司 积灰致光伏发电量损失预测方法及光伏组件清洗判断方法
CN108960453B (zh) * 2018-07-31 2022-03-08 江苏林洋新能源科技有限公司 光伏电站积灰经济清洗计算方法

Also Published As

Publication number Publication date
CN109787552A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109787552B (zh) 一种光伏电站的清洗方法及系统
CN111614316B (zh) 光伏系统发电状态监测方法及其装置
CN108399493B (zh) 积灰致光伏发电量损失预测方法及光伏组件清洗判断方法
US10956629B2 (en) Estimation of soiling losses for photovoltaic systems from measured and modeled inputs
US20150142347A1 (en) Solar Energy Disaggregation Techniques for Whole-House Energy Consumption Data
CN112871938B (zh) 一种光伏电站清扫监控一体化管理系统
CN108537357B (zh) 基于降额因子的光伏发电量损失预测方法
CN118013450B (zh) 一种基于太阳总辐射计算的光伏优化系统
CN112286993A (zh) 一种光伏电站中发电异常组串的检测方法及装置
CN116690613B (zh) 一种光伏智能清扫机器人的控制方法及系统
CN115392494A (zh) 一种智能化光伏清灰方法及系统
CN116505663B (zh) 一种农场用电安全状态监测预警系统
CN111222763A (zh) 一种光伏组件清洗决策工具
CN118168547A (zh) 基于电机电流数据分析的轨道式光伏清洁机器人位置检测方法
CN117498785A (zh) 一种光伏组件的表面污染处理方法、装置以及设备
CN112016260B (zh) 基于光伏组件i-v曲线的热斑电池片温度估算方法、装置及存储介质
CN113591034A (zh) 确定清洗间隔时间的方法、装置、设备和可读存储介质
CN116304872A (zh) 低效光伏逆变器组件的识别方法、系统、设备及存储介质
Gao et al. What's Wrong with my Solar Panels: a Data-Driven Approach.
Hooda et al. PV power predictors for condition monitoring
CN115545966A (zh) 一种光伏组串电量损失分析与识别方法及其存储介质
CN115310839A (zh) 一种光伏电站积灰预警评估方法和系统
Hwang et al. Soiling detection for photovoltaic modules based on an intelligent method with image processing
CN113420197A (zh) 光伏组件清洗检测方法、装置、终端设备及存储介质
Azad et al. A data lens into MPPT efficiency and PV power prediction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: High tech Zone of Hefei city of Anhui Province in 230088 Lake Road No. 2

Patentee after: Sunshine New Energy Development Co.,Ltd.

Address before: High tech Zone of Hefei city of Anhui Province in 230088 Lake Road No. 2

Patentee before: Sunshine New Energy Development Co.,Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: High tech Zone of Hefei city of Anhui Province in 230088 Lake Road No. 2

Patentee after: Sunshine New Energy Development Co.,Ltd.

Address before: 230088 6th floor, R & D center building, no.1699 Xiyou Road, high tech Zone, Hefei City, Anhui Province

Patentee before: HEFEI SUNGROW RENEWABLE ENERGY SCI. & TECH. Co.,Ltd.