CN109782230B - Free sound field small-sized acoustic holographic measurement and inversion device - Google Patents

Free sound field small-sized acoustic holographic measurement and inversion device Download PDF

Info

Publication number
CN109782230B
CN109782230B CN201910082823.6A CN201910082823A CN109782230B CN 109782230 B CN109782230 B CN 109782230B CN 201910082823 A CN201910082823 A CN 201910082823A CN 109782230 B CN109782230 B CN 109782230B
Authority
CN
China
Prior art keywords
bearing
microphone
microphone array
screw
screw rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910082823.6A
Other languages
Chinese (zh)
Other versions
CN109782230A (en
Inventor
伍松
吴小龙
韦红霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liuzhou Zhanhong Technology Co ltd
Guangxi University of Science and Technology
Original Assignee
Liuzhou Zhanhong Technology Co ltd
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liuzhou Zhanhong Technology Co ltd, Guangxi University of Science and Technology filed Critical Liuzhou Zhanhong Technology Co ltd
Priority to CN201910082823.6A priority Critical patent/CN109782230B/en
Publication of CN109782230A publication Critical patent/CN109782230A/en
Application granted granted Critical
Publication of CN109782230B publication Critical patent/CN109782230B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Holo Graphy (AREA)

Abstract

本发明一种自由声场小型声全息测量及反演装置,涉及一种声学测试及声学反演装置,该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;该装置安装与调试都比较简单,测量及反演计算可以减少大量的人力与物力,可以减轻人们的劳动强度,能提高测量数据的精度与反演计算的结果的准确性,同时特别能适合于大型自由复杂稳定声场的现场作业。

Figure 201910082823

The present invention is a free sound field small-scale acoustic holographic measurement and inversion device, which relates to an acoustic test and acoustic inversion device. The device includes a whole device support adjustment mechanism I, a microphone array longitudinal motion control mechanism II, and a microphone array rotary motion control mechanism III. Microphone array vertical motion control mechanism IV, microphone array lateral motion control mechanism V, microphone correction control mechanism VI, virtual ball setting reference position positioning measurement column VII; the installation and debugging of this device are relatively simple, and the measurement and inversion calculation can be Reducing a lot of manpower and material resources can reduce people's labor intensity, improve the accuracy of measurement data and inversion calculation results, and is especially suitable for large-scale free, complex and stable field operations.

Figure 201910082823

Description

一种自由声场小型声全息测量及反演装置A small acoustic holographic measurement and inversion device in free sound field

技术领域Technical Field

本发明涉及一种声学测量及反演装置,特别是一种自由声场小型声全息测量及反演新装置。The invention relates to an acoustic measurement and inversion device, in particular to a new free-sound-field small-scale acoustic holographic measurement and inversion device.

背景技术Background Art

近场声全息技术是近年来声学研究的热点,通过近场声全息技术(NAH),可以较精确地进行声源识别和定位,运用这种技术可以实现近场声场重建与可视化,因此,NAH技术的研究对于抑制噪声污染具有非常重大的现实意义,NAH技术的关键是如何测得全息面上的复声压分布及如何利用全息面上复声压对自由声场进行声学反演,而现有的测试装置及反演装置都比较笨重,调试安装都非常麻烦,工作量非常大,需要大量的人力与物力,而且测试结果一般不能现场完成,反演计算需要回到实验室进行处理,因此有必要发明一种小型,轻量化的新型多全息测试及反演的新装置,该装置在相应的智能控制系统不是本发明的重点,这里不详细说明,见与本发明同日申请的该装置的智能控制系统)的控制下,能自动调试,自动校正,自动测试,现场自动计算反演结果,以减少大量的人力与物力,减轻人们的劳动强度,同时特别能适合大型复杂自由稳定声场的现场作业。Near-field acoustic holography technology has been a hot topic in acoustic research in recent years. Through near-field acoustic holography (NAH), sound source identification and positioning can be performed more accurately. This technology can be used to achieve near-field sound field reconstruction and visualization. Therefore, the research on NAH technology has very important practical significance for suppressing noise pollution. The key to NAH technology is how to measure the complex sound pressure distribution on the holographic surface and how to use the complex sound pressure on the holographic surface to acoustically invert the free sound field. However, the existing test devices and inversion devices are relatively bulky, and debugging and installation are very troublesome. The workload is very large, requiring a large amount of manpower and material resources, and the test results generally cannot be completed on-site. The inversion calculation needs to be returned to the laboratory for processing. Therefore, it is necessary to invent a small, lightweight new multi-holographic testing and inversion device. The device is under the control of the corresponding intelligent control system (which is not the focus of the present invention and is not described in detail here, see the intelligent control system of the device applied for on the same day as the present invention). It can automatically debug, automatically calibrate, automatically test, and automatically calculate the inversion results on-site to reduce a large amount of manpower and material resources and reduce people's labor intensity. At the same time, it is particularly suitable for on-site operations in large, complex, free and stable sound fields.

发明内容Summary of the invention

本发明的目的是钍对现有技术的的缺陷提,供一种小型、轻量化的新的声压测试及声学反演装置,该装置安装与调试都比较简单,测量时可以进行各种全息面的选择,测量与声学反演时可以减少大量的人力与物力,可以减轻人们的劳动强度,同时数据测量时采用新的校正与计算方法,大大提高了测量数据的精度,另外测量与反演装置采用了嵌入式系统,可以使装置做得很小,特别是在嵌入式系统中采用了并行处理技术,可以现场得到计算结果,所以别能适合现场作业。The purpose of the present invention is to provide a small and lightweight new sound pressure testing and acoustic inversion device to address the defects of the prior art. The device is relatively simple to install and debug, and various holographic surfaces can be selected during measurement. A large amount of manpower and material resources can be reduced during measurement and acoustic inversion, and people's labor intensity can be reduced. At the same time, new correction and calculation methods are used during data measurement, which greatly improves the accuracy of measurement data. In addition, the measurement and inversion device uses an embedded system, which can make the device very small. In particular, parallel processing technology is used in the embedded system, and calculation results can be obtained on-site, so it is particularly suitable for on-site operations.

为达到上述目的,本发明采用的技术方案是:一种自由声场小型声全息测量及反演装置,该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;所述的整个装置支撑调整机构I包括调节支撑I、调节支撑II、调节支撑III,三个调节支撑分别通过各自的丝杆电机与底座板上的螺孔相连,底座板上设有固定配重圆台,固定配重圆台固定在底座板上,底座板上还设有水平位置传感器K1,水平位置传感器K2,固定配重圆台上表面与立式支撑杆相连,立式支撑杆上端与纵向及旋转运动组件安装平台相连,立式支撑杆上端还设有激光接收器,纵向及旋转运动组件安装平台侧面设有电器箱与微型液晶显示触摸屏;所述的传声器阵列旋转运动控制机构III包括设在纵向及旋转运动组件安装平台下面的第一步进电机D1、第二步进电机D2,第一步进电机D1通过轴承与设在纵向及旋转运动组件安装平台的上异形齿轮副I其中一个齿轮相连,第二步进电机D2通过轴承与异形齿轮副I的另一个齿轮相连,异形齿轮副I通过设在纵向及旋转运动组件安装平台的机械连接组件分别与纵向运动控制机构II的纵向运动组件S1、纵向运动组件S2相连;所述的传声器阵列纵向运动控制机构II包括纵向运动组件S1、纵向运动组件S2、它们分别通过机械连接组件与异形齿轮副I相连,纵向运动组件S1还通过它的丝杆套I与坚向运动组件S1的机架G3相连,纵向运动组件S2还通过它的丝杆套II与坚向运动组件S2的机架G4相连;所述的传声器阵列竖向运动控制机构IV包括竖向运动组件S1、竖向运动组件S2,竖向运动组件S1通过其丝杆套III与传声器阵列横向运动控制机构V的传声器阵列主安装臂S2的基体T2相连,竖向运动组件S2通过其丝杆套IV与传声器阵列横向运动控制机构V的传声器阵列主安装臂S1的基体T1相连;所述的传声器阵列横向运动控制机构V包括传声器阵列主安装臂S1、传声器阵列主安臂S2、多条传声器阵列分安装臂、多个传声器组成,传声器阵列分安装臂分别安装在传声器阵列主安装臂S1、传声器阵列主安装臂S2上,传声器安装在传声器阵列分安装臂上;所述的传声器校正控制机构VI包括传声器校正机构I和传声器校正机构II,传声器校正机构I和传声器校正机构II分别固定竖向运动组件S2、竖向运动组件S1上;所述的调节支撑I包括丝杆电机M1、基座I,丝杆电机M1装在基座I里,调节支撑II包括丝杆电机M2、基座II,丝杆电机M2装在基座II里,调节支撑III包括丝杆电机M3、基座III,丝杆电机M3装在基座III里。To achieve the above-mentioned purpose, the technical solution adopted by the present invention is: a free-field small-scale acoustic holographic measurement and inversion device, which includes a support adjustment mechanism I for the entire device, a microphone array longitudinal motion control mechanism II, a microphone array rotational motion control mechanism III, a microphone array vertical motion control mechanism IV, a microphone array lateral motion control mechanism V, a microphone correction control mechanism VI, and a virtual ball setting reference position positioning measurement column VII; the support adjustment mechanism I for the entire device includes an adjustment support I, an adjustment support II, and an adjustment support III, and the three adjustment supports are respectively connected to the screw holes on the base plate through their own screw motors, and a fixed counterweight round table is provided on the base plate, and the fixed counterweight round table is fixed on the base plate, and a horizontal position sensor K1 and a horizontal position sensor K2 are also provided on the base plate, and the upper surface of the fixed counterweight round table is connected to the vertical The vertical support rod is connected to the vertical support rod, the upper end of the vertical support rod is connected to the longitudinal and rotational motion component installation platform, the upper end of the vertical support rod is also provided with a laser receiver, and the side of the longitudinal and rotational motion component installation platform is provided with an electrical box and a micro liquid crystal display touch screen; the microphone array rotational motion control mechanism III includes a first stepper motor D1 and a second stepper motor D2 arranged under the longitudinal and rotational motion component installation platform, the first stepper motor D1 is connected to one of the gears of the upper special-shaped gear pair I arranged on the longitudinal and rotational motion component installation platform through a bearing, the second stepper motor D2 is connected to another gear of the special-shaped gear pair I through a bearing, and the special-shaped gear pair I is respectively connected to the longitudinal motion component S1 and the longitudinal motion component S2 of the longitudinal motion control mechanism II through a mechanical connection component arranged on the longitudinal and rotational motion component installation platform; the microphone array The longitudinal motion control mechanism II includes a longitudinal motion component S1 and a longitudinal motion component S2, which are respectively connected to the special-shaped gear pair I through a mechanical connection component. The longitudinal motion component S1 is also connected to the frame G3 of the vertical motion component S1 through its screw sleeve I, and the longitudinal motion component S2 is also connected to the frame G4 of the vertical motion component S2 through its screw sleeve II; the microphone array vertical motion control mechanism IV includes a vertical motion component S1 and a vertical motion component S2, the vertical motion component S1 is connected to the base T2 of the microphone array main mounting arm S2 of the microphone array lateral motion control mechanism V through its screw sleeve III, and the vertical motion component S2 is connected to the base T1 of the microphone array main mounting arm S1 of the microphone array lateral motion control mechanism V through its screw sleeve IV; the microphone array lateral motion control mechanism V includes The invention comprises a microphone array main mounting arm S1, a microphone array main mounting arm S2, a plurality of microphone array sub-mounting arms, and a plurality of microphones, wherein the microphone array sub-mounting arms are respectively mounted on the microphone array main mounting arm S1 and the microphone array main mounting arm S2, and the microphones are mounted on the microphone array sub-mounting arms; the microphone correction control mechanism VI comprises a microphone correction mechanism I and a microphone correction mechanism II, and the microphone correction mechanism I and the microphone correction mechanism II are respectively fixed on the vertical motion component S2 and the vertical motion component S1; the adjustment support I comprises a screw motor M1 and a base I, and the screw motor M1 is installed in the base I; the adjustment support II comprises a screw motor M2 and a base II, and the screw motor M2 is installed in the base II; the adjustment support III comprises a screw motor M3 and a base III, and the screw motor M3 is installed in the base III.

本发明进一步的技术方案所述的纵向运动组件S1包括机架G1、轴承S1、丝杆I、丝杆套I、轴承S2、齿轮副II、第三步进电机D3,机架G1纵向两个板中其中一块板内表面设有滑槽II、另一块板内表面设有滑槽I,轴承S2固定在机架G1横向两块板中其中一块上,轴承S2与丝杆I一端相连,机架G1横向另一块板上固定轴承S1,轴承S1与丝杆I另一端相连,并且丝杆I穿过轴承S1与齿轮副II其中一个齿轮相连,齿轮副II中另一个齿轮与第三步进电机D3相连,丝杆套I套在丝杆I上,丝杆套I的横向杆分别置于滑槽I、滑槽II上;所述的纵向运动组件S2包括机架G2、轴承S3、丝杆II、丝杆套II、轴承S4、齿轮副III、第四步进电机D4,机架G2纵向两个板中其中一块板内表面设有滑槽IV、另一块板内表面设有滑槽III,轴承S4固定在机架G2横向两块板中其中一块板上,轴承S4与丝杆II一端相连,机架G2横向另一块板上固定有轴承S3,轴承S3与丝杆II另一端相连,并且丝杆II穿过轴承S3与齿轮副III其中一个齿轮相连,齿轮副III中另一个齿轮与第四步进电机D4相连,丝杆套II套在丝杆II上,丝杆套II的横向杆分别置于滑槽III、滑槽IV上;所述的竖向运动组件S1包括机架G3、轴承S5、丝杆III、丝杆套III、轴承S6、齿轮副IV、第五步进电机D5,机架G3的纵向两个板中其中一块板内表面设有滑槽VI、另一块板内表面设有滑槽V,轴承S6固定在机架G3横向两块板中其中一块板上,轴承S6与丝杆III一端相连,机架G3横向另一块板固定有轴承S5,轴承S5与丝杆III另一端相连,并且丝杆III穿过轴承S5与齿轮副IV其中一个齿轮相连,齿轮副IV中另一个齿轮与第五步进电机D5相连,丝杆套III套在丝杆III上,丝杆套III的横向杆分别置于滑槽V、滑槽VI上;所述的竖向运动组件S2包括机架G4、轴承S7、丝杆IV、丝杆套IV、轴承S8、齿轮副V、第六步进电机D6,机架G4纵向两个板中其中一块板内表面设有滑槽VIII、另一块内表面设有滑槽VII,轴承S8固定在机架G4的横向两块板中其中一块板上,轴承S8与丝杆IV一端相连,机架G4横向另一块板上固定有轴承S7,轴承S7与丝杆IV另一端相连,并且丝杆IV穿过轴承S7与齿轮副V其中一个齿轮相连,齿轮副V中另一个齿轮与第六步进电机D6相连,丝杆套IV套在丝杆IV上,丝杆套IV的横向杆分别置于滑槽VII、滑槽VIII上。The longitudinal motion component S1 described in the further technical solution of the present invention includes a frame G1, a bearing S1, a screw rod I, a screw rod sleeve I, a bearing S2, a gear pair II, and a third stepping motor D3. The inner surface of one of the two longitudinal plates of the frame G1 is provided with a slide groove II, and the inner surface of the other plate is provided with a slide groove I. The bearing S2 is fixed on one of the two transverse plates of the frame G1, and the bearing S2 is connected to one end of the screw rod I. The bearing S1 is fixed on the other transverse plate of the frame G1, and the bearing S1 is connected to the other end of the screw rod I. The screw rod I passes through the bearing S1 and is connected to one of the gears in the gear pair II. The other gear in the gear pair II is connected to the third stepping motor D3. The screw rod sleeve I is sleeved on the screw rod I, and the transverse rods of the screw rod sleeve I are respectively placed on the slide groove I and the slide groove II; the longitudinal motion component S1 includes a bearing S1, a screw rod I, a screw rod I sleeve, and a gear I is connected to the third stepping motor D3. The forward motion component S2 includes a frame G2, a bearing S3, a screw rod II, a screw rod sleeve II, a bearing S4, a gear pair III, and a fourth stepping motor D4. The inner surface of one of the two longitudinal plates of the frame G2 is provided with a slide groove IV, and the inner surface of the other plate is provided with a slide groove III. The bearing S4 is fixed on one of the two transverse plates of the frame G2. The bearing S4 is connected to one end of the screw rod II. A bearing S3 is fixed on the other transverse plate of the frame G2. The bearing S3 is connected to the other end of the screw rod II, and the screw rod II passes through the bearing S3 and is connected to one of the gears in the gear pair III. The other gear in the gear pair III is connected to the fourth stepping motor D4. The screw rod sleeve II is sleeved on the screw rod II, and the transverse rods of the screw rod sleeve II are respectively placed on the slide groove III and the slide groove IV; The vertical motion component S1 includes a frame G3, a bearing S5, a screw rod III, a screw rod sleeve III, a bearing S6, a gear pair IV, and a fifth stepping motor D5. The inner surface of one of the two longitudinal plates of the frame G3 is provided with a slide groove VI, and the inner surface of the other plate is provided with a slide groove V. The bearing S6 is fixed on one of the two transverse plates of the frame G3. The bearing S6 is connected to one end of the screw rod III. The other transverse plate of the frame G3 is fixed with a bearing S5. The bearing S5 is connected to the other end of the screw rod III, and the screw rod III passes through the bearing S5 and is connected to one of the gears in the gear pair IV. The other gear in the gear pair IV is connected to the fifth stepping motor D5. The screw rod sleeve III is sleeved on the screw rod III, and the transverse rods of the screw rod sleeve III are respectively placed on the slide groove V and the slide groove VI. The vertical motion component S2 includes a frame G4, a bearing S7, a screw rod IV, a screw rod sleeve IV, a bearing S8, a gear pair V, and a sixth stepping motor D6. The inner surface of one of the two longitudinal plates of the frame G4 is provided with a slide groove VIII, and the inner surface of the other plate is provided with a slide groove VII. The bearing S8 is fixed on one of the two transverse plates of the frame G4. The bearing S8 is connected to one end of the screw rod IV. A bearing S7 is fixed on the other transverse plate of the frame G4. The bearing S7 is connected to the other end of the screw rod IV, and the screw rod IV passes through the bearing S7 and is connected to one of the gears in the gear pair V. The other gear in the gear pair V is connected to the sixth stepping motor D6. The screw rod sleeve IV is sleeved on the screw rod IV, and the transverse rods of the screw rod sleeve IV are respectively placed on the slide grooves VII and VIII.

