CN109782230B - Free sound field small-sized acoustic holographic measurement and inversion device - Google Patents
Free sound field small-sized acoustic holographic measurement and inversion device Download PDFInfo
- Publication number
- CN109782230B CN109782230B CN201910082823.6A CN201910082823A CN109782230B CN 109782230 B CN109782230 B CN 109782230B CN 201910082823 A CN201910082823 A CN 201910082823A CN 109782230 B CN109782230 B CN 109782230B
- Authority
- CN
- China
- Prior art keywords
- bearing
- microphone
- microphone array
- screw
- screw rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 62
- 230000033001 locomotion Effects 0.000 claims abstract description 141
- 238000012937 correction Methods 0.000 claims abstract description 55
- 238000009434 installation Methods 0.000 claims abstract description 16
- 238000003780 insertion Methods 0.000 claims description 26
- 230000037431 insertion Effects 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 6
- 238000001093 holography Methods 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 64
- 238000004364 calculation method Methods 0.000 abstract description 39
- 239000000463 material Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 28
- 238000005316 response function Methods 0.000 description 20
- 230000035945 sensitivity Effects 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- 230000000737 periodic effect Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 238000004613 tight binding model Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Landscapes
- Holo Graphy (AREA)
Abstract
本发明一种自由声场小型声全息测量及反演装置,涉及一种声学测试及声学反演装置,该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;该装置安装与调试都比较简单,测量及反演计算可以减少大量的人力与物力,可以减轻人们的劳动强度,能提高测量数据的精度与反演计算的结果的准确性,同时特别能适合于大型自由复杂稳定声场的现场作业。
The present invention is a free sound field small-scale acoustic holographic measurement and inversion device, which relates to an acoustic test and acoustic inversion device. The device includes a whole device support adjustment mechanism I, a microphone array longitudinal motion control mechanism II, and a microphone array rotary motion control mechanism III. Microphone array vertical motion control mechanism IV, microphone array lateral motion control mechanism V, microphone correction control mechanism VI, virtual ball setting reference position positioning measurement column VII; the installation and debugging of this device are relatively simple, and the measurement and inversion calculation can be Reducing a lot of manpower and material resources can reduce people's labor intensity, improve the accuracy of measurement data and inversion calculation results, and is especially suitable for large-scale free, complex and stable field operations.
Description
技术领域Technical Field
本发明涉及一种声学测量及反演装置,特别是一种自由声场小型声全息测量及反演新装置。The invention relates to an acoustic measurement and inversion device, in particular to a new free-sound-field small-scale acoustic holographic measurement and inversion device.
背景技术Background Art
近场声全息技术是近年来声学研究的热点,通过近场声全息技术(NAH),可以较精确地进行声源识别和定位,运用这种技术可以实现近场声场重建与可视化,因此,NAH技术的研究对于抑制噪声污染具有非常重大的现实意义,NAH技术的关键是如何测得全息面上的复声压分布及如何利用全息面上复声压对自由声场进行声学反演,而现有的测试装置及反演装置都比较笨重,调试安装都非常麻烦,工作量非常大,需要大量的人力与物力,而且测试结果一般不能现场完成,反演计算需要回到实验室进行处理,因此有必要发明一种小型,轻量化的新型多全息测试及反演的新装置,该装置在相应的智能控制系统不是本发明的重点,这里不详细说明,见与本发明同日申请的该装置的智能控制系统)的控制下,能自动调试,自动校正,自动测试,现场自动计算反演结果,以减少大量的人力与物力,减轻人们的劳动强度,同时特别能适合大型复杂自由稳定声场的现场作业。Near-field acoustic holography technology has been a hot topic in acoustic research in recent years. Through near-field acoustic holography (NAH), sound source identification and positioning can be performed more accurately. This technology can be used to achieve near-field sound field reconstruction and visualization. Therefore, the research on NAH technology has very important practical significance for suppressing noise pollution. The key to NAH technology is how to measure the complex sound pressure distribution on the holographic surface and how to use the complex sound pressure on the holographic surface to acoustically invert the free sound field. However, the existing test devices and inversion devices are relatively bulky, and debugging and installation are very troublesome. The workload is very large, requiring a large amount of manpower and material resources, and the test results generally cannot be completed on-site. The inversion calculation needs to be returned to the laboratory for processing. Therefore, it is necessary to invent a small, lightweight new multi-holographic testing and inversion device. The device is under the control of the corresponding intelligent control system (which is not the focus of the present invention and is not described in detail here, see the intelligent control system of the device applied for on the same day as the present invention). It can automatically debug, automatically calibrate, automatically test, and automatically calculate the inversion results on-site to reduce a large amount of manpower and material resources and reduce people's labor intensity. At the same time, it is particularly suitable for on-site operations in large, complex, free and stable sound fields.