本发明更进一步的技术方案所述的传声器阵列主安装臂S1包括基体T1,基体T1的一端设有轴承S10,另一端设有轴承S9,基体T1中间为空心,装有齿轮杆I,齿轮杆I的两端分别固定轴承S10、轴承S9上,基体T1一面设有步进电机D7,步进电机D7固定在基体T1上,第七步进电机D7轴上装有齿轮W1,齿轮W1通过凹口I与齿轮杆I啮合,基体T1另一面设有多个开口凹槽用于安装传声器阵列分安装臂,基体T1上端还设有定标传声器I;所述的传声器阵列主安装臂S2包括基体T2,基体T2的一端设有轴承S12,另一端设有轴承S11,基体T2中间为空心,装有齿轮杆II,齿轮杆II的两端分别固定轴承S12、轴承S11上,基体T2一面设有第八步进电机D8,第八步进电机D8固定在基体T2上,第八步进电机D8轴上装有齿轮W2,齿轮W2通过凹口II与齿轮杆II啮合,基体T2另一面设有多个开口凹槽用于安装传声器阵列分安装臂,基体T1上端还设有定标传声器II;所述的传声器阵列分安装臂22)包括基板,基板背面两侧设有齿条,正面设有多个传声器插入基座,传声器插入传声器插入基座上。A further technical solution of the present invention is a microphone array main mounting arm S1 comprising a base T1, one end of the base T1 is provided with a bearing S10, the other end is provided with a bearing S9, the middle of the base T1 is hollow, and a gear rod I is installed, the two ends of the gear rod I are respectively fixed on the bearing S10 and the bearing S9, a stepper motor D7 is provided on one side of the base T1, the stepper motor D7 is fixed on the base T1, a gear W1 is installed on the shaft of the seventh stepper motor D7, the gear W1 is meshed with the gear rod I through a notch I, a plurality of opening grooves are provided on the other side of the base T1 for installing the microphone array sub-mounting arms, and a calibration microphone I is also provided on the upper end of the base T1; the microphone array main mounting arm S2 comprises a base T2, one end of the base T2 is provided with a There is a bearing S12, and a bearing S11 is provided at the other end. The middle of the base T2 is hollow and equipped with a gear rod II. The two ends of the gear rod II are respectively fixed on the bearing S12 and the bearing S11. An eighth stepper motor D8 is provided on one side of the base T2, and the eighth stepper motor D8 is fixed on the base T2. A gear W2 is installed on the shaft of the eighth stepper motor D8. The gear W2 engages with the gear rod II through the notch II. A plurality of open grooves are provided on the other side of the base T2 for installing a microphone array sub-mounting arm. A calibration microphone II is also provided on the upper end of the base T1; the microphone array sub-mounting arm 22) includes a base plate, racks are provided on both sides of the back of the base plate, and a plurality of microphone insertion bases are provided on the front side, and the microphones are inserted into the microphone insertion bases.

本发明进一步的技术方案所述的传声器较正控制机构I包括第九步进电机D9、套筒I、传声器插入口I、微型消声腔I、互易声学换能器G1、弹簧I、连接件L1、互易声学换能器G2、电磁铁P1、双滑槽C1、电磁线圈U1,第九步进电机D9固定在竖向运动组件S2的机架G4上,第九步进电机D9通过丝杆与连接件L1一端相连,连接件L1另一端与套筒I相连,套筒I内部设有一个圆柱形半通孔,孔内设有双滑槽C1与电磁铁P1,电磁铁P1的耳杆放在双滑槽C1,同时电磁铁P1上设有电磁线圈U1,电磁铁P1另一端套有弹簧I并与微型消声腔I相连,微型消声腔I内部一端设有互易声学换能器G1,另一端设有互易声学换能器G2,另外微型消声腔I中部设有传声器插入口I;所述传声器较正控制机构II包括第十步进电机D10、套筒II、传声器插入口II、微型消声腔II、互易声学换能器G3、弹簧II、连接件L2、互易声学换能器G4、电磁铁P2、双滑槽C2、电磁线圈U2,第十步进电机D10固定在竖向运动组件S1的机架G3上,第十步进电机D10通过丝杆与连接件L2一端相连,连接件L2另一端与套筒II相连,套筒II内部设有一个圆柱形半通孔,孔内设有双滑槽C2与电磁铁P2,电磁铁P2的耳杆放在双滑槽C2上,同时电磁铁P2设有电磁线圈U2,电磁铁P2另一端套有弹簧II并与微型消声腔II,微型消声腔II内部一端设有互易声学换能器G3,另一端设有互易声学换能器G4,另外微型消声腔II中部设有传声器插入口II。The microphone correction control mechanism I described in the further technical solution of the present invention includes a ninth stepper motor D9, a sleeve I, a microphone insertion port I, a micro-muffler chamber I, a reciprocal acoustic transducer G1, a spring I, a connector L1, a reciprocal acoustic transducer G2, an electromagnet P1, a double slide groove C1, and an electromagnetic coil U1. The ninth stepper motor D9 is fixed on the frame G4 of the vertical motion component S2. The ninth stepper motor D9 is connected to one end of the connector L1 through a screw rod. The connector L 1 and the other end is connected to the sleeve I, a cylindrical semi-through hole is provided inside the sleeve I, a double slide groove C1 and an electromagnet P1 are provided in the hole, the ear rod of the electromagnet P1 is placed in the double slide groove C1, and an electromagnetic coil U1 is provided on the electromagnet P1, a spring I is sleeved on the other end of the electromagnet P1 and connected to the micro-muffler I, a reciprocal acoustic transducer G1 is provided at one end inside the micro-muffler I, and a reciprocal acoustic transducer G2 is provided at the other end, and a microphone insertion port I is provided in the middle of the micro-muffler I; The microphone correction control mechanism II includes a tenth stepper motor D10, a sleeve II, a microphone insertion port II, a micro-muffler chamber II, a reciprocal acoustic transducer G3, a spring II, a connector L2, a reciprocal acoustic transducer G4, an electromagnet P2, a double slide groove C2, and an electromagnetic coil U2. The tenth stepper motor D10 is fixed on the frame G3 of the vertical motion component S1. The tenth stepper motor D10 is connected to one end of the connector L2 through a screw rod, and the other end of the connector L2 is connected to the The sleeve II is connected, and a cylindrical semi-through hole is provided inside the sleeve II, and a double slide groove C2 and an electromagnet P2 are provided in the hole. The ear rod of the electromagnet P2 is placed on the double slide groove C2. At the same time, the electromagnet P2 is provided with an electromagnetic coil U2. The other end of the electromagnet P2 is sleeved with a spring II and connected to the miniature anechoic cavity II. A reciprocal acoustic transducer G3 is provided at one end of the miniature anechoic cavity II, and a reciprocal acoustic transducer G4 is provided at the other end. In addition, a microphone insertion port II is provided in the middle of the miniature anechoic cavity II.

本发明进一步的技术方案所述所述的虚拟球设置参考位置测量柱VI包括支架,支架与立式杆相连,立式杆上端部设有激光发射器,上端设有传声器插座。According to a further technical solution of the present invention, the virtual ball setting reference position measurement column VI comprises a bracket, the bracket is connected to a vertical rod, a laser transmitter is provided at the upper end of the vertical rod, and a microphone socket is provided at the upper end.

由于采用上述结构,本发明一种自由声场小型声全息测量及反演装置有以下有益效果:Due to the above structure, the free-field small-scale acoustic holographic measurement and inversion device of the present invention has the following beneficial effects:

1)装置简单、轻巧,调试方便。1) The device is simple, lightweight and easy to debug.

本发明一种自由声场小型声全息测量及反演装置,结构很简单,也很轻巧,克服了以住装置中笨重的缺点,只需简单安装后,后面所有的测试与反演计算都是在控制系统的控制下(不是本发明的重点,在此不做详细描述)自动进行,不需要人工干预,可以大大节省人力物力,减轻人们的劳动强度,特别是在大型、多点测试、多次反演的自由复杂稳定声场中更加明显。The present invention provides a small-scale acoustic holographic measurement and inversion device in a free sound field. The device has a simple structure and is very light, thus overcoming the disadvantage of being bulky in previous devices. After simple installation, all subsequent tests and inversion calculations are automatically performed under the control of a control system (which is not the focus of the present invention and will not be described in detail herein), without the need for human intervention. This can greatly save manpower and material resources and reduce people's labor intensity, which is particularly evident in free, complex and stable sound fields with large-scale, multi-point tests and multiple inversions.

2)能使数据测试与计算更加精确,可靠。2) It can make data testing and calculation more accurate and reliable.

本发明一种自由声场小型声全息测量及反演装置,由于大部分工作不需人工干预,减少了人为误差,所以使测试的数据与反演的结果更加可靠,精确。The invention discloses a small-sized acoustic holographic measurement and inversion device in a free sound field. Since most of the work does not require human intervention, human errors are reduced, so the test data and the inversion results are more reliable and accurate.

下面结合附图和实施例对本发明一种自由声场小型声全息测量及反演装置进一步说明。The following is a further description of a free-field small-scale acoustic holographic measurement and inversion device of the present invention in conjunction with the accompanying drawings and embodiments.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明一种自由声场小型声全息测量及反演装置总体结构示意图;FIG1 is a schematic diagram of the overall structure of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图2是本发明一种自由声场小型声全息测量及反演装置整个装置支撑构构局部示意图;FIG2 is a partial schematic diagram of the supporting structure of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图3是本发明一种自由声场小型声全息测量及反演装置纵竖向运动组件及传声器校正机构局部示意图;3 is a partial schematic diagram of a longitudinal and vertical motion assembly and a microphone correction mechanism of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图4是本发明一种自由声场小型声全息测量及反演装置传声器阵列主安装臂S1的结构示意图;4 is a schematic structural diagram of a microphone array main mounting arm S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图5是本发明一种自由声场小型声全息测量及反演装置传声器阵列主安装臂S2的结构示意图;5 is a schematic structural diagram of a microphone array main mounting arm S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图6是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S1的俯向结构示意图;6 is a schematic diagram of the top view of the longitudinal motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图7是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S1的仰向结构示意图;7 is a schematic diagram of the upward structure of a longitudinal motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图8是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S2的俯向结构示意图;FIG8 is a schematic diagram of the top view structure of a longitudinal motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图9是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S2的仰向结构示意图;9 is a schematic diagram of the upward structure of the longitudinal motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device of the present invention;

图10是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S1的俯向结构示意图;10 is a schematic diagram of the top view of the vertical motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device of the present invention;

图11是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S1的仰向结构示意图;11 is a schematic diagram of the upward structure of a vertical motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图12是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S2的俯向结构示意图;12 is a schematic diagram of the top view of the vertical motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图13是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S2的仰向结构示意图;13 is a schematic diagram of the upward structure of a vertical motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图14是本发明一种自由声场小型声全息测量及反演装置调节支撑I内部结构示意图;FIG14 is a schematic diagram of the internal structure of an adjustment support I of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图15是本发明一种自由声场小型声全息测量及反演装置调节支撑II内部结构示意图;FIG15 is a schematic diagram of the internal structure of an adjustment support II of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图16是本发明一种自由声场小型声全息测量及反演装置调节支撑III内部结构示意图;FIG16 is a schematic diagram of the internal structure of an adjustment support III of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图17是本发明一种自由声场小型声全息测量及反演装置传声器校正机构I结构示意图;17 is a schematic structural diagram of a microphone correction mechanism I of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图18是本发明一种自由声场小型声全息测量及反演装置传声器校正机构I内部结构示意图;18 is a schematic diagram of the internal structure of a microphone correction mechanism I of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图19是本发明一种自由声场小型声全息测量及反演装置传声器校正机构II结构示意图;19 is a schematic structural diagram of a microphone correction mechanism II of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图20是本发明一种自由声场小型声全息测量及反演装置传声器校正机构II内部结构示意图;FIG20 is a schematic diagram of the internal structure of a microphone correction mechanism II of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图21是本发明一种自由声场小型声全息测量及反演装置传声器传声器阵列分安臂及传声器在分安装臂安装示意图;21 is a schematic diagram of the installation of a microphone array arm and a microphone in a sub-mounting arm of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图22是本发明一种自由声场小型声全息测量及反演装置虚拟球设置参考位置测量柱VI;22 is a diagram of a free-field small-scale acoustic holographic measurement and inversion device virtual ball setting reference position measurement column VI of the present invention;

图23是本发明一种自由声场小型声全息测量及反演装置电磁铁P1、P2的示意图FIG. 23 is a schematic diagram of the electromagnets P1 and P2 of a small acoustic holographic measurement and inversion device in a free sound field according to the present invention.

图24是本发明一种自由声场小型声全息测量及反演装置基体T1、T2上的开口凹槽侧面示意图;FIG24 is a side view of an opening groove on a substrate T1 and T2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;

图25是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统整体结构方框图;FIG25 is a block diagram of the overall structure of an intelligent control system for controlling a free-field small-scale acoustic holographic measurement and inversion device of the present invention;

图26是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统内部结构方框图;FIG26 is a block diagram of the internal structure of an intelligent control system for controlling a free-field small-scale acoustic holographic measurement and inversion device of the present invention;

图27是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统声压测试及声学反演计算模块内部结构示意图;27 is a schematic diagram of the internal structure of a sound pressure test and acoustic inversion calculation module of an intelligent control system for controlling a free-field small-scale acoustic holographic measurement and inversion device of the present invention;

图28是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统信息输入显示模块内部结构方框图。Figure 28 is a block diagram of the internal structure of the information input and display module of the intelligent control system that controls a free-field small-scale acoustic holographic measurement and inversion device of the present invention.

主要元件标号说明:1一调节支撑I、2一调节支撑II、3一调节支撑III、4一底座板、5一固定配重圆台、6一水平位置传感器K1、7一水平位置传感器K2、8一立式支撑杆、9一电器箱、10一微型液晶显示触摸屏、11一激光接收器、12一纵向及旋转运动组件安装平台、13一异形齿轮副I、14一第一步进电机D1、15一第二步进电机D2、16一纵向运动组件S1、17一纵向运动组件S2、18一竖向运动组件S1、19一竖向运动组件S2、20一传声器阵列主安装臂S1、21一传声器阵列主安装臂S2、22一传声器阵列分安装臂、23一传声器、24一机械连接组件、25一传声器校正机构I、26一传声器校正机构II、27一标定传声器S1、28一标定传声器S2、29、一支架、30一立式杆、31一激光发射器、32一传声器插座、1601一机架G1、1602一轴承S1、1603一齿轮副II、1604一第三步进电机D3、1605一丝杆I、1606一丝杆套I、1607一轴承S2、1608一滑槽I、1609一滑槽II、1701一机架G2、1702一轴承S3、1703一齿轮副III、1704一第四步进电机D4、1705一丝杆II、1706一丝杆套II、1707一轴承S4、1708一滑槽III、1709一滑槽IV、1801一机架G3、1802一轴承S5、1803一齿轮副IV、1804一第五步进电机D5、1805一丝杆III、1806一丝杆套III、1807一轴承S6、1808一滑槽V、1809一滑槽VI、1901一机架G4、1902一轴承S7、1903一齿轮副V、1904一第六步进电机D6、1905一丝杆IV、1906一丝杆套IV、1907一轴承S8、1908一滑槽VII、1909一滑槽VIII、101一调节支撑I基座、102一第一丝杆电机M1、201一调节支撑II基座、202一第二丝杆电机M2、301一调节支撑III基座、302一第三丝杆电机M3、2001一基体T1、2002一轴承S9、2003一第七步进电机D7、2004一齿轮W1、2005一轴承S10、2006一凹口I、2007一齿轮杆I、2101一基体T2、2102一轴承S11、2103一第八步进电机D8、2104一齿轮W2、2105一轴承S12、2106一凹口II、2107一齿轮杆II、2201一齿条、2202分安装臂基板、2203一传声器插入基座、2501一第九步进电机D9、2502一套筒I、2503一传声器插入口I、2504一微型消声腔I、2505一互易声学换能器G1、2506一弹簧I、2507一连接件L1、2508一互易声学换能器G2、2509一电磁铁P1、2510一双滑槽C1、2511一电磁线圈B1、2601一第十步进电机010、2602一套筒II、2603一传声器插入口II、2604一微型消声腔II、2605一互易声学换能器G3、2606一弹簧II、2607一连接件L2、2608一互易声学换能器G4、2609一电磁铁P2、2610一双滑槽C2、2611一电磁线圈B2Main component number description: 1-adjustment support I, 2-adjustment support II, 3-adjustment support III, 4-base plate, 5-fixed counterweight round table, 6-horizontal position sensor K1, 7-horizontal position sensor K2, 8-vertical support rod, 9-electrical box, 10-micro LCD touch screen, 11-laser receiver, 12-longitudinal and rotational motion component installation platform, 13-special-shaped gear pair I, 14-first stepper motor D1, 15-second stepper motor Machine D2, 16-longitudinal motion assembly S1, 17-longitudinal motion assembly S2, 18-vertical motion assembly S1, 19-vertical motion assembly S2, 20-microphone array main mounting arm S1, 21-microphone array main mounting arm S2, 22-microphone array sub-mounting arm, 23-microphone, 24-mechanical connection assembly, 25-microphone calibration mechanism I, 26-microphone calibration mechanism II, 27-calibration microphone S1, 28-calibration microphone S2 , 29, a bracket, 30 a vertical rod, 31 a laser transmitter, 32 a microphone socket, 1601 a frame G1, 1602 a bearing S1, 1603 a gear pair II, 1604 a third stepping motor D3, 1605 a thread rod I, 1606 a thread rod sleeve I, 1607 a bearing S2, 1608 a slide I, 1609 a slide II, 1701 a frame G2, 1702 a bearing S3, 1703 a gear pair III, 1704-the fourth stepper motor D4, 1705-a thread rod II, 1706-a thread rod sleeve II, 1707-a bearing S4, 1708-a slide III, 1709-a slide IV, 1801-a frame G3, 1802-a bearing S5, 1803-a gear pair IV, 1804-a fifth stepper motor D5, 1805-a thread rod III, 1806-a thread rod sleeve III, 1807-a bearing S6, 1808-a slide V, 1809- Slideway VI, 1901-frame G4, 1902-bearing S7, 1903-gear pair V, 1904-sixth stepper motor D6, 1905-screw IV, 1906-screw sleeve IV, 1907-bearing S8, 1908-slideway VII, 1909-slideway VIII, 101-adjusting support I base, 102-first screw motor M1, 201-adjusting support II base, 202-second screw motor M2, 301- Adjust support III base, 302-third screw motor M3, 2001-base T1, 2002-bearing S9, 2003-seventh stepper motor D7, 2004-gear W1, 2005-bearing S10, 2006-notch I, 2007-gear rod I, 2101-base T2, 2102-bearing S11, 2103-eighth stepper motor D8, 2104-gear W2, 2105-bearing S12, 2106- Notch II, 2107-gear rod II, 2201-rack, 2202-mounting arm base, 2203-microphone insertion base, 2501-ninth stepper motor D9, 2502-sleeve I, 2503-microphone insertion port I, 2504-micro muffler I, 2505-reciprocal acoustic transducer G1, 2506-spring I, 2507-connecting piece L1, 2508-reciprocal acoustic transducer G2, 2509-electromagnet P1, 2 510 a double slide C1, 2511 an electromagnetic coil B1, 2601 a tenth stepper motor 010, 2602 a sleeve II, 2603 a microphone insertion port II, 2604 a micro muffler II, 2605 a reciprocal acoustic transducer G3, 2606 a spring II, 2607 a connecting piece L2, 2608 a reciprocal acoustic transducer G4, 2609 an electromagnet P2, 2610 a double slide C2, 2611 an electromagnetic coil B2

具体实施方式DETAILED DESCRIPTION

如图1至图24所示,本发明一种自由声场小型声全息测量及反演装置,该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;所述的整个装置支撑调整机构I包括调节支撑I1、调节支撑II 2、调节支撑III 3,三个调节支撑分别通过各自的丝杆电机与底座板4上的螺孔相连,底座板4上设有固定配重圆台5,固定配重圆台5固定在底座板4上,该固定配重圆台4可以增加底座的重量,以防止整个机构翻倒,底座板4还设有水平位置传感器K1,水平位置传感器K2,这两个水平位置传感器可以检测底座板4在两个方向的水平度,再结合调节支撑I、II、III可以调整底座板4的水平度,固定配重圆台5上表面与立式支撑杆8相连,立式支撑杆8上端与纵向及旋转运动组件安装平台12相连,立式支撑杆8上端还设有激光接收器11,纵向及旋转运动组件安装平台12侧面设有电器箱9与微型液晶显示触摸屏10,电器箱9中安装与控制系统有关的电路板,微型液晶显示触摸屏10可以完成一些预置数据的输入以及测试计算的结果显示;所述的传声器阵列旋转运动控制机构III包括设在纵向及旋转运动组件安装平台12下面的第一步进电机D1、第二步进电机D2,第一步进电机D1通过轴承与设在纵向及旋转运动组件安装平台12上的异形齿轮副I 13其中一个齿轮相连,第二步进电机D2通过轴承与异形齿轮副I 13的另一个齿轮相连,异形齿轮副I 13通过设在纵向及旋转运动组件安装平台12的机械连接组件24分别与纵向运动控制机构II的纵向运动组件S1、纵向运动组件S2相连,通过第一步进电机D1、第二步进电机D2的正反向运动,从而带动异形齿轮副I 13的正反转,通过异形齿轮副I13的传递,从而带动纵向运动组件S1、纵向运动组件S2的旋转,进而带动传声器阵列的旋转;所述的传声器阵列纵向运动控制机构II包括纵向运动组件S1、纵向运动组件S2、它们分别通过机械连接组件24与异形齿轮副I 13相连,纵向运动组件S1还通过它的丝杆套I 1606与坚向运动组件S1的机架G3相连,纵向运动组件S2还通过它的丝杆套II 1706与坚向运动组件S2的机架G4相连;所述的传声器阵列竖向运动控制机构IV包括竖向运动组件S1、竖向运动组件S2,竖向运动组件S1通过其丝杆套III 1806与传声器阵列横向运动控制机构V的传声器阵列主安装臂S2的基体T2相连,竖向运动组件S2通过其丝杆套IV 1906与传声器阵列横向运动控制机构V的传声器阵列主安装臂S1 20的基体T1 2001相连;所述的传声器阵列横向运动控制机构V包括传声器阵列主安装臂S1 20、传声器阵列主安臂S2 21、多条传声器阵列分安装臂22、多个传声器23组成,传声器阵列分安装臂22分别安装在传声器阵列主安装臂S1 20、传声器阵列主安装臂S2 21上,传声器23安装在传声器阵列分安装臂22上;所述的传声器校正控制机构VI包括传声器校正机构I 25和传声器校正机构II 26,传声器校正机构I 25和传声器校正机构II 26分别固定竖向运动组件S2 19、竖向运动组件S1 18上;所述的调节支撑I 1包括第一丝杆电机M1 102、基座I101,第一丝杆电机M1 102装在基座I 101里,调节支撑II 2包括第二丝杆电机M2 202、基座II 201,第二丝杆电机M2 202装在基座II 201里,调节支撑III 3包括第三丝杆电机M3302、基座III 301,第三丝杆电机M3 302装在基座III 301里,通过第一丝杆电机M1,第二丝杆电机M2,第三丝杆电机M3的正反运动可以调节底座板4的水平度。As shown in Figures 1 to 24, the present invention is a free-field small-scale acoustic holographic measurement and inversion device, which includes a whole device support adjustment mechanism I, a microphone array longitudinal motion control mechanism II, a microphone array rotational motion control mechanism III, a microphone array vertical motion control mechanism IV, a microphone array lateral motion control mechanism V, a microphone correction control mechanism VI, and a virtual ball setting reference position positioning measurement column VII; the whole device support adjustment mechanism I includes an adjustment support I1, an adjustment support II 2, and an adjustment support III 3. The three adjustment supports are connected to the screw holes on the base plate 4 through their own screw motors. The base plate 4 is provided with a fixed counterweight round table 5, which is fixed on the base plate 4. The fixed counterweight round table 4 can increase the weight of the base to prevent the entire mechanism from tipping over. The base plate 4 is also provided with a horizontal position sensor K1 and a horizontal position sensor K2. These two horizontal position sensors can detect the horizontality of the base plate 4 in two directions. Combined with the adjustment supports I, II, and III, the horizontality of the base plate 4 can be adjusted. The upper surface of the fixed counterweight round table 5 is connected to the vertical support rod 8. The upper end of the vertical support rod 8 is installed with the longitudinal and rotational motion components. The vertical support rod 8 is connected to the platform 12, and a laser receiver 11 is also provided at the upper end of the vertical support rod 8. An electrical box 9 and a micro-LCD touch screen 10 are provided on the side of the longitudinal and rotational motion component installation platform 12. A circuit board related to the control system is installed in the electrical box 9. The micro-LCD touch screen 10 can complete the input of some preset data and the display of test calculation results; the microphone array rotational motion control mechanism III includes a first stepper motor D1 and a second stepper motor D2 arranged under the longitudinal and rotational motion component installation platform 12. The first stepper motor D1 is connected to the longitudinal and rotational motion component installation platform 12 through a bearing and a special-shaped gear pair I arranged on the longitudinal and rotational motion component installation platform 12. 13 is connected to one of the gears of the special-shaped gear pair I 13, the second stepper motor D2 is connected to the other gear of the special-shaped gear pair I 13 through a bearing, the special-shaped gear pair I 13 is respectively connected to the longitudinal motion component S1 and the longitudinal motion component S2 of the longitudinal motion control mechanism II through a mechanical connection component 24 arranged on the longitudinal and rotational motion component mounting platform 12, and the forward and reverse motion of the first stepper motor D1 and the second stepper motor D2 drives the forward and reverse rotation of the special-shaped gear pair I 13, and the rotation of the longitudinal motion component S1 and the longitudinal motion component S2 is driven through the transmission of the special-shaped gear pair I 13, thereby driving the rotation of the microphone array; the microphone array longitudinal motion control mechanism II includes a longitudinal motion component S1 and a longitudinal motion component S2, which are respectively connected to the special-shaped gear pair I 13 through a mechanical connection component 24, the longitudinal motion component S1 is also connected to the frame G3 of the vertical motion component S1 through its screw sleeve I 1606, and the longitudinal motion component S2 is also connected to the frame G3 of the vertical motion component S1 through its screw sleeve II 1706 is connected to the frame G4 of the vertical motion component S2; the microphone array vertical motion control mechanism IV includes a vertical motion component S1 and a vertical motion component S2, the vertical motion component S1 is connected to the base T2 of the microphone array main mounting arm S2 of the microphone array lateral motion control mechanism V through its screw sleeve III 1806, and the vertical motion component S2 is connected to the base T1 2001 of the microphone array main mounting arm S1 20 of the microphone array lateral motion control mechanism V through its screw sleeve IV 1906; the microphone array lateral motion control mechanism V includes a microphone array main mounting arm S1 20, a microphone array main mounting arm S2 21, a plurality of microphone array sub-mounting arms 22, and a plurality of microphones 23, and the microphone array sub-mounting arms 22 are respectively mounted on the microphone array main mounting arm S1 20, the microphone array main mounting arm S2 21, the microphone 23 is mounted on the microphone array sub-mounting arm 22; the microphone correction control mechanism VI includes a microphone correction mechanism I 25 and a microphone correction mechanism II 26, and the microphone correction mechanism I 25 and the microphone correction mechanism II 26 are respectively fixed on the vertical motion component S2 19 and the vertical motion component S1 18; the adjustment support I 1 includes a first screw motor M1 102 and a base I 101, and the first screw motor M1 102 is installed in the base I 101, the adjustment support II 2 includes a second screw motor M2 202 and a base II 201, and the second screw motor M2 202 is installed in the base II 201, and the adjustment support III 3 includes a third screw motor M3 302 and a base III 301, and the third screw motor M3 302 is installed in the base III In 301 , the horizontality of the base plate 4 can be adjusted through the forward and reverse movements of the first screw motor M1 , the second screw motor M2 , and the third screw motor M3 .

所述的纵向运动组件S1 16包括机架G1 1601、轴承S1 1602、丝杆I 1605、丝杆套I1606、轴承S2 1607、齿轮副II 1603、第三步进电机D3 1604,机架G1 1601纵向两个板中其中一块板内表面设有滑槽II 1609、另一块板内表面设有滑槽I 1608,轴承S2 1607固定在机架G1 1601横向两块板中其中一块上,轴承S2 1607与丝杆I 1605一端相连,机架G1 1601横向另一块板上固定轴承S1 1602,轴承S1 1602与丝杆I 1605另一端相连,并且丝杆I1605穿过轴承S1 1602与齿轮副II 1603其中一个齿轮相连,齿轮副II 1603中另一个齿轮与第三步进电机D3 1604相连,丝杆套I 1606套在丝杆I 1605上,丝杆套I 1605的横向杆分别置于滑槽I 1608、滑槽II 1609上,通过第三步进电机D3 1604的正反转,再通过齿轮副II1603的传递,带动丝杆I 1605的旋转、进而带动丝杆套I 1606在滑槽I 1608、滑槽II 1609上滑动,从而带动竖向运动组件S1 18作纵向动动,再而带动传声器阵列主安装臂S2 21的传声器阵列做纵向运动;所述的纵向运动组件S2 17包括机架G2 1701、轴承S3 1702、丝杆II 1705、丝杆套II 1706、轴承S4 1707、齿轮副III 1703、第四步进电机D4 1704,机架G21701纵向两个板中其中一块板内表面设有滑槽IV 1709、另一块板内表面设有滑槽III1708,轴承S4 1707固定在机架G2 1701横向两块板中其中一块板上,轴承S4 1707与丝杆II1705一端相连,机架G2 1701横向另一块板上固定有轴承S3 1702,轴承S3 1702与丝杆II1705另一端相连,并且丝杆II 1705穿过轴承S3 1702与齿轮副III 1703其中一个齿轮相连,齿轮副III 1703中另一个齿轮与第四步进电机D4 1704相连,丝杆套II 1706套在丝杆II 1705上,丝杆套II 1705的横向杆分别置于滑槽III 1708、滑槽IV 1709上,通过第四步进电机D4 1704的正反转,再通过齿轮副II 1703的传递,带动丝杆II 1705的旋转、进而带动丝杆套II 1706在滑槽III 1708、滑槽IV 1709滑动,从而带动竖向运动组件S119作纵向动动,再而带动传声器阵列主安装臂S1 20上的传声器阵列做纵向运动;所述的竖向运动组件S1 18包括机架G3 1801、轴承S5 1802、丝杆III 1805、丝杆套III 1806、轴承S6 1807、齿轮副IV 1803、第五步进电机D5 1804,机架G3 1801的纵向两个板中其中一块板内表面设有滑槽VI 1809、另一块板内表面设有滑槽V 1808,轴承S6 1807固定在机架G3 1801横向两块板中其中一块板上,轴承S6 1807与丝杆III 1805一端相连,机架G3 1801横向另一块板固定有轴承S5 1802,轴承S5 1802与丝杆III 1805另一端相连,并且丝杆III 1805穿过轴承S5 1802与齿轮副IV 1803其中一个齿轮相连,齿轮副IV 1803中另一个齿轮与第五步进电机D5 1804相连,丝杆套III 1806套在丝杆III 1805上,丝杆套III 1805的横向杆分别置于滑槽V 1808、滑槽VI 1809上,第五步进电机D5 1804的正反转,再通过齿轮副IV 1803的传递,带动丝杆III 1805旋转,进而带动丝杆套III 1806在滑槽V 1808与滑槽VI 1809上滑动,从而传声器阵列主安装臂S2 21上的传声器阵列做纵向运动;所述的竖向运动组件S219包括机架G4 1901、轴承S7 1902、丝杆IV 1905、丝杆套IV 1906、轴承S8 1907、齿轮副V1903、第六步进电机D6 1904,机架G4 1901纵向两个板中其中一块板内表面设有滑槽VIII1909、另一块内表面设有滑槽VII 1908,轴承S8 1907固定在机架G4 1901的横向两块板中其中一块板上,轴承S8 1907与丝杆IV 1905一端相连,机架G4 1901横向另一块板上固定有轴承S7 1902,轴承S7 1902与丝杆IV 1905另一端相连,并且丝杆IV 1905穿过轴承S7 1902与齿轮副V 1903其中一个齿轮相连,齿轮副V 1903中另一个齿轮与第六步进电机D6 1904相连,丝杆套IV 1906套在丝杆IV 1905上,丝杆套IV 1905的横向杆分别置于滑槽VII1908、滑槽VIII 1909上,第六步进电机D6 1904的正反转,再通过齿轮副V 1903的传递,带动丝杆IV 1905旋转,进而带动丝杆套IV 1906在滑槽VII 1908与滑槽VIII 1909上滑动,从而传声器阵列主安装臂S0 20上的传声器阵列做纵向运动;The longitudinal motion component S1 16 comprises a frame G1 1601, a bearing S1 1602, a screw rod I 1605, a screw rod sleeve I 1606, a bearing S2 1607, a gear pair II 1603, and a third stepping motor D3 1604. The inner surface of one of the two longitudinal plates of the frame G1 1601 is provided with a slide groove II 1609, and the inner surface of the other plate is provided with a slide groove I 1608. The bearing S2 1607 is fixed on one of the two transverse plates of the frame G1 1601, and the bearing S2 1607 is connected to one end of the screw rod I 1605. The bearing S1 1602 is fixed on the other transverse plate of the frame G1 1601, and the bearing S1 1602 is connected to the other end of the screw rod I 1605, and the screw rod I 1605 passes through the bearing S1 1602 and the gear pair II 1603, one of the gears in the gear pair II 1603 is connected to the third stepping motor D3 1604, the screw sleeve I 1606 is sleeved on the screw I 1605, and the transverse rods of the screw sleeve I 1605 are respectively placed on the slide groove I 1608 and the slide groove II 1609. Through the positive and reverse rotation of the third stepping motor D3 1604 and the transmission of the gear pair II 1603, the screw I 1605 is driven to rotate, and then the screw sleeve I 1606 is driven to slide on the slide groove I 1608 and the slide groove II 1609, thereby driving the vertical motion component S1 18 to move longitudinally, and then driving the microphone array of the microphone array main mounting arm S2 21 to move longitudinally; the longitudinal motion component S2 17 includes a frame G2 1701, a bearing S3 1702, a screw II 1705, a screw sleeve II 1706, bearing S4 1707, gear pair III 1703, fourth stepping motor D4 1704, one of the two longitudinal plates of the frame G2 1701 is provided with a slide groove IV 1709 on its inner surface, and the other plate is provided with a slide groove III 1708 on its inner surface, bearing S4 1707 is fixed on one of the two transverse plates of the frame G2 1701, bearing S4 1707 is connected to one end of screw rod II 1705, bearing S3 1702 is fixed on the other transverse plate of the frame G2 1701, bearing S3 1702 is connected to the other end of screw rod II 1705, and screw rod II 1705 passes through bearing S3 1702 and is connected to one of the gears of gear pair III 1703, another gear in gear pair III 1703 is connected to the fourth stepping motor D4 1704, and screw rod sleeve II 1706 is sleeved on screw rod II 1705, the transverse rods of the screw sleeve II 1705 are respectively placed on the slide slot III 1708 and the slide slot IV 1709, and the screw rod II 1705 is driven to rotate through the forward and reverse rotation of the fourth stepping motor D4 1704 and then through the transmission of the gear pair II 1703, and then the screw sleeve II 1706 is driven to slide in the slide slot III 1708 and the slide slot IV 1709, thereby driving the vertical motion component S119 to move longitudinally, and then driving the microphone array on the microphone array main mounting arm S120 to move longitudinally; the vertical motion component S118 includes a frame G3 1801, a bearing S5 1802, a screw rod III 1805, a screw sleeve III 1806, a bearing S6 1807, a gear pair IV 1803, a fifth stepping motor D5 1804, and a frame G3 A slide groove VI 1809 is provided on the inner surface of one of the two longitudinal plates of the frame G3 1801, and a slide groove V 1808 is provided on the inner surface of the other plate. A bearing S6 1807 is fixed on one of the two transverse plates of the frame G3 1801, and the bearing S6 1807 is connected to one end of the screw rod III 1805. A bearing S5 1802 is fixed to the other transverse plate of the frame G3 1801, and the bearing S5 1802 is connected to the other end of the screw rod III 1805, and the screw rod III 1805 passes through the bearing S5 1802 and is connected to one of the gears of the gear pair IV 1803, and the other gear in the gear pair IV 1803 is connected to the fifth stepping motor D5 1804. The screw rod sleeve III 1806 is sleeved on the screw rod III 1805, and the transverse rods of the screw rod sleeve III 1805 are respectively placed in the slide groove V 1808 and the slide groove VI 1809, the fifth stepper motor D5 1804 rotates forward and reversely, and then drives the screw III 1805 to rotate through the transmission of the gear pair IV 1803, and then drives the screw sleeve III 1806 to slide on the slide slot V 1808 and the slide slot VI 1809, so that the microphone array on the microphone array main mounting arm S2 21 moves longitudinally; the vertical motion component S219 includes a frame G4 1901, a bearing S7 1902, a screw IV 1905, a screw sleeve IV 1906, a bearing S8 1907, a gear pair V1903, and a sixth stepper motor D6 1904. The inner surface of one of the two longitudinal plates of the frame G4 1901 is provided with a slide slot VIII 1909, and the inner surface of the other plate is provided with a slide slot VII 1908. The bearing S8 1907 is fixed to the frame G4 On one of the two horizontal plates of 1901, bearing S8 1907 is connected to one end of screw rod IV 1905, and bearing S7 1902 is fixed on the other horizontal plate of frame G4 1901. Bearing S7 1902 is connected to the other end of screw rod IV 1905, and screw rod IV 1905 passes through bearing S7 1902 and is connected to one of the gears of gear pair V 1903. The other gear in gear pair V 1903 is connected to the sixth stepping motor D6 1904. Screw rod sleeve IV 1906 is sleeved on screw rod IV 1905. The horizontal rods of screw rod sleeve IV 1905 are respectively placed on slide groove VII1908 and slide groove VIII 1909. The forward and reverse rotation of the sixth stepping motor D6 1904 is transmitted by gear pair V 1903 to drive screw rod IV 1905 to rotate, thereby driving screw rod sleeve IV 1906 in slide groove VII 1908 slides on the slide slot VIII 1909, so that the microphone array on the microphone array main mounting arm S0 20 moves longitudinally;

所述的传声器阵列主安装臂S1(20)包括基体T1 2001,基体T1 2001的一端设有轴承S10 2005,另一端设有轴承S9 2002,基体T1 2001中间为空心,装有齿轮杆I 2007,齿轮杆I 2007的两端分别固定轴承S10 2005、轴承S9 2002上,基体T1 2007一面设有步进电机D7 2003,步进电机D7 2003固定在基体T1 2001上,第七步进电机D7 2003轴上装有齿轮W12004,齿轮W1 2004通过凹口I 2006与齿轮杆I 2007啮合,基体T1 2001另一面设有多个开口凹槽用于安装传声器阵列分安装臂22,基体T1 2001上端还设有定标传声器I 27,通过第七步进电机D7 2003的正反转,通过齿轮W1 2004的传递,带动齿轮杆I 2007旋转,进而带动传声器阵列分安装臂22作横向运动;所述的传声器阵列主安装臂S2 21包括基体T2 2101,基体T2 2101的一端设有轴承S12 2105,另一端设有轴承S11 2102,基体T2 2101中间为空心,装有齿轮杆II 2107,齿轮杆II 2107的两端分别固定轴承S12 2105、轴承S11 2102上,基体T2 2101一面设有第八步进电机D8 2103,第八步进电机D8 2103固定在基体T2 2101上,第八步进电机D8 2103轴上装有齿轮W2 2104,齿轮W2 2104通过凹口II 2106与齿轮杆II 2107啮合,基体T2 2101另一面设有多个开口凹槽用于安装传声器阵列分安装臂22,基体T1 2101上端还设有定标传声器II 28,通过第八步进电机D8 2103的正反转,通过齿轮W22104的传递,带动齿轮杆II 2107旋转,进而带动传声器阵列分安装臂22作横向运动;所述的传声器阵列分安装臂22包括基板2202,基板2202背面两侧设有齿条2201,正面设有多个传声器插入基座2203,传声器23插入传声器插入基座2203上。The microphone array main mounting arm S1 (20) comprises a base body T1 2001, one end of the base body T1 2001 is provided with a bearing S10 2005, and the other end is provided with a bearing S9 2002. The base body T1 2001 is hollow in the middle and is provided with a gear rod I 2007. The two ends of the gear rod I 2007 are respectively fixed on the bearing S10 2005 and the bearing S9 2002. A stepper motor D7 2003 is provided on one side of the base body T1 2007. The stepper motor D7 2003 is fixed on the base body T1 2001. A gear W1 2004 is provided on the shaft of the seventh stepper motor D7 2003. The gear W1 2004 is meshed with the gear rod I 2007 through a notch I 2006. A plurality of opening grooves are provided on the other side of the base body T1 2001 for installing the microphone array sub-mounting arm 22. The base body T1 A calibration microphone I 27 is also provided at the upper end of 2001, which drives the gear rod I 2007 to rotate through the forward and reverse rotation of the seventh stepper motor D7 2003 and the transmission of the gear W1 2004, thereby driving the microphone array sub-mounting arm 22 to move horizontally; the microphone array main mounting arm S2 21 includes a base body T2 2101, one end of the base body T2 2101 is provided with a bearing S12 2105, and the other end is provided with a bearing S11 2102, the middle of the base body T2 2101 is hollow, and a gear rod II 2107 is installed, and the two ends of the gear rod II 2107 are respectively fixed on the bearing S12 2105 and the bearing S11 2102, and an eighth stepper motor D8 2103 is provided on one side of the base body T2 2101, and the eighth stepper motor D8 2103 is fixed on the base body T2 2101, and the eighth stepper motor D8 2103 is fixed on the base body T2 2101. A gear W2 2104 is mounted on the shaft 2103, and the gear W2 2104 meshes with the gear rod II 2107 through the notch II 2106. A plurality of opening grooves are provided on the other side of the base T2 2101 for mounting the microphone array sub-mounting arm 22. A calibration microphone II 28 is also provided on the upper end of the base T1 2101. The gear rod II 2107 is driven to rotate through the forward and reverse rotation of the eighth stepper motor D8 2103 and the transmission of the gear W2 2104, thereby driving the microphone array sub-mounting arm 22 to move laterally. The microphone array sub-mounting arm 22 comprises a base plate 2202, and racks 2201 are provided on both sides of the back side of the base plate 2202, and a plurality of microphone insertion bases 2203 are provided on the front side, and the microphones 23 are inserted into the microphone insertion bases 2203.

所述的传声器较正控制机构I 25包括第九步进电机D9 2501、套筒I 2502、传声器插入口I 2503、微型消声腔I 2504、互易声学换能器G1 2505、弹簧I 2506、连接件L1 2507、互易声学换能器G2 2508、电磁铁P1 2509、双滑槽C1 2510、电磁线圈U1 2511,第九步进电机D9 2501固定在竖向运动组件S2 19的机架G4 1901上,第九步进电机D9 2501通过丝杆与连接件L1 2507一端相连,连接件L1 2507另一端与套筒I 2502相连,套筒I 2502内部设有一个圆柱形半通孔,孔内设有双滑槽C1 2510与电磁铁P1 2509,电磁铁P1 2509的耳杆放在双滑槽C1 2510上,同时电磁铁P1 2509上设有电磁线圈U1 2511,电磁铁P1 2509另一端套有弹簧I 2506并与微型消声腔I 2504相连,微型消声腔I 2504内部一端设有互易声学换能器G1 2505,另一端设有互易声学换能器G2 2508,另外微型消声腔I 2504中部设有传声器插入口I 2503,通过第九步进电机D9 2501,再通过连接件L1 2507传递,可以使传声器较正控制机构I 25可以正向旋转90度或反向旋转90度,通过电磁线圈U1 2511通过与断电,可以使电磁铁P1 2509在双滑槽C1 2510里滑动,进而带动微型消声腔I 2504伸与缩,而可以使微型消声腔I 2504的传声器插入口I 2503套上传声器23或离开传声器23;所述传声器较正控制机构II 26包括第十步进电机D10 2601、套筒II 2602、传声器插入口II 2603、微型消声腔II 2604、互易声学换能器G3 2605、弹簧II 2606、连接件L2 2607、互易声学换能器G42608、电磁铁P2 2609、双滑槽C2 2610、电磁线圈U2 2611,第十步进电机D10 2601固定在竖向运动组件S1 18的机架G3 1801上,第十步进电机D10 2601通过丝杆与连接件L2 2607一端相连,连接件L2 2607另一端与套筒II 2602相连,套筒II 2602内部设有一个圆柱形半通孔,孔内设有双滑槽C2 2610与电磁铁P2 2609,电磁铁P2 2609的耳杆放在双滑槽C2 2610上,同时电磁铁P2 2609设有电磁线圈U2 2611,电磁铁P2 2609另一端套有弹簧II 2606并与微型消声腔II 2604,微型消声腔II 2604内部一端设有互易声学换能器G3 2605,另一端设有互易声学换能器G4 2608,另外微型消声腔II 2604中部设有传声器插入口II 2603,通过第十步进电机D10 2601,再通过连接件L2 2607传递,可以使传声器较正控制机构II 26可以正向旋转90度或反向旋转90度,通过电磁线圈U2 2611通过与断电,可以使电磁铁P22609在双滑槽C2 2610里滑动,进而带动微型消声腔II 2604伸与缩,而可以使微型消声腔II 2604的传声器插入口II 2603套上传声器23或离开传声器23,传声器较正控制机构II26主要是作为传声器较正控制机构I 25的备用,当传声器较正控制机构I 2坏了以后再起作用;The microphone correction control mechanism I 25 includes a ninth stepper motor D9 2501, a sleeve I 2502, a microphone insertion port I 2503, a micro-muffler chamber I 2504, a reciprocal acoustic transducer G1 2505, a spring I 2506, a connector L1 2507, a reciprocal acoustic transducer G2 2508, an electromagnet P1 2509, a double slide groove C1 2510, and an electromagnetic coil U1 2511. The ninth stepper motor D9 2501 is fixed on the frame G4 1901 of the vertical motion component S2 19. The ninth stepper motor D9 2501 is connected to one end of the connector L1 2507 through a screw rod, and the other end of the connector L1 2507 is connected to the sleeve I 2502. A cylindrical semi-through hole is provided inside the sleeve I 2502, and a double slide groove C1 is provided in the hole. 2510 and electromagnet P1 2509, the ear rod of electromagnet P1 2509 is placed on the double slide groove C1 2510, and at the same time, an electromagnetic coil U1 2511 is provided on the electromagnet P1 2509, and the other end of the electromagnet P1 2509 is sleeved with a spring I 2506 and connected to the micro-muffler chamber I 2504, and a reciprocal acoustic transducer G1 2505 is provided at one end of the micro-muffler chamber I 2504, and a reciprocal acoustic transducer G2 2508 is provided at the other end. In addition, a microphone insertion port I 2503 is provided in the middle of the micro-muffler chamber I 2504, and the microphone correction control mechanism I 25 can be rotated 90 degrees in the forward direction or 90 degrees in the reverse direction through the ninth stepper motor D9 2501 and then transmitted through the connecting piece L1 2507, and the electromagnet P1 can be turned on and off by the electromagnetic coil U1 2511. 2509 slides in the double slide groove C1 2510, thereby driving the micro-muffler chamber I 2504 to extend and contract, so that the microphone insertion port I 2503 of the micro-muffler chamber I 2504 can be covered with the microphone 23 or leave the microphone 23; the microphone correction control mechanism II 26 includes a tenth stepper motor D10 2601, a sleeve II 2602, a microphone insertion port II 2603, a micro-muffler chamber II 2604, a reciprocal acoustic transducer G3 2605, a spring II 2606, a connector L2 2607, a reciprocal acoustic transducer G4 2608, an electromagnet P2 2609, a double slide groove C2 2610, and an electromagnetic coil U2 2611, and the tenth stepper motor D10 2601 is fixed to the frame G3 of the vertical motion component S1 18 1801, the tenth stepper motor D10 2601 is connected to one end of the connector L2 2607 through a screw rod, and the other end of the connector L2 2607 is connected to the sleeve II 2602. A cylindrical semi-through hole is provided inside the sleeve II 2602, and a double slide groove C2 2610 and an electromagnet P2 2609 are provided in the hole. The ear rod of the electromagnet P2 2609 is placed on the double slide groove C2 2610, and the electromagnet P2 2609 is provided with an electromagnetic coil U2 2611. The other end of the electromagnet P2 2609 is sleeved with a spring II 2606 and connected to the micro-muffler chamber II 2604. A reciprocal acoustic transducer G3 2605 is provided at one end of the micro-muffler chamber II 2604, and a reciprocal acoustic transducer G4 2608 is provided at the other end. In addition, a microphone insertion port II is provided in the middle of the micro-muffler chamber II 2604. 2603, through the tenth stepper motor D10 2601, and then transmitted through the connector L2 2607, the microphone correction control mechanism II 26 can be rotated 90 degrees in the forward direction or 90 degrees in the reverse direction, and the electromagnetic coil U2 2611 can be powered on and off, so that the electromagnet P22609 can slide in the double slide groove C2 2610, thereby driving the micro-muffler chamber II 2604 to extend and contract, and the microphone insertion port II 2603 of the micro-muffler chamber II 2604 can be covered with the microphone 23 or leave the microphone 23. The microphone correction control mechanism II 26 is mainly used as a backup for the microphone correction control mechanism I 25, and it will work again when the microphone correction control mechanism I 2 is broken;

所述的虚拟球设置参考位置测量柱VI包括支架29,支架29与立式杆30相连,立式杆30上端部设有激光发射器31,上端设有传声器插座32,该参考柱主要确定声学反演时虚拟球设置参考位置。The virtual ball setting reference position measurement column VI includes a bracket 29, which is connected to a vertical rod 30. A laser transmitter 31 is provided at the upper end of the vertical rod 30, and a microphone socket 32 is provided at the upper end. The reference column mainly determines the virtual ball setting reference position during acoustic inversion.

本发明一种自由声场小型声全息测量及反演装置智能控制系统(不是本发明的重点,这里只是简要说明)包括控制中心模块70及分别与控制中心模块相连的附属模块71、与上位机接口模块72、信息输入显示模块73、测距模块74、声压测试及声学反演计算模块75、整个装置水平调整驱动模块76、传声器阵列竖向运动驱动模块77、传声器阵列旋转运动驱动模块78、传声器阵列横向运动驱动模块79、传声器阵列纵向运动驱动模块80、传声器阵列校正运动驱动模块81、传感器信号输入模块82;其控制过程为:首先所示系统上电,首先进行控制中心模块70初始化,然后判初始化是否成功,如不成功,则判断是否超时,如不超时,则继续判断初始化是否成功,如超时则显示系统错误,如果初始化成功,则控制中心模块70向各分模块发出初始化命令并发出应答确认信号,然后判断是否收到全部应答信号,如没有全部收到,则判断初始化是否超时,如超时,则显示系统错误,如不超时,则继续判断是否收到全部应答信号,如收到,则进行进入系统就绪,组出“请输入参下参数”K,N1,N2,N3,w[x],H1(x1,y1,z1),H2(x2,y2,z2),H(x3,y3,z3),h1,其中x为1到N2,然后进入全息面形状选择分流程,全息面形状选择分流程结束以后进入整个装置水平定位分流程,整个装置水平定位分流程结束以后,进入标定数据测试通道多频率幅值与相位及标定传声器多频率幅值灵敏度与相位测试计算分流程,标定数据测试通道多频率幅值与相位及标定传声器多频率幅值灵敏度与相位测试计算分流程结束以后,进入普通待测数据测试通道幅值与相位及传声器阵列多频率幅值灵敏度与相位计算测试分流程,普通待测数据测试通道幅值与相位及传声器阵列多频率幅值灵敏度与相位计算测试分流程结束以后进入声压测试计算分流程,声压测试计算分流程结束后进入声学反演计算分流程,声学反演计算分流程结束以后判断测试反演任务结束了吗,如不是就返回系统就绪,如果是就任务结束,该流程中的参数K为全息面形状选择参数,N1为待测传声器个数也是待测测试通道个数,N2为要校正的频数个数,N3为做FFT运算进行采集的周期数,w[x]为需校正的频率值,H1(x1,y1,z1)为虚拟球面所在的参考位置坐标、H2(x2,y2,z2)为全息面的位置坐标H3(x3,y3,z3)为重建面的位置坐标,h1为支撑座I的初始预定高度。The present invention provides an intelligent control system for a small acoustic holographic measurement and inversion device in a free sound field (not the focus of the present invention, but only briefly described here) including a control center module 70 and auxiliary modules 71 respectively connected to the control center module, an interface module 72 with a host computer, an information input and display module 73, a distance measurement module 74, a sound pressure test and acoustic inversion calculation module 75, a whole device horizontal adjustment drive module 76, a microphone array vertical motion drive module 77, a microphone array rotational motion drive module 78, a microphone array lateral motion drive module 79, a microphone array longitudinal motion drive module 80, a microphone array correction motion drive module 81, a sensor signal input Module 82; its control process is: first, the system is powered on, and the control center module 70 is initialized first, and then it is judged whether the initialization is successful. If it is not successful, it is judged whether it is timed out. If it is not timed out, it continues to judge whether the initialization is successful. If it is timed out, it displays a system error. If the initialization is successful, the control center module 70 sends an initialization command to each sub-module and sends a response confirmation signal, and then judges whether all response signals are received. If not all are received, it is judged whether the initialization is timed out. If it is timed out, it displays a system error. If it is not timed out, it continues to judge whether all response signals are received. If it is received, it enters the system ready and groups out "Please enter the following parameters" K, N1 , N2 , N3 , w[x], H1 ( x1 , y1 , z1 ), H2 (x2, y2 , z2 ), H ( x3 , y3 , z3 ), h1 , where x is 1 to N2 , and then enter the holographic surface shape selection sub-process. After the holographic surface shape selection sub-process is completed, enter the whole device horizontal positioning sub-process. After the whole device horizontal positioning sub-process is completed, enter the calibration data test channel multi-frequency amplitude and phase and calibration microphone multi-frequency amplitude sensitivity and phase test calculation sub-process. After the calibration data test channel multi-frequency amplitude and phase and calibration microphone multi-frequency amplitude sensitivity and phase test calculation sub-process is completed, enter the ordinary test data channel amplitude and phase and microphone array multi-frequency amplitude sensitivity and phase calculation test sub-process. After the ordinary test data channel amplitude and phase and microphone array multi-frequency amplitude sensitivity and phase calculation test sub-process is completed, enter the sound pressure test calculation sub-process. After the sound pressure test calculation sub-process is completed, enter the acoustic inversion calculation sub-process. After the acoustic inversion calculation sub-process is completed, determine whether the test inversion task is completed. If not, return to system ready. If so, the task is completed. The parameter K in this process is the holographic surface shape selection parameter, N1 is the number of microphones to be tested, which is also the number of test channels to be tested, and N N2 is the number of frequencies to be corrected, N3 is the number of cycles collected for FFT operation, w[x] is the frequency value to be corrected, H1 ( x1 , y1 , z1 ) is the reference position coordinate of the virtual spherical surface, H2 ( x2 , y2 , z2 ) is the position coordinate of the holographic surface, H3 ( x3 , y3 , z3 ) is the position coordinate of the reconstructed surface, and h1 is the initial predetermined height of the support base I.

所述的全息面形状选择分流程图如图6,首先传入选择参数K,然后判断K是否等1,如是则选择全息面形状1,如不是就判断K是否等于2,如是则选择全息面形状2,如不是就判断K是否等于3,如是则选择全息面形状3,如不是就判断K是否等于4,如是则选择全息面形状4,如不是就结束,该流程中的参数K为全息面形状选择参数。The holographic surface shape selection sub-flow chart is shown in Figure 6. First, the selection parameter K is passed in, and then it is determined whether K is equal to 1. If so, holographic surface shape 1 is selected. If not, it is determined whether K is equal to 2. If so, holographic surface shape 2 is selected. If not, it is determined whether K is equal to 3. If so, holographic surface shape 3 is selected. If not, it is determined whether K is equal to 4. If so, holographic surface shape 4 is selected. If not, the process ends. The parameter K in this process is the holographic surface shape selection parameter.

所述的整个装置水平定位分流程控制过程为:首先传入参数h1,驱动第一丝杆电机N1运动,使支撑座I的高度等于给定的设定值h1,检测水平位置传感器K2的值,然后判断该值是否大于0,如果不大于0,则驱动第三丝杆N3正向运动,使支撑座III抬高,再返回检测水平位置传感器K2的值,如果大于0则驱动第三丝杆N3反向运动,再返回检测水平位置传感器K2的值,如果等于0,则检测水平位置传感器K1的值,然后判断该值是否大于0,如果不大于0,则驱动第二丝杆N2电机正向转动,然后再返回检测水平位置传感器K1的值,使支撑座II抬高,如果大于0,则驱动第二丝杆N2电机反向转动,然后再返回检测水平位置传感器K1的值,如果等于0,则结束,该流程中h1为支撑座I的初始预定高度。The horizontal positioning sub-process control process of the entire device is as follows: first, the parameter h1 is passed in to drive the first screw motor N1 to move so that the height of the support seat I is equal to the given set value h1 , and the value of the horizontal position sensor K2 is detected, and then it is determined whether the value is greater than 0. If it is not greater than 0, the third screw rod N3 is driven to move forward to lift the support seat III, and then return to detect the value of the horizontal position sensor K2. If it is greater than 0, the third screw rod N3 is driven to move reversely, and then return to detect the value of the horizontal position sensor K2. If it is equal to 0, the value of the horizontal position sensor K1 is detected, and then it is determined whether the value is greater than 0. If it is not greater than 0, the second screw rod N2 motor is driven to rotate forward, and then return to detect the value of the horizontal position sensor K1 to lift the support seat II. If it is greater than 0, the second screw rod N2 motor is driven to rotate reversely, and then return to detect the value of the horizontal position sensor K1. If it is equal to 0, it ends. In this process, h1 is the initial predetermined height of the support seat I.

所述的标定数据测试通道多频率幅值与相位及标定传声器多频率幅值灵敏度与相位测试计算分流程图控制过程为;首先传入参数N2,N3,w[x],其中x的范围为1到N2,然后给循环变量L1,L2预置初值为1,即L1=1,L2=1,然后对频率变量w及循环变量赋值即w=w[L2],L2=L2+1,然后进定标定数据测试通道单一频率幅值与相位测试计算分流程,该流程结束以后进入标定传声器的单一步率幅值灵敏度与相位测试计算分流程,该流程结束后保存两个流程的输出数据,即:The control process of the calibration data test channel multi-frequency amplitude and phase and calibration microphone multi-frequency amplitude sensitivity and phase test calculation sub-flow chart is as follows: firstly, input parameters N2 , N3 , w[x], where x ranges from 1 to N2 , then preset the initial value of loop variables L1 , L2 to 1, that is, L1 = 1, L2 = 1, then assign values to the frequency variable w and the loop variable, that is, w = w[ L2 ], L2 = L2 + 1, then enter the calibration data test channel single frequency amplitude and phase test calculation sub-flow, after the process is completed, enter the calibration microphone single frequency amplitude sensitivity and phase test calculation sub-flow, after the process is completed, save the output data of the two processes, that is:

B1[L1][L2]=Aj,β1[L1][L2]=θj,B2[L1][L2]=A04,β2[L1][L2]=θ04,B3[L1][L2]=An1,β3[L1][L2]=θn1B4[l1][L2]=A01,β4[L1][L2]=θ01,数据保存结束后,判断L2是否大于N2,如果不大于,则返回对频率变量w及循环变量赋值即w=w[L2],L2=L2+1,如果大于,则L2=L2+1,然后判断L1是否大于等于1,如果不大于,则L1=L1+1,并且返回对频率变量w及循环变量赋值即w=w[L2],L2=L2+1,如果大于等于1,则输出数据B1[L1][L2],β1[L1][L2],B2[L1][L2],β2[L1][L2],B1[L1][L2],β3[L1][L2],B4[L1][L2],β4[L1][L2],其中L1为1-1,L2为1到N2,然后结束任务,该流程中N2为要校正的频数个数,N3为做FFT运算进行采集的周期数,w[x]为需校正的频率值。 B1 [ L1 ] [ L2 ]= Aj , β1 [L1][ L2 ]= θj , B2[ L1 ][ L2 ]= A04 , β2 [L1][L2]= θ04 , B3 [ L1 ][ L2 ]= An1 , β3[ L1 ] [ L2]= θn1 B4[l1][L2]=A01, β4 [ L1 ] [ L2 ]θ01 , after data saving, determine whether L2 is greater than N2 , if not, return to assign frequency variable w and loop variable, that is, w=w[ L2 ], L2L2 + 1 , if greater, L2L2 +1, then determine whether L1 is greater than or equal to 1, if not, L1 =L 1 +1, and returns the assignment of the frequency variable w and the loop variable, that is, w=w[L 2 ], L 2 =L 2 +1. If it is greater than or equal to 1, the output data B 1 [L 1 ][L 2 ], β 1 [L 1 ][L 2 ], B 2 [L 1 ][L 2 ], β 2 [L 1 ][L 2 ], B 1 [L 1 ][L 2 ], β 3 [L 1 ][L 2 ], B 4 [L 1 ][L 2 ], β 4 [L 1 ][L 2 ], where L 1 is 1-1 and L 2 is 1 to N 2 , and then the task is terminated. In this process, N 2 is the number of frequencies to be corrected, N 3 is the number of cycles collected for FFT operation, and w[x] is the frequency value to be corrected.

所述的普通待测数据测试通道与传声器阵列多频率幅值灵敏度与相位计算测试分流程控制过程为:传入参数:N1,N2,N3,w[x],B1[L1][L2],β1[L1][L2],B2[L1][L2],β2[L1][L2],其中x的范围为1到N2,L1为1到1,L2为1到N2,然后置循环变量赋初值m1=1,m2=1,然后对频率变量赋值w=w[m2],然后进入单一待测数据测试通道单一频率幅值与相位测试信号加载步骤流程,该流程结以后进入单一待测传声器单一频率幅值灵敏度与相位测试信号加载步骤流程,该流程结束后得出测试通道的幅值与相位以及传声器的幅值灵敏度与相位,即:

Figure BSA0000178414700000131
Figure BSA0000178414700000132
,并对变量m2进行加1再赋给m2,然后再判断m2是否大于N2,如果不大于则返回对对频率变量赋值w=w[m2],如果大于,则m1=m1+1,然后再判断m1是否大于N1,如果不大于,则返回对对频率变量赋值w=w[m2],如果大于则输出C1[m1][m2],δ1[m1][m2],C2[m1][m2],δ2[m1][m2],其中C1[m1][m2],δ1[m1][m2]分别为m1路待测数据测试通道在频率为w[m2]的幅值与相位,C2[m1][m2],δ2[m1][m2]为第m1路待测传声器在频率为w[m2]的幅值与相位,m1为1到N1,m2为1到N2。The control process of the common test data test channel and microphone array multi-frequency amplitude sensitivity and phase calculation test sub-process is as follows: input parameters: N 1 , N 2 , N 3 , w[x], B 1 [L 1 ][L 2 ], β 1 [L 1 ][L 2 ], B 2 [L 1 ][L 2 ], β 2 [L 1 ][L 2 ], where x ranges from 1 to N 2 , L 1 is 1 to 1, and L 2 is 1 to N 2 , then the loop variables are assigned initial values m 1 =1, m 2 =1, then the frequency variable is assigned w=w[m 2 ], then the single test data test channel single frequency amplitude and phase test signal loading step process is entered, after the process is completed, the single test microphone single frequency amplitude sensitivity and phase test signal loading step process is entered, after the process is completed, the amplitude and phase of the test channel and the amplitude sensitivity and phase of the microphone are obtained, that is:
Figure BSA0000178414700000131
Figure BSA0000178414700000132
, and add 1 to the variable m 2 and assign it to m 2 , then determine whether m 2 is greater than N 2 , if not, return the value w=w[m 2 ] assigned to the frequency variable, if greater, then m 1 =m 1 +1, then determine whether m 1 is greater than N 1 , if not, return the value w=w[m 2 ] assigned to the frequency variable, if greater, output C 1 [m 1 ][m 2 ], δ 1 [m 1 ][m 2 ], C 2 [m 1 ][m 2 ], δ 2 [m 1 ][m 2 ], where C 1 [m 1 ][m 2 ], δ 1 [m 1 ][m 2 ] are the amplitude and phase of the m 1 test data channel at the frequency w[m 2 ], respectively, and C 2 [m 1 ][m 2 ], δ 2 [m 1 ][m 2 ] are the amplitude and phase of the m 1 test data channel at the frequency w[m 2 ], respectively. ] is the amplitude and phase of the m1th microphone to be tested at the frequency w[m 2 ], m1 is 1 to N 1 , and m 2 is 1 to N 2 .

所述的声压测试计算分流程图控制过程为:传入参数N1,N2,N3w[x],C1[m1][m2],δ1[m1][m2],C2[m1][m2],δ2[m1][m2],其中m1为1到N1,m2为1到N2,x为1到N2;然后信号的加载与计算,即主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS单元在脉冲同步下,N1个数据测试通道分别同时采集N3周期数据,N1组数据经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w[x]的信号幅值R[m1][m2]及相位ψ[m1][m2],最后求出全息面N1个点上的全息面复声压即:The sound pressure test calculation sub-flow chart control process is as follows: input parameters N 1 , N 2 , N 3 w[x], C 1 [m 1 ][m 2 ], δ 1 [m 1 ][m 2 ], C 2 [m 1 ][m 2 ], δ 2 [m 1 ][m 2 ], where m1 is 1 to N 1 , m 2 is 1 to N 2 , and x is 1 to N 2 ; then the signal is loaded and calculated, that is, the synchronization pulse distribution sub-unit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS unit is under pulse synchronization, and N 1 data test channels respectively collect N 3 periodic data simultaneously, and the N 1 groups of data are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation sub-unit and the spectrum energy centroid method correction sub-unit in the main control unit 7501 to obtain the signal amplitude R[m 1 ][m 2 ] and phase ψ[m 1 ][m 2 ] of the frequency w[x] ], and finally the complex sound pressure of the holographic surface at N 1 points on the holographic surface is obtained:

P[m1][m2]=R[m1][m2]/(C1[m1][m2]*C2[m1][m2]),

Figure BSA0000178414700000141
其中m1为1到N1,m2为1到N2,最后输出数据P[m1][m2],
Figure BSA0000178414700000142
然后结束,P[m1][m2],
Figure BSA0000178414700000143
为全息面上第m1路传声器在频率为w[m2]的幅值与相位,m1为1到N1,m2为1到N2。P[m 1 ][m 2 ]=R[m 1 ][m 2 ]/(C 1 [m 1 ][m 2 ]*C 2 [m 1 ][m 2 ]),
Figure BSA0000178414700000141
Where m1 is 1 to N 1 , m 2 is 1 to N 2 , and the final output data is P[m 1 ][m 2 ],
Figure BSA0000178414700000142
Then end, P[m 1 ][m 2 ],
Figure BSA0000178414700000143
are the amplitude and phase of the m1th microphone on the holographic plane at the frequency w[ m2 ], m1 is 1 to N1 , and m2 is 1 to N2 .

所述的声学反演计算分流程图控制过程为:传入虚拟球面所在参考中心坐标H1(x1,y1,z1)、全息测量面的中心坐标H2(x2,y2,z2)、重建面的中心坐标H3(x3,y3,z3)、虚拟球的个数N4以及全息面H面复声压数据P[m1][m2],

Figure BSA0000178414700000144
其中m1为1到N1,m2为1到N2,把全息面复声压数据P赋给pE(H),然后根据等效源强理论公式
Figure BSA0000178414700000145
对未知源强密度函数σ(rQ)进行双向Fourier级数展开,同时利用二维FFT及梯形公式对格林函数K(r,rQ)进行离散化,建立声全息测量面与虚拟球等效源强声压值之间的关系距阵TH,从而pE(H)=[TH]Q,pE(H)为全息面测量值,Q为虚拟球未知源强密度函数σ(rQ)双向傅立叶分解后的系数,最后采用与建立TH同样的方法建立待反演面上H+声压值与拟球之间传递矩阵
Figure BSA0000178414700000146
结合pE(H)=[TH]Q与
Figure BSA0000178414700000147
求出
Figure BSA0000178414700000158
并TH进行正则化处理得到:
Figure BSA0000178414700000151
上面各式中S′是振动体内某一虚拟源强分布表面,σ(rQ)为待求的虚拟源强密度函数,K(r,rQ)为积分核函数,即格林函数K(r,rQ)=g(r,rQ)=(1/4πR)eikR,rQ虚拟球半径,r为虚拟源强到测量面或重建面的距离。The acoustic inversion calculation sub-flowchart control process is as follows: inputting the reference center coordinates H 1 (x 1 , y 1 , z 1 ) of the virtual spherical surface, the center coordinates H 2 (x 2 , y 2 , z 2 ) of the holographic measurement surface, the center coordinates H 3 (x 3 , y 3 , z 3 ) of the reconstruction surface, the number N 4 of virtual spheres, and the complex sound pressure data P [m 1 ] [m 2 ] of the holographic surface H,
Figure BSA0000178414700000144
Where m1 is 1 to N 1 , m 2 is 1 to N 2 , assign the holographic surface complex sound pressure data P to p E (H), and then according to the equivalent source intensity theory formula
Figure BSA0000178414700000145
The unknown source intensity density function σ(r Q ) is bidirectionally expanded by Fourier series, and the Green function K(r, r Q ) is discretized by two-dimensional FFT and trapezoidal formula. The relationship matrix TH between the acoustic holographic measurement surface and the equivalent source intensity sound pressure value of the virtual sphere is established, so that p E (H) = [ TH ]Q, p E (H) is the holographic surface measurement value, and Q is the coefficient of the bidirectional Fourier decomposition of the unknown source intensity density function σ(r Q ) of the virtual sphere. Finally, the transfer matrix between the H + sound pressure value on the inversion surface and the pseudo-sphere is established by the same method as that of establishing TH.
Figure BSA0000178414700000146
Combining p E (H) = [ TH ] Q with
Figure BSA0000178414700000147
Find
Figure BSA0000178414700000158
And TH is regularized to get:
Figure BSA0000178414700000151
In the above formulas, S′ is a virtual source intensity distribution surface in the vibrating body, σ(r Q ) is the virtual source intensity density function to be determined, K(r, r Q ) is the integral kernel function, that is, Green's function K(r, r Q )=g(r, r Q )=(1/4πR)e ikR , r Q is the radius of the virtual sphere, and r is the distance from the virtual source intensity to the measurement surface or the reconstruction surface.

所述的标定数据测试通道单一频率幅值与相位测试计算步骤分流程控制过程为:传入频率w及采集周期个数N3,其计算步骤为;The calculation steps of the calibration data test channel single frequency amplitude and phase test are divided into a flow control process as follows: input frequency w and the number of acquisition cycles N 3 , and the calculation steps are as follows;

(a)主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I 7504上,该信号再经过高速多支路电子选择开关M2(7505)直接加到标定数据测试通道7512上,信号变为:(a) The synchronization pulse distribution unit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS unit gives a sine wave signal s r =A re -jw under pulse synchronization, where A r is the amplitude of the signal s r , and w is the frequency of the signal s r . The signal is added to the signal driving channel I 7504 through the high-speed multi-branch electronic selection switch M1 7502, and the signal is directly added to the calibration data test channel 7512 through the high-speed multi-branch electronic selection switch M2 (7505). The signal becomes:

Figure BSA0000178414700000152
即A01=ArAq1Aj θ01=θq1j
Figure BSA0000178414700000153
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号
Figure BSA0000178414700000154
的幅值A01及相位θ01,上面各式中Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角。
Figure BSA0000178414700000152
That is, A 01 =A r A q1 A j θ 01q1j pair
Figure BSA0000178414700000153
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000154
The amplitude A 01 and phase θ 01 of the above formula are the frequency response functions of the B q1 (jw) signal driving channel I 7504, A q1 is the amplitude of B q1 (jw), θ q1 is the phase of B q1 (jw) Phase delay angle, B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), and θ j is the phase delay angle of B j (jw).

(b)主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道II 7503上,该信号再经过高速多支路电子选择开关M2 7505直接加到标定数据测试通道7512上,信号变为:

Figure BSA0000178414700000155
即:A02=ArAq2Aj,θ02=θq2j,对
Figure BSA0000178414700000156
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w信号
Figure BSA0000178414700000157
的幅值A02及相位θ02,上面各式中Bq2(jw)信号驱动通道II 7503的频率响应函数为,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角。(b) The synchronization pulse distribution subunit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS subunit gives a sine wave signal s r =A re -jw under pulse synchronization, where A r is the amplitude of the signal s r , and w is the frequency of the signal s r . The signal is added to the signal drive channel II 7503 through the high-speed multi-branch electronic selection switch M1 7502, and the signal is directly added to the calibration data test channel 7512 through the high-speed multi-branch electronic selection switch M2 7505. The signal becomes:
Figure BSA0000178414700000155
That is: A 02 =A r A q2 A j , θ 02q2j , for
Figure BSA0000178414700000156
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000157
The amplitude A 02 and phase θ 02 of the signal driving channel II 7503 in the above formulas are: A q2 is the amplitude of B q2 (jw), θ q2 is the phase delay angle of B q2 (jw), B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), and θ j is the phase delay angle of B j (jw).

(c)主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I 7504上,该信号再经过高速多支路电子选择开关M2 7505加到信号驱动通道II 7503上,再经过高速多支路电子选择开关M2 7505加到标定数据测试通道7512上,信号变为:(c) The synchronization pulse distribution subunit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS subunit gives a sine wave signal s r =A re -jw under pulse synchronization, where A r is the amplitude of the signal s r , and w is the frequency of the signal s r . The signal is added to the signal driving channel I 7504 through the high-speed multi-branch electronic selection switch M1 7502, and the signal is then added to the signal driving channel II 7503 through the high-speed multi-branch electronic selection switch M2 7505, and then added to the calibration data test channel 7512 through the high-speed multi-branch electronic selection switch M2 7505. The signal becomes:

Figure BSA0000178414700000161
Figure BSA0000178414700000161

即:A03=ArAq1Aq2Aj,θ03=θq1q2j,对

Figure BSA0000178414700000162
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w信号
Figure BSA0000178414700000163
幅值A03及相位θ03,上式Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Bq2(jw)信号驱动通道II 7503的频率响应函数为,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角。That is: A 03 =A r A q1 A q2 A j , θ 03q1q2j , for
Figure BSA0000178414700000162
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000163
Amplitude A 03 and phase θ 03 , the above formula is the frequency response function of the B q1 (jw) signal driving channel I 7504, A q1 is the amplitude of B q1 (jw), θ q1 is the phase delay angle of B q1 (jw) , B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), θ j is the phase delay angle of B j (jw), and B q2 (jw) is the signal driving channel II The frequency response function of 7503 is, A q2 is the amplitude of B q2 (jw), θ q2 is the phase delay angle of B q2 (jw).

(d)由A01,A02,A03,Ar求出Aq1,Aq2,Aj,由θ01,θ02,θ03求出θq1,θq2,θj即:(d) From A 01 , A 02 , A 03 , and A r , we can obtain A q1 , A q2 , and A j . From θ 01 , θ 02 , and θ 03 , we can obtain θ q1 , θ q2 , and θ j . That is:

Aq1=A03/A02,Aq2=A03/A01,Aj=(A01A02)/(ArA03),A q1 =A 03 /A 02 , A q2 =A 03 /A 01 , A j =(A 01 A 02 )/(A r A 03 ),

θq1=θ0302,θq2=θ0301,θj=θ010203θ q10302 , θ q20301 , θ j010203 ,

最后输出A01,A02,A03,A04,θ01,θ02,θ03,θj,N3。The final outputs are A 01 , A 02 , A 03 , A 04 , θ 01 , θ 02 , θ 03 , θ j , and N3.

所述的标定传声器的单一频率幅值灵敏度与相位测试计算步骤分流程控制过程为:,首先传入参数w,A01,A02,A03,θ01,θ02,θ03,N3,其计算步骤为:The calculation steps of the single frequency amplitude sensitivity and phase test of the calibration microphone are divided into a flow control process as follows: firstly, the parameters w, A 01 , A 02 , A 03 , θ 01 , θ 02 , θ 03 , N 3 are input, and the calculation steps are as follows:

(g1)传声器校正机构I 25在传声器阵列坚向运运动控制机构IV、传声器阵列横向运动控制机构V配合下,使传声器校正机构I 25的传声器插入口I 2503插入标定传器27上,同时主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I 7504,再经过高速多支路电子选择开关M2 7505,加到互易声学换能G1 2505上,推动互易声学换能器G1 2505发声,辐射声波,该声波被与互易声学换能G1 2502相距为r/2的标定传声器27接收,该信号经过高速多支路电子选择开关M3 7509加到标定数据测试通道7512,信号变为:(g1) The microphone correction mechanism I 25, in cooperation with the microphone array vertical motion control mechanism IV and the microphone array lateral motion control mechanism V, inserts the microphone insertion port I 2503 of the microphone correction mechanism I 25 into the calibration microphone 27. At the same time, the synchronization pulse distribution unit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS subunit gives a sinusoidal wave signal s r =A r e -jw under pulse synchronization, wherein A r is the amplitude of the signal s r , and w is the frequency of the signal s r . The signal is added to the signal driving channel I 7504 through the high-speed multi-branch electronic selection switch M1 7502, and then added to the reciprocal acoustic transducer G1 2505 through the high-speed multi-branch electronic selection switch M2 7505, so as to drive the reciprocal acoustic transducer G1 2505 to emit sound and radiate sound waves. The sound waves are coupled to the reciprocal acoustic transducer G1 2505. The signal is received by the calibration microphone 27 at a distance of r/2 from 2502. The signal is added to the calibration data test channel 7512 through the high-speed multi-branch electronic selection switch M3 7509, and the signal becomes:

Figure BSA0000178414700000171
Figure BSA0000178414700000171

即得:A04=ArAq1Ar1An1Aj,θ04=θq1tr1n1j,对

Figure BSA0000178414700000172
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFF计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号
Figure BSA0000178414700000173
幅值A04及相位θ04,上式Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Bq2(jw)信号驱动通道II7503的频率响应函数为,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角,Btr1(jw)为互易声学换能G1 2505发射频率响应函数,Atr1为Btr1(jw)的幅值,θtr1为Btr1(jw)相位延迟角,Bn1(w)为标定传声器(27)接收频率响应函数,An1为Bn1(w)的幅值,θn1为为Bn1(w)的相位延迟角。That is: A 04 =A r A q1 A r1 A n1 A j04q1tr1n1j , right
Figure BSA0000178414700000172
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional mixed FFF calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000173
Amplitude A 04 and phase θ 04 , the above formula is the frequency response function of the B q1 (jw) signal driving channel I 7504, A q1 is the amplitude of B q1 (jw), θ q1 is the phase delay angle of B q1 (jw) , B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), θ j is the phase delay angle of B j (jw), and B q2 (jw) is the signal driving channel II7503 The frequency response function is: A q2 is the amplitude of B q2 (jw), θ q2 is the phase delay angle of B q2 (jw), B tr1 (jw) is the reciprocal acoustic transducer G1 2505 transmission frequency response function, A tr1 is the amplitude of B tr1 (jw), θ tr1 is the phase delay angle of B tr1 (jw), B n1 (w) is the receiving frequency response function of the calibration microphone (27), A n1 is the amplitude of B n1 (w), and θ n1 is the phase delay angle of B n1 (w).

(g2)传声器校正机构I 25在传声器阵列坚向运运动控制机构IV、传声器阵列横向运动控制机构V配合下,使传声器校正机构I 25的传声器插入口I 2503插入标定传器27上,同时主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经高速多支路电子选择开关M1 7502,加到信号驱动通道II 7503,该信号经过高速多支路电子开关M2 7505,加到互易声学换能G2 2508上,推动互易声学换能器G2 2508发声,辐射声波,该声波被与互易声学换能G2 2508相距为r/2的标定传声器27接收,该信号经过高速多支路电子选择开关M37509加到标定数据测试通道7512,信号变为:(g2) The microphone correction mechanism I 25, in cooperation with the microphone array vertical motion control mechanism IV and the microphone array lateral motion control mechanism V, inserts the microphone insertion port I 2503 of the microphone correction mechanism I 25 into the calibration microphone 27. At the same time, the synchronization pulse distribution unit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS subunit gives a sinusoidal wave signal s r =A r e -jw under pulse synchronization, wherein A r is the amplitude of the signal s r , and w is the frequency of the signal s r . The signal is added to the signal driving channel II 7503 via the high-speed multi-branch electronic selection switch M1 7502. The signal is added to the reciprocal acoustic transducer G2 2508 via the high-speed multi-branch electronic switch M2 7505, thereby driving the reciprocal acoustic transducer G2 2508 to emit sound and radiate sound waves. The sound waves are coupled to the reciprocal acoustic transducer G2 2508. The signal is received by the calibration microphone 27 with a distance of r/2 from 2508. The signal is added to the calibration data test channel 7512 through the high-speed multi-branch electronic selection switch M37509, and the signal becomes:

Figure BSA0000178414700000174
Figure BSA0000178414700000174

即得:A05=ArAq2Atr2An1Aj,θ05=θq2tr2n1j,对

Figure BSA0000178414700000175
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号
Figure BSA0000178414700000176
的幅值A05及相位θ05,上式Bq2(jw)信号驱动通道II 7503的频率响应函数,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Btr2(jw)为互易声学换能G2 2508发射频率响应函数,Atr2为Btr2(jw)的幅值,θtr2为Btr2(jw)相位延迟角,Bn1(w)为标定传声器27接收频率响应函数,An1为Bn1(w)的幅值,θn1为为Bn1(w)的相位延迟角。That is: A 05 =A r A q2 A tr2 A n1 A j , θ 05 =θ q2tr2n1j , right
Figure BSA0000178414700000175
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000176
The amplitude A 05 and phase θ 05 of the above formula are the frequency response function of the B q2 (jw) signal driving channel II 7503, A q2 is the amplitude of B q2 (jw), θ q2 is the phase delay of B q2 (jw) angle, B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), θ j is the phase delay angle of B j (jw), and B tr2 (jw) is the reciprocal The acoustic transducer G2 2508 transmits the frequency response function, A tr2 is the amplitude of B tr2 (jw), θ tr2 is the phase delay angle of B tr2 (jw), B n1 (w) is the receiving frequency response function of the calibration microphone 27, and A n1 is the amplitude of B n1 (w), θ n1 is the phase delay angle of B n1 (w).

(g3)主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502,加到信号驱动通道I 7504,该信号经过高速多支路电子选择开关M2 7505上加到互易声学换能G1 2505上,推动互易声学换能器G1 2505发声,辐射声波,该声波被与互易声学换能器G1 2505相距为r的互易声学换能器G2 2508接收,该信号经过高速多支路电子选择开关M3 7509加到数据测试通道,信号变为:(g3) The synchronization pulse distribution subunit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS subunit gives a sine wave signal s r =A r e -jw under pulse synchronization, where A r is the amplitude of the signal s r , and w is the frequency of the signal s r . The signal passes through the high-speed multi-branch electronic selection switch M1 7502 and is added to the signal driving channel I 7504. The signal passes through the high-speed multi-branch electronic selection switch M2 7505 and is added to the reciprocal acoustic transducer G1 2505, driving the reciprocal acoustic transducer G1 2505 to sound and radiate sound waves. The sound waves are received by the reciprocal acoustic transducer G2 2508 which is r away from the reciprocal acoustic transducer G1 2505. The signal passes through the high-speed multi-branch electronic selection switch M3 7509 and is added to the data test channel. The signal becomes:

Figure BSA0000178414700000181
Figure BSA0000178414700000181

即得:A06=ArAq1Atr1Atr2[2r/(ρf)]Aj,θ06=θq1tr1tr2-kr+π/2+θj,对

Figure BSA0000178414700000182
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号
Figure BSA0000178414700000183
幅值A06及相位θ06,上式Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Btr1(jw)为互易声学换能G1 2505发射频率响应函数,Atr1为Btr1(jw)的幅值,θtr1为Btr1(jw)相位延迟角,Btr2(jw)为互易声学换能G2(2508)发射频率响应函数,Atr2为Btr2(jw)的幅值,θtr2为Btr2(jw)相位延迟角,B′tr2(jw)为互易声学换能G2(2508)接收频率响应函数,ρ0为空气密度,f为声波的频率,2r/ρ0f为球面自由声场的互易参量,对于其他自由声场这个参数要适当修正,同样可以适用用其他类型的自由声场来做为测试声源。That is: A 06 =A r A q1 A tr1 A tr2 [2r/(ρf)]A j , θ 06 =θ q1tr1tr2 -kr+π/2+θ j , right
Figure BSA0000178414700000182
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000183
Amplitude A 06 and phase θ 06 , the above formula is the frequency response function of the B q1 (jw) signal driving channel I 7504, A q1 is the amplitude of B q1 (jw), θ q1 is the phase delay angle of B q1 (jw) , B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), θ j is the phase delay angle of B j (jw), B tr1 (jw) is the reciprocal acoustic Transducer G1 2505 transmit frequency response function, A tr1 is the amplitude of B tr1 (jw), θ tr1 is the phase delay angle of B tr1 (jw), and B tr2 (jw) is the transmit frequency of the reciprocal acoustic transducer G2 (2508) Response function, A tr2 is the amplitude of B tr2 (jw), θ tr2 is the phase delay angle of B tr2 (jw), B′ tr2 (jw) is the receiving frequency response function of the reciprocal acoustic transducer G2 (2508), ρ 0 is the air density, f is the frequency of the sound wave, 2r/ρ 0 f is the reciprocal parameter of the spherical free sound field, and for other free sound fields, The parameters need to be modified appropriately, and other types of free sound fields can also be used as test sound sources.

(g4)由A01,A02,A03,A04,A05,A06,Ar求出Atr1,Atr2,An1(g4) Find A tr1 , A tr2 , A n1 from A 01 , A 02 , A 03 , A 04 , A 05 , A 06 , A r :

Figure BSA0000178414700000184
由θ01,θ02,θ03,θ04,θ05,θ06求出θtr1,θtr2,θn1
Figure BSA0000178414700000191
Figure BSA0000178414700000192
θn1=(θ0104050306j+k-π/2)/2,所求得的An1、θn1就是待测传声器的幅值灵敏度与相位校正系数,输出An1,θn1A04,θ04
Figure BSA0000178414700000184
Find θ tr1 , θ tr2 , θ n1 from θ 01 , θ 02 , θ 03 , θ 04 , θ 05 , θ 06 :
Figure BSA0000178414700000191
Figure BSA0000178414700000192
θ n1 =(θ 0104050306j +k-π/2)/2. The obtained A n1 and θ n1 are the amplitude sensitivity and phase of the microphone to be tested. Correction coefficient, output A n1 , θ n1 A 04 , θ 04 .

所述的单一待测数据测试通道单一频率幅值与相位测试信号加载步骤流程控制过程为:传入参数N3,然后进行信号的加载计算,即:主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1(7502)加到信号驱动通道I 7504上,该信号再经过高速多支路电子选择开关M2 7505直接加到第m1路数据测试通道7511上,信号变为:The control process of the loading step of the single frequency amplitude and phase test signal of the single data test channel to be tested is as follows: the parameter N3 is input, and then the signal loading calculation is performed, that is, the synchronization pulse distribution sub-unit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS unit gives a sine wave signal sr = Are - jw under pulse synchronization, wherein Ar is the amplitude of the signal sr , and w is the frequency of the signal sr . The signal is added to the signal driving channel I 7504 through the high-speed multi-branch electronic selection switch M1 (7502), and the signal is then directly added to the m1 -th data test channel 7511 through the high-speed multi-branch electronic selection switch M2 7505, and the signal becomes:

Figure BSA0000178414700000193
即:
Figure BSA0000178414700000194
Figure BSA0000178414700000195
Figure BSA0000178414700000196
同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号
Figure BSA0000178414700000197
幅值
Figure BSA0000178414700000198
及相位
Figure BSA0000178414700000199
最后输出幅值
Figure BSA00001784147000001910
及相位
Figure BSA00001784147000001911
Figure BSA0000178414700000193
Right now:
Figure BSA0000178414700000194
Figure BSA0000178414700000195
right
Figure BSA0000178414700000196
Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w
Figure BSA0000178414700000197
Amplitude
Figure BSA0000178414700000198
and Phase
Figure BSA0000178414700000199
Final output amplitude
Figure BSA00001784147000001910
and Phase
Figure BSA00001784147000001911

所述的单一待测传声器单一频率幅值灵敏度与相位测试试号加载步骤流程控制过程为:传入参数N3,然后进行信号的加载计算,即:传声器校正机构I 25在传声器阵列坚向运运动控制机构IV、传声器阵列横向运动控制机构V配合下,使传声器校正机构I 25的传声器插入口I 2503插入第m1路传声器,同时主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I7504,再经过高速多支路电子选择开关M2 7505上,加到互易声学换能器G1 2505上,推动互易声学换能器G1 2505发声,辐射声波,该声波被与互易声学换能器G1 2505相距为r/2的第m1路传声器接收,该信号经过高速多支路电子选择开关M3 7509加到第m1路数据测试通道7511上,信号变为:The control process of the single frequency amplitude sensitivity and phase test number loading step of the single microphone to be tested is as follows: input parameter N3 , and then perform signal loading calculation, that is: the microphone correction mechanism I25, under the cooperation of the microphone array vertical motion control mechanism IV and the microphone array lateral motion control mechanism V, makes the microphone insertion port I2503 of the microphone correction mechanism I25 insert the m1- th microphone, and at the same time, the synchronization pulse distribution unit inside the main control unit 7501 gives a synchronization pulse, and the internal DDS unit gives a sine wave signal sr = Are - jw under pulse synchronization, wherein Ar is the amplitude of the signal sr , and w is the frequency of the signal sr . The signal is added to the signal driving channel I7504 through the high-speed multi-branch electronic selection switch M17502, and then added to the reciprocal acoustic transducer G12505 through the high-speed multi-branch electronic selection switch M27505, so as to drive the reciprocal acoustic transducer G12505. 2505 emits sound and radiates sound waves, which are received by the m1 -th microphone which is r/2 away from the reciprocal acoustic transducer G1 2505. The signal is added to the m1- th data test channel 7511 through the high-speed multi-branch electronic selection switch M3 7509, and the signal becomes:

Figure BSA00001784147000001912
Figure BSA00001784147000001912

即得:

Figure BSA0000178414700000201
You will get:
Figure BSA0000178414700000201

对s同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算及频谱能量重心法校正单元的计算与校正得出频率为w的信号

Figure BSA0000178414700000202
幅值
Figure BSA0000178414700000203
及相位
Figure BSA0000178414700000204
输出幅值
Figure BSA0000178414700000205
及相位
Figure BSA0000178414700000206
The signal of N 3 integer periodic signals is synchronously sampled at s, and the signal with frequency w is obtained by the one-dimensional and two-dimensional hybrid FFT calculation and the spectrum energy centroid method correction unit in the main control unit 7501.
Figure BSA0000178414700000202
Amplitude
Figure BSA0000178414700000203
and Phase
Figure BSA0000178414700000204
Output amplitude
Figure BSA0000178414700000205
and Phase
Figure BSA0000178414700000206

所述的能量重心法频谱校正法为

Figure BSA0000178414700000207
Δw对频率校正,
Figure BSA0000178414700000208
对幅值进行校正,其中
Figure BSA0000178414700000209
M一般取1或2,Xk为快速傅里叶变换中频谱图中k位置的复值谱,Kt为能量恢系数,Kt的取一般与窗函数的选取有关,用Hanning窗时一般取8/3。The energy centroid method spectrum correction method is:
Figure BSA0000178414700000207
Δw for frequency correction,
Figure BSA0000178414700000208
The amplitude is corrected, where
Figure BSA0000178414700000209
M is generally 1 or 2, Xk is the complex spectrum at position k in the spectrum diagram in the fast Fourier transform, Kt is the energy recovery coefficient, and Kt is generally related to the selection of the window function. When using the Hanning window, it is generally 8/3.

Claims (4)

1.一种自由声场小型声全息测量及反演装置,其特征在于该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;所述的整个装置支撑调整机构I包括调节支撑I(1)、调节支撑II(2)、调节支撑III(3),三个调节支撑分别通过各自的丝杆电机与底座板(4)上的螺孔相连,底座板(4)上设有固定配重圆台(5),固定配重圆台(5)固定在底座板(4)上,底座板(4)上还设有水平位置传感器K1(6),水平位置传感器K2(7),固定配重圆台(5)上表面与立式支撑杆(8)相连,立式支撑杆(8)上端与纵向及旋转运动组件安装平台(12)相连,立式支撑杆(8)上端还设有激光接收器(11),纵向及旋转运动组件安装平台(12)侧面设有电器箱(9)与微型液晶显示触摸屏(10);所述的传声器阵列旋转运动控制机构III包括设在纵向及旋转运动组件安装平台(12)下面的第一步进电机D1(14)、第二步进电机D2(15),第一步进电机D1(14)通过轴承与设在纵向及旋转运动组件安装平台(12)上的异形齿轮副I(13)其中一个齿轮相连,第二步进电机D2(15)通过轴承与异形齿轮副I(13)的另一个齿轮相连,异形齿轮副I(13)通过设在纵向及旋转运动组件安装平台(12)的机械连接组件(24)分别与纵向运动控制机构II的纵向运动组件S1(16)、纵向运动组件S2(17)相连;所述的传声器阵列纵向运动控制机构II包括纵向运动组件S1(16)、纵向运动组件S2(17)、它们分别通过机械连接组件(24)与异形齿轮副I(13)相连,纵向运动组件S1(16)还通过它的丝杆套I(1606)与坚向运动组件S1(18)的机架G3(1801)相连,纵向运动组件S2(17)还通过它的丝杆套II(1706)与坚向运动组件S2(19)的机架G4(1901)相连;所述的传声器阵列竖向运动控制机构IV包括竖向运动组件S1(18)、竖向运动组件S2(19),竖向运动组件S1(18)通过其丝杆套III(1806)与传声器阵列横向运动控制机构V的传声器阵列主安装臂S2(21)的基体T2(2101)相连,竖向运动组件S2(19)通过其丝杆套IV(1906)与传声器阵列横向运动控制机构V的传声器阵列主安装臂S1(20)的基体T1(2001)相连;所述的传声器阵列横向运动控制机构V包括传声器阵列主安装臂S1(20)、传声器阵列主安臂S2(21)、多条传声器阵列分安装臂(22)、多个传声器(23)组成,传声器阵列分安装臂(22)分别安装在传声器阵列主安装臂S1(20)、传声器阵列主安装臂S2(21)上,传声器(23)安装在传声器阵列分安装臂(22)上;所述的传声器校正控制机构VI包括传声器校正机构I(25)和传声器校正机构II(26),传声器校正机构I(25)和传声器校正机构II(26)分别固定竖向运动组件S2(19)、竖向运动组件S1(18)上;所述的调节支撑I(1)包括丝杆电机M1(102)、基座I(101),丝杆电机M1(102)装在基座I(101)里,调节支撑II(2)包括丝杆电机M2(202)、基座II(201),丝杆电机M2(202)装在基座II(201)里,调节支撑III(3)包括丝杆电机M3(302)、基座III(301),丝杆电机M3(302)装在基座III(301)里;所述的纵向运动组件S1(16)包括机架G1(1601)、轴承S1(1602)、丝杆I(1605)、丝杆套I(1606)、轴承S2(1607)、齿轮副II(1603)、第三步进电机D3(1604),机架G1(1601)纵向两个板中其中一块板内表面设有滑槽II(1609)、另一块板内表面设有滑槽I(1608),轴承S2(1607)固定在机架G1(1601)横向两块板中其中一块上,轴承S2(1607)与丝杆I(1605)一端相连,机架G1(1601)横向另一块板上固定轴承S1(1602),轴承S1(1602)与丝杆I(1605)另一端相连,并且丝杆I(1605)穿过轴承S1(1602)与齿轮副II(1603)其中一个齿轮相连,齿轮副II(1603)中另一个齿轮与第三步进电机D3(1604)相连,丝杆套I(1606)套在丝杆I(1605)上,丝杆套I(1605)的横向杆分别置于滑槽I(1608)、滑槽II(1609)上;所述的纵向运动组件S2(17)包括机架G2(1701)、轴承S3(1702)、丝杆II(1705)、丝杆套II(1706)、轴承S4(1707)、齿轮副III(1703)、第四步进电机D4(1704),机架G2(1701)纵向两个板中其中一块板内表面设有滑槽IV(1709)、另一块板内表面设有滑槽III(1708),轴承S4(1707)固定在机架G2(1701)横向两块板中其中一块板上,轴承S4(1707)与丝杆II(1705)一端相连,机架G2(1701)横向另一块板上固定有轴承S3(1702),轴承S3(1702)与丝杆II(1705)另一端相连,并且丝杆II(1705)穿过轴承S3(1702)与齿轮副III(1703)其中一个齿轮相连,齿轮副III(1703)中另一个齿轮与第四步进电机D4(1704)相连,丝杆套II(1706)套在丝杆II(1705)上,丝杆套II(1705)的横向杆分别置于滑槽III(1708)、滑槽IV(1709)上;所述的竖向运动组件S1(18)包括机架G3(1801)、轴承S5(1802)、丝杆III(1805)、丝杆套III(1806)、轴承S6(1807)、齿轮副IV(1803)、第五步进电机D5(1804),机架G3(1801)的纵向两个板中其中一块板内表面设有滑槽VI(1809)、另一块板内表面设有滑槽V(1808),轴承S6(1807)固定在机架G3(1801)横向两块板中其中一块板上,轴承S6(1807)与丝杆III(1805)一端相连,机架G3(1801)横向另一块板固定有轴承S5(1802),轴承S5(1802)与丝杆III(1805)另一端相连,并且丝杆III(1805)穿过轴承S5(1802)与齿轮副IV(1803)其中一个齿轮相连,齿轮副IV(1803)中另一个齿轮与第五步进电机D5(1804)相连,丝杆套III(1806)套在丝杆III(1805)上,丝杆套III(1805)的横向杆分别置于滑槽V(1808)、滑槽VI(1809)上;所述的竖向运动组件S2(19)包括机架G4(1901)、轴承S7(1902)、丝杆IV(1905)、丝杆套IV(1906)、轴承S8(1907)、齿轮副V(1903)、第六步进电机D6(1904),机架G4(1901)纵向两个板中其中一块板内表面设有滑槽VIII(1909)、另一块内表面设有滑槽VII(1908),轴承S8(1907)固定在机架G4(1901)的横向两块板中其中一块板上,轴承S8(1907)与丝杆IV(1905)一端相连,机架G4(1901)横向另一块板上固定有轴承S7(1902),轴承S7(1902)与丝杆IV(1905)另一端相连,并且丝杆IV(1905)穿过轴承S7(1902)与齿轮副V(1903)其中一个齿轮相连,齿轮副V(1903)中另一个齿轮与第六步进电机D6(1904)相连,丝杆套IV(1906)套在丝杆IV(1905)上,丝杆套IV(1905)的横向杆分别置于滑槽VII(1908)、滑槽VIII(1909)上。1. A free-field small-scale acoustic holographic measurement and inversion device, characterized in that the device comprises a whole device support adjustment mechanism I, a microphone array longitudinal motion control mechanism II, a microphone array rotational motion control mechanism III, a microphone array vertical motion control mechanism IV, a microphone array lateral motion control mechanism V, a microphone correction control mechanism VI, and a virtual ball setting reference position positioning measurement column VII; the whole device support adjustment mechanism I comprises an adjustment support I (1), an adjustment support II (2), and an adjustment support III (3), and the three adjustment supports are respectively connected by respective wires. The rod motor is connected to the screw hole on the base plate (4), and a fixed counterweight round table (5) is provided on the base plate (4). The fixed counterweight round table (5) is fixed on the base plate (4). The base plate (4) is also provided with a horizontal position sensor K1 (6) and a horizontal position sensor K2 (7). The upper surface of the fixed counterweight round table (5) is connected to a vertical support rod (8), and the upper end of the vertical support rod (8) is connected to a longitudinal and rotational motion component installation platform (12). A laser receiver (11) is also provided at the upper end of the vertical support rod (8), and an electrical box (9) is provided on the side of the longitudinal and rotational motion component installation platform (12). and a micro liquid crystal display touch screen (10); the microphone array rotation motion control mechanism III comprises a first stepper motor D1 (14) and a second stepper motor D2 (15) arranged below the longitudinal and rotation motion component mounting platform (12); the first stepper motor D1 (14) is connected to one of the gears of the special-shaped gear pair I (13) arranged on the longitudinal and rotation motion component mounting platform (12) through a bearing; the second stepper motor D2 (15) is connected to another gear of the special-shaped gear pair I (13) through a bearing; the special-shaped gear pair I (13) is connected to the longitudinal and rotation motion component mounting platform (12) through a bearing. The mechanical connection assembly (24) of the moving assembly mounting platform (12) is respectively connected to the longitudinal movement assembly S1 (16) and the longitudinal movement assembly S2 (17) of the longitudinal movement control mechanism II; the microphone array longitudinal movement control mechanism II includes the longitudinal movement assembly S1 (16) and the longitudinal movement assembly S2 (17), which are respectively connected to the special-shaped gear pair I (13) through the mechanical connection assembly (24), and the longitudinal movement assembly S1 (16) is also connected to the frame G3 (1801) of the vertical movement assembly S1 (18) through its screw sleeve I (1606). The moving assembly S2 (17) is also connected to the frame G4 (1901) of the vertical moving assembly S2 (19) through its screw sleeve II (1706); the microphone array vertical motion control mechanism IV includes a vertical moving assembly S1 (18) and a vertical moving assembly S2 (19); the vertical moving assembly S1 (18) is connected to the base T2 (2101) of the microphone array main mounting arm S2 (21) of the microphone array lateral motion control mechanism V through its screw sleeve III (1806); the vertical moving assembly S2 (19) is connected to the base T2 (2101) of the microphone array main mounting arm S2 (21) of the microphone array lateral motion control mechanism V through its screw sleeve IV (1906). The microphone array lateral motion control mechanism V is connected to a base body T1 (201) of a microphone array main mounting arm S1 (20); the microphone array lateral motion control mechanism V comprises a microphone array main mounting arm S1 (20), a microphone array main mounting arm S2 (21), a plurality of microphone array sub-mounting arms (22), and a plurality of microphones (23); the microphone array sub-mounting arms (22) are respectively mounted on the microphone array main mounting arm S1 (20) and the microphone array main mounting arm S2 (21); the microphones (23) are mounted on the microphone array sub-mounting arms (22). ; The microphone correction control mechanism VI includes a microphone correction mechanism I (25) and a microphone correction mechanism II (26), and the microphone correction mechanism I (25) and the microphone correction mechanism II (26) are respectively fixed on the vertical motion component S2 (19) and the vertical motion component S1 (18); the adjustment support I (1) includes a screw motor M1 (102) and a base I (101), and the screw motor M1 (102) is installed in the base I (101); the adjustment support II (2) includes a screw motor M2 (202), a base II (201), and the screw motor M2 (202) is installed in the base II (201), the adjustment support III (3) includes a screw motor M3 (302) and a base III (301), and the screw motor M3 (302) is installed in the base III (301); the longitudinal motion component S1 (16) includes a frame G1 (1601), a bearing S1 (1602), a screw I (1605), a screw sleeve I (1606), a bearing S2 (1607), a gear pair II (1603), and a third stepping motor D3 (1604), and the frame G1 (1601) has one of the two longitudinal plates. A slide groove II (1609) is provided on the surface, and a slide groove I (1608) is provided on the inner surface of the other plate. The bearing S2 (1607) is fixed on one of the two horizontal plates of the frame G1 (1601). The bearing S2 (1607) is connected to one end of the screw rod I (1605). A bearing S1 (1602) is fixed on the other horizontal plate of the frame G1 (1601). The bearing S1 (1602) is connected to the other end of the screw rod I (1605), and the screw rod I (1605) passes through the bearing S1 (1602) and is connected to one of the gears of the gear pair II (1603). The gear pair Another gear in II (1603) is connected to the third stepping motor D3 (1604), the screw sleeve I (1606) is sleeved on the screw I (1605), and the transverse rods of the screw sleeve I (1605) are respectively placed on the slide groove I (1608) and the slide groove II (1609); the longitudinal motion component S2 (17) includes a frame G2 (1701), a bearing S3 (1702), a screw II (1705), a screw sleeve II (1706), a bearing S4 (1707), a gear pair III (1703), a fourth stepping motor D4 (1704), and a machine The inner surface of one of the two longitudinal plates of the frame G2 (1701) is provided with a slide groove IV (1709), and the inner surface of the other plate is provided with a slide groove III (1708). The bearing S4 (1707) is fixed on one of the two transverse plates of the frame G2 (1701), and the bearing S4 (1707) is connected to one end of the screw rod II (1705). The other transverse plate of the frame G2 (1701) is fixed with a bearing S3 (1702), and the bearing S3 (1702) is connected to the other end of the screw rod II (1705), and the screw rod II (1705) passes through the bearing S3 (1707). 702) is connected to one of the gears of the gear pair III (1703), the other gear in the gear pair III (1703) is connected to the fourth stepping motor D4 (1704), the screw sleeve II (1706) is sleeved on the screw II (1705), and the transverse rods of the screw sleeve II (1705) are respectively placed on the slide groove III (1708) and the slide groove IV (1709); the vertical motion component S1 (18) includes a frame G3 (1801), a bearing S5 (1802), a screw III (1805), a screw sleeve III (1806), and a bearing S6 (1807), gear pair IV (1803), fifth stepping motor D5 (1804), one of the two longitudinal plates of the frame G3 (1801) has a slide groove VI (1809) on its inner surface, and the other plate has a slide groove V (1808) on its inner surface, bearing S6 (1807) is fixed on one of the two transverse plates of the frame G3 (1801), bearing S6 (1807) is connected to one end of the screw rod III (1805), the other transverse plate of the frame G3 (1801) is fixed with bearing S5 (1802), bearing S5 (1802) is connected to the screw rod The other end of the screw rod III (1805) is connected to the other end of the screw rod III (1805), and the screw rod III (1805) passes through the bearing S5 (1802) and is connected to one of the gears in the gear pair IV (1803), and the other gear in the gear pair IV (1803) is connected to the fifth stepping motor D5 (1804), the screw rod sleeve III (1806) is sleeved on the screw rod III (1805), and the transverse rods of the screw rod sleeve III (1805) are respectively placed on the slide groove V (1808) and the slide groove VI (1809); the vertical motion component S2 (19) includes a frame G4 (1901), a bearing S7 (1902), screw rod IV (1905), screw rod sleeve IV (1906), bearing S8 (1907), gear pair V (1903), sixth stepping motor D6 (1904), one of the two longitudinal plates of the frame G4 (1901) has a slide groove VIII (1909) on its inner surface, and the other has a slide groove VII (1908) on its inner surface, bearing S8 (1907) is fixed on one of the two transverse plates of the frame G4 (1901), bearing S8 (1907) is connected to one end of screw rod IV (1905), frame G4 (190 1) A bearing S7 (1902) is fixed on another horizontal plate, and the bearing S7 (1902) is connected to the other end of the screw rod IV (1905), and the screw rod IV (1905) passes through the bearing S7 (1902) and is connected to one of the gears in the gear pair V (1903), and the other gear in the gear pair V (1903) is connected to the sixth stepping motor D6 (1904), and the screw rod sleeve IV (1906) is sleeved on the screw rod IV (1905), and the horizontal rods of the screw rod sleeve IV (1905) are respectively placed on the slide groove VII (1908) and the slide groove VIII (1909). 2.如权利要求1所述的一种自由声场小型声全息测量及反演装置,其特征在于所述的传声器阵列主安装臂S1(20)包括基体T1(2001),基体T1(2001)的一端设有轴承S10(2005),另一端设有轴承S9(2002),基体T1(2001)中间为空心,装有齿轮杆I(2007),齿轮杆I(2007)的两端分别固定轴承S10(2005)、轴承S9(2002)上,基体T1(2007)一面设有步进电机D7(2003),步进电机D7(2003)固定在基体T1(2001)上,第七步进电机D7(2003)轴上装有齿轮W1(2004),齿轮W1(2004)通过凹口I(2006)与齿轮杆I(2007)啮合,基体T1(2001)另一面设有多个开口凹槽用于安装传声器阵列分安装臂(22),基体T1(2001)上端还设有定标传声器I(27);所述的传声器阵列主安装臂S2(21)包括基体T2(2101),基体T2(2101)的一端设有轴承S12(2105),另一端设有轴承S11(2102),基体T2(2101)中间为空心,装有齿轮杆II(2107),齿轮杆II(2107)的两端分别固定轴承S12(2105)、轴承S11(2102)上,基体T2(2101)一面设有第八步进电机D8(2103),第八步进电机D8(2103)固定在基体T2(2101)上,第八步进电机D8(2103)轴上装有齿轮W2(2104),齿轮W2(2104)通过凹口II(2106)与齿轮杆II(2107)啮合,基体T2(2101)另一面设有多个开口槽用于安装传声器阵列分安装臂(22),基体T1(2101)上端还设有定标传声器II(28);所述的传声器阵列分安装臂(22)包括基板(2202),基板(2202)背面两侧设有齿条(2201),正面设有多个传声器插入基座(2203),传声器(23)插入传声器插入基座(2203)上。2. A free-field small-scale acoustic holographic measurement and inversion device as described in claim 1, characterized in that the microphone array main mounting arm S1 (20) includes a base T1 (2001), one end of the base T1 (2001) is provided with a bearing S10 (2005), and the other end is provided with a bearing S9 (2002), the base T1 (2001) is hollow in the middle and is equipped with a gear rod I (2007), the two ends of the gear rod I (2007) are respectively fixed on the bearing S10 (2005) and the bearing S9 (2002), and one side of the base T1 (2007) is provided with a stepping motor D 7 (2003), a stepper motor D7 (2003) is fixed on a substrate T1 (2001), a gear W1 (2004) is mounted on the shaft of the seventh stepper motor D7 (2003), the gear W1 (2004) is meshed with a gear rod I (2007) through a notch I (2006), a plurality of opening grooves are provided on the other side of the substrate T1 (2001) for mounting a microphone array sub-mounting arm (22), and a calibration microphone I (27) is also provided on the upper end of the substrate T1 (2001); the microphone array main mounting arm S2 (21) comprises a substrate T2 (2101), a substrate T A bearing S12 (2105) is provided at one end of the base T2 (2101), and a bearing S11 (2102) is provided at the other end. The middle of the base T2 (2101) is hollow and is provided with a gear rod II (2107). The two ends of the gear rod II (2107) are respectively fixed on the bearing S12 (2105) and the bearing S11 (2102). An eighth stepper motor D8 (2103) is provided on one side of the base T2 (2101). The eighth stepper motor D8 (2103) is fixed on the base T2 (2101). A gear W2 (2107) is provided on the shaft of the eighth stepper motor D8 (2103). 4), the gear W2 (2104) is meshed with the gear rod II (2107) through the notch II (2106), the other side of the base T2 (2101) is provided with a plurality of open grooves for installing the microphone array sub-mounting arm (22), and the upper end of the base T1 (2101) is also provided with a calibration microphone II (28); the microphone array sub-mounting arm (22) comprises a base plate (2202), racks (2201) are provided on both sides of the back of the base plate (2202), and a plurality of microphone insertion bases (2203) are provided on the front side, and the microphones (23) are inserted into the microphone insertion bases (2203). 3.如权利要求1所述的一种自由声场小型声全息、测量及反演装置,其特征在于所述的传声器较正控制机构I(25)包括第九步进电机D9(2501)、套筒I(2502)、传声器插入口I(2503)、微型消声腔I(2504)、互易声学换能器G1(2505)、弹簧I(2506)、连接件L1(2507)、互易声学换能器G2(2508)、电磁铁P1(2509)、双滑槽C1(2510)、电磁线圈U1(2511),第九步进电机D9(2501)固定在竖向运动组件S2(19)的机架G4(1901)上,第九步进电机D9(2501)通过丝杆与连接件L1(2507)一端相连,连接件L1(2507)另一端与套筒I(2502)相连,套筒I(2502)内部设有一个圆柱形半通孔,孔内设有双滑槽C1(2510)与电磁铁P1(2509),电磁铁P1(2509)的耳杆放在双滑槽C1(2510)上,同时电磁铁P1(2509)上设有电磁线圈U1(2511),电磁铁P1(2509)另一端套有弹簧I(2506)并与微型消声腔I(2504)相连,微型消声腔I(2504)内部一端设有互易声学换能器G1(2505),另一端设有互易声学换能器G2(2508),另外微型消声腔I(2504)中部设有传声器插入口I(2503);所述传声器较正控制机构II(26)包括第十步进电机D10(2601)、套筒II(2602)、传声器插入口II(2603)、微型消声腔II(2604)、互易声学换能器G3(2605)、弹簧II(2606)、连接件L2(2607)、互易声学换能器G4(2608)、电磁铁P2(2609)、双滑槽C2(2610)、电磁线圈U2(2611),第十步进电机D10(2601)固定在竖向运动组件S1(18)的机架G3(1801)上,第十步进电机D10(2601)通过丝杆与连接件L2(2607)一端相连,连接件L2(2607)另一端与套筒II(2602)相连,套筒II(2602)内部设有一个圆柱形半通孔,孔内设有双滑槽C2(2610)与电磁铁P2(2609),电磁铁P2(2609)的耳杆放在双滑槽C2(2610)上,同时电磁铁P2(2609)设有电磁线圈U2(2611),电磁铁P2(2609)另一端套有弹簧II(2606)并与微型消声腔II(2604),微型消声腔II(2604)内部一端设有互易声学换能器G3(2605),另一端设有互易声学换能器G4(2608),另外微型消声腔II(2604)中部设有传声器插入口II(2603)。3. A free-field small-scale acoustic holography, measurement and inversion device as described in claim 1, characterized in that the microphone correction control mechanism I (25) includes a ninth stepper motor D9 (2501), a sleeve I (2502), a microphone insertion port I (2503), a micro-muffler chamber I (2504), a reciprocal acoustic transducer G1 (2505), a spring I (2506), a connector L1 (2507), a reciprocal acoustic transducer G2 (2508), an electromagnet P1 (2509), a double slide groove C1 (2510), and an electromagnetic coil U1 (2511), the ninth stepper motor D9 (2501) is fixed on the frame G4 (1901) of the vertical motion component S2 (19), and the ninth stepper motor D9 (2501) is connected to the connector L1 through a screw rod. 1 (2507) is connected to one end, and the other end of the connecting piece L1 (2507) is connected to the sleeve I (2502). A cylindrical semi-through hole is provided inside the sleeve I (2502), and a double slide groove C1 (2510) and an electromagnet P1 (2509) are provided in the hole. The ear rod of the electromagnet P1 (2509) is placed on the double slide groove C1 (2510). At the same time, an electromagnetic coil U1 (2511) is provided on the electromagnet P1 (2509). The other end of the electromagnet P1 (2509) is sleeved with a spring I (2506) and is connected to the micro-muffler chamber I (2504). A reciprocal acoustic transducer G1 (2505) is provided at one end of the micro-muffler chamber I (2504), and a reciprocal acoustic transducer G2 (2508) is provided at the other end. In addition, a transducer is provided in the middle of the micro-muffler chamber I (2504). The microphone insertion port I (2503); the microphone correction control mechanism II (26) includes a tenth stepper motor D10 (2601), a sleeve II (2602), a microphone insertion port II (2603), a micro-muffler chamber II (2604), a reciprocal acoustic transducer G3 (2605), a spring II (2606), a connector L2 (2607), a reciprocal acoustic transducer G4 (2608), an electromagnet P2 (2609), a double slide groove C2 (2610), and an electromagnetic coil U2 (2611). The tenth stepper motor D10 (2601) is fixed on the frame G3 (1801) of the vertical motion component S1 (18). The tenth stepper motor D10 (2601) is connected to one end of the connector L2 (2607) through a screw rod. The connector L 2 (2607) is connected to the sleeve II (2602), and a cylindrical semi-through hole is provided inside the sleeve II (2602), and a double slide groove C2 (2610) and an electromagnet P2 (2609) are provided in the hole. The ear rod of the electromagnet P2 (2609) is placed on the double slide groove C2 (2610), and the electromagnet P2 (2609) is provided with an electromagnetic coil U2 (2611). The other end of the electromagnet P2 (2609) is sleeved with a spring II (2606) and connected to the micro-muffler chamber II (2604). A reciprocal acoustic transducer G3 (2605) is provided at one end of the micro-muffler chamber II (2604), and a reciprocal acoustic transducer G4 (2608) is provided at the other end. In addition, a microphone insertion port II (2603) is provided in the middle of the micro-muffler chamber II (2604). 4.如权利要求1所述的一种自由声场小型声全息测量及反演装置,其特征在于所述的虚拟球设置参考位置测量柱VI包括支架(29),支架(29)与立式杆(30)相连,立式杆(30)上端部设有激光发射器(31),上端设有传声器插座(32)。4. A free-field small-scale acoustic holographic measurement and inversion device as described in claim 1, characterized in that the virtual ball setting reference position measurement column VI includes a bracket (29), the bracket (29) is connected to a vertical rod (30), a laser transmitter (31) is provided at the upper end of the vertical rod (30), and a microphone socket (32) is provided at the upper end.
CN201910082823.6A 2019-01-21 2019-01-21 Free sound field small-sized acoustic holographic measurement and inversion device Active CN109782230B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910082823.6A CN109782230B (en) 2019-01-21 2019-01-21 Free sound field small-sized acoustic holographic measurement and inversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910082823.6A CN109782230B (en) 2019-01-21 2019-01-21 Free sound field small-sized acoustic holographic measurement and inversion device

Publications (2)

Publication Number Publication Date
CN109782230A CN109782230A (en) 2019-05-21
CN109782230B true CN109782230B (en) 2023-03-31

Family

ID=66502913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910082823.6A Active CN109782230B (en) 2019-01-21 2019-01-21 Free sound field small-sized acoustic holographic measurement and inversion device

Country Status (1)

Country Link
CN (1) CN109782230B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432698A (en) * 2020-11-12 2021-03-02 中国航空工业集团公司北京长城计量测试技术研究所 Double-coil standard vibration table with reciprocity
CN117429888A (en) * 2023-12-20 2024-01-23 珠海博杰电子股份有限公司 High-precision flexible parallel adjusting mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206212A1 (en) * 2013-06-26 2014-12-31 浙江工业大学 Digital image generation method through 3d spatial distribution of sound quality objective parameters
CN105588637A (en) * 2016-01-31 2016-05-18 广西科技大学 Complicated stable sound field sound pressure testing device
CN105675125A (en) * 2016-01-31 2016-06-15 广西科技大学 Intelligent control system for acoustic pressure testing device in complicated stable sound field
CN209590258U (en) * 2019-01-21 2019-11-05 柳州市展虹科技有限公司 A free-field small-scale acoustic holographic measurement and inversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206212A1 (en) * 2013-06-26 2014-12-31 浙江工业大学 Digital image generation method through 3d spatial distribution of sound quality objective parameters
CN105588637A (en) * 2016-01-31 2016-05-18 广西科技大学 Complicated stable sound field sound pressure testing device
CN105675125A (en) * 2016-01-31 2016-06-15 广西科技大学 Intelligent control system for acoustic pressure testing device in complicated stable sound field
CN209590258U (en) * 2019-01-21 2019-11-05 柳州市展虹科技有限公司 A free-field small-scale acoustic holographic measurement and inversion device

Also Published As

Publication number Publication date
CN109782230A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
CN105588637B (en) A kind of complicated stable sound field acoustic pressure test device
CN109782230B (en) Free sound field small-sized acoustic holographic measurement and inversion device
CN105675125B (en) A kind of complicated stable sound field acoustic pressure test device intelligence control system
CN102854251B (en) Supersonic imaging system utilizing virtual instrument technology, and imaging method thereof
CN108008348A (en) Underwater Wave arrival direction estimating method and device based on adjustable angle even linear array
CN112146833B (en) Experimental device for simulating submarine pipeline vortex-induced vibration in complex marine environment
JP2000028589A (en) Three-dimensional ultrasonic imaging device
CN209590258U (en) A free-field small-scale acoustic holographic measurement and inversion device
CN108519576A (en) Underwater DOA Estimation Method and Device Based on Angle Adjustable Non-uniform Linear Array
CN108414967A (en) Based on L gusts of underwater two-dimension Wave arrival direction estimating method and device of angle adjustable double
CN102411030A (en) Ultrasonic nondestructive detection device of elastic constant of small-size test piece made of non-conventional material
CN109917338B (en) Intelligent control system of free sound field small-sized acoustic holographic measurement and inversion device
CN209928010U (en) Intelligent control system of small-sized acoustic holographic measurement and inversion device of free sound field
CN109281651B (en) Ultrasonic borehole wall imaging method applied to cylindrical surface ultrasonic array
CN209707674U (en) A kind of free found field batch mouthpiece amplitude sensitivity and phase measurement device
KR20170005963A (en) performance measuring system for ultrasonic transducers
CN109709519B (en) Free sound field batch microphone amplitude sensitivity and phase quantity measuring device
CN205670047U (en) A kind of complexity stablizes sound field sound compression testing device intelligence control system
CN205670046U (en) A kind of complexity stablizes sound field sound compression testing device
CN209746115U (en) An intelligent control system for the amplitude sensitivity and phase measurement device of a free sound field batch microphone
CN211205203U (en) An automatic rotating three-dimensional scanning device
CN208000373U (en) Based on L gusts of underwater two-dimension Mutual coupling device of angle adjustable double
CN111551126A (en) Irregular pipeline inner wall mobile measurement robot and three-dimensional reconstruction method and system
CN108958551A (en) The bearing calibration of laminating apparatus and its depth of parallelism
CN109696659B (en) Intelligent control system for amplitude sensitivity and phase measurement of free sound field batch microphone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 2 Wenchang Road, Liuzhou City, Guangxi Zhuang Autonomous Region, 545005

Patentee after: GUANGXI University OF SCIENCE AND TECHNOLOGY

Patentee after: LIUZHOU ZHANHONG TECHNOLOGY CO.,LTD.

Address before: 545616 No. 4, No. C standard workshop, No. 7 Che yuan six road, Liuzhou, the Guangxi Zhuang Autonomous Region, 308

Patentee before: LIUZHOU ZHANHONG TECHNOLOGY CO.,LTD.

Patentee before: GUANGXI University OF SCIENCE AND TECHNOLOGY