发明内容Summary of the invention
本发明的目的是钍对现有技术的的缺陷提,供一种小型、轻量化的新的声压测试及声学反演装置,该装置安装与调试都比较简单,测量时可以进行各种全息面的选择,测量与声学反演时可以减少大量的人力与物力,可以减轻人们的劳动强度,同时数据测量时采用新的校正与计算方法,大大提高了测量数据的精度,另外测量与反演装置采用了嵌入式系统,可以使装置做得很小,特别是在嵌入式系统中采用了并行处理技术,可以现场得到计算结果,所以别能适合现场作业。The purpose of the present invention is to provide a small and lightweight new sound pressure testing and acoustic inversion device to address the defects of the prior art. The device is relatively simple to install and debug, and various holographic surfaces can be selected during measurement. A large amount of manpower and material resources can be reduced during measurement and acoustic inversion, and people's labor intensity can be reduced. At the same time, new correction and calculation methods are used during data measurement, which greatly improves the accuracy of measurement data. In addition, the measurement and inversion device uses an embedded system, which can make the device very small. In particular, parallel processing technology is used in the embedded system, and calculation results can be obtained on-site, so it is particularly suitable for on-site operations.
为达到上述目的,本发明采用的技术方案是:一种自由声场小型声全息测量及反演装置,该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;所述的整个装置支撑调整机构I包括调节支撑I、调节支撑II、调节支撑III,三个调节支撑分别通过各自的丝杆电机与底座板上的螺孔相连,底座板上设有固定配重圆台,固定配重圆台固定在底座板上,底座板上还设有水平位置传感器K1,水平位置传感器K2,固定配重圆台上表面与立式支撑杆相连,立式支撑杆上端与纵向及旋转运动组件安装平台相连,立式支撑杆上端还设有激光接收器,纵向及旋转运动组件安装平台侧面设有电器箱与微型液晶显示触摸屏;所述的传声器阵列旋转运动控制机构III包括设在纵向及旋转运动组件安装平台下面的第一步进电机D1、第二步进电机D2,第一步进电机D1通过轴承与设在纵向及旋转运动组件安装平台的上异形齿轮副I其中一个齿轮相连,第二步进电机D2通过轴承与异形齿轮副I的另一个齿轮相连,异形齿轮副I通过设在纵向及旋转运动组件安装平台的机械连接组件分别与纵向运动控制机构II的纵向运动组件S1、纵向运动组件S2相连;所述的传声器阵列纵向运动控制机构II包括纵向运动组件S1、纵向运动组件S2、它们分别通过机械连接组件与异形齿轮副I相连,纵向运动组件S1还通过它的丝杆套I与坚向运动组件S1的机架G3相连,纵向运动组件S2还通过它的丝杆套II与坚向运动组件S2的机架G4相连;所述的传声器阵列竖向运动控制机构IV包括竖向运动组件S1、竖向运动组件S2,竖向运动组件S1通过其丝杆套III与传声器阵列横向运动控制机构V的传声器阵列主安装臂S2的基体T2相连,竖向运动组件S2通过其丝杆套IV与传声器阵列横向运动控制机构V的传声器阵列主安装臂S1的基体T1相连;所述的传声器阵列横向运动控制机构V包括传声器阵列主安装臂S1、传声器阵列主安臂S2、多条传声器阵列分安装臂、多个传声器组成,传声器阵列分安装臂分别安装在传声器阵列主安装臂S1、传声器阵列主安装臂S2上,传声器安装在传声器阵列分安装臂上;所述的传声器校正控制机构VI包括传声器校正机构I和传声器校正机构II,传声器校正机构I和传声器校正机构II分别固定竖向运动组件S2、竖向运动组件S1上;所述的调节支撑I包括丝杆电机M1、基座I,丝杆电机M1装在基座I里,调节支撑II包括丝杆电机M2、基座II,丝杆电机M2装在基座II里,调节支撑III包括丝杆电机M3、基座III,丝杆电机M3装在基座III里。To achieve the above-mentioned purpose, the technical solution adopted by the present invention is: a free-field small-scale acoustic holographic measurement and inversion device, which includes a support adjustment mechanism I for the entire device, a microphone array longitudinal motion control mechanism II, a microphone array rotational motion control mechanism III, a microphone array vertical motion control mechanism IV, a microphone array lateral motion control mechanism V, a microphone correction control mechanism VI, and a virtual ball setting reference position positioning measurement column VII; the support adjustment mechanism I for the entire device includes an adjustment support I, an adjustment support II, and an adjustment support III, and the three adjustment supports are respectively connected to the screw holes on the base plate through their own screw motors, and a fixed counterweight round table is provided on the base plate, and the fixed counterweight round table is fixed on the base plate, and a horizontal position sensor K1 and a horizontal position sensor K2 are also provided on the base plate, and the upper surface of the fixed counterweight round table is connected to the vertical The vertical support rod is connected to the vertical support rod, the upper end of the vertical support rod is connected to the longitudinal and rotational motion component installation platform, the upper end of the vertical support rod is also provided with a laser receiver, and the side of the longitudinal and rotational motion component installation platform is provided with an electrical box and a micro liquid crystal display touch screen; the microphone array rotational motion control mechanism III includes a first stepper motor D1 and a second stepper motor D2 arranged under the longitudinal and rotational motion component installation platform, the first stepper motor D1 is connected to one of the gears of the upper special-shaped gear pair I arranged on the longitudinal and rotational motion component installation platform through a bearing, the second stepper motor D2 is connected to another gear of the special-shaped gear pair I through a bearing, and the special-shaped gear pair I is respectively connected to the longitudinal motion component S1 and the longitudinal motion component S2 of the longitudinal motion control mechanism II through a mechanical connection component arranged on the longitudinal and rotational motion component installation platform; the microphone array The longitudinal motion control mechanism II includes a longitudinal motion component S1 and a longitudinal motion component S2, which are respectively connected to the special-shaped gear pair I through a mechanical connection component. The longitudinal motion component S1 is also connected to the frame G3 of the vertical motion component S1 through its screw sleeve I, and the longitudinal motion component S2 is also connected to the frame G4 of the vertical motion component S2 through its screw sleeve II; the microphone array vertical motion control mechanism IV includes a vertical motion component S1 and a vertical motion component S2, the vertical motion component S1 is connected to the base T2 of the microphone array main mounting arm S2 of the microphone array lateral motion control mechanism V through its screw sleeve III, and the vertical motion component S2 is connected to the base T1 of the microphone array main mounting arm S1 of the microphone array lateral motion control mechanism V through its screw sleeve IV; the microphone array lateral motion control mechanism V includes The invention comprises a microphone array main mounting arm S1, a microphone array main mounting arm S2, a plurality of microphone array sub-mounting arms, and a plurality of microphones, wherein the microphone array sub-mounting arms are respectively mounted on the microphone array main mounting arm S1 and the microphone array main mounting arm S2, and the microphones are mounted on the microphone array sub-mounting arms; the microphone correction control mechanism VI comprises a microphone correction mechanism I and a microphone correction mechanism II, and the microphone correction mechanism I and the microphone correction mechanism II are respectively fixed on the vertical motion component S2 and the vertical motion component S1; the adjustment support I comprises a screw motor M1 and a base I, and the screw motor M1 is installed in the base I; the adjustment support II comprises a screw motor M2 and a base II, and the screw motor M2 is installed in the base II; the adjustment support III comprises a screw motor M3 and a base III, and the screw motor M3 is installed in the base III.
本发明进一步的技术方案所述的纵向运动组件S1包括机架G1、轴承S1、丝杆I、丝杆套I、轴承S2、齿轮副II、第三步进电机D3,机架G1纵向两个板中其中一块板内表面设有滑槽II、另一块板内表面设有滑槽I,轴承S2固定在机架G1横向两块板中其中一块上,轴承S2与丝杆I一端相连,机架G1横向另一块板上固定轴承S1,轴承S1与丝杆I另一端相连,并且丝杆I穿过轴承S1与齿轮副II其中一个齿轮相连,齿轮副II中另一个齿轮与第三步进电机D3相连,丝杆套I套在丝杆I上,丝杆套I的横向杆分别置于滑槽I、滑槽II上;所述的纵向运动组件S2包括机架G2、轴承S3、丝杆II、丝杆套II、轴承S4、齿轮副III、第四步进电机D4,机架G2纵向两个板中其中一块板内表面设有滑槽IV、另一块板内表面设有滑槽III,轴承S4固定在机架G2横向两块板中其中一块板上,轴承S4与丝杆II一端相连,机架G2横向另一块板上固定有轴承S3,轴承S3与丝杆II另一端相连,并且丝杆II穿过轴承S3与齿轮副III其中一个齿轮相连,齿轮副III中另一个齿轮与第四步进电机D4相连,丝杆套II套在丝杆II上,丝杆套II的横向杆分别置于滑槽III、滑槽IV上;所述的竖向运动组件S1包括机架G3、轴承S5、丝杆III、丝杆套III、轴承S6、齿轮副IV、第五步进电机D5,机架G3的纵向两个板中其中一块板内表面设有滑槽VI、另一块板内表面设有滑槽V,轴承S6固定在机架G3横向两块板中其中一块板上,轴承S6与丝杆III一端相连,机架G3横向另一块板固定有轴承S5,轴承S5与丝杆III另一端相连,并且丝杆III穿过轴承S5与齿轮副IV其中一个齿轮相连,齿轮副IV中另一个齿轮与第五步进电机D5相连,丝杆套III套在丝杆III上,丝杆套III的横向杆分别置于滑槽V、滑槽VI上;所述的竖向运动组件S2包括机架G4、轴承S7、丝杆IV、丝杆套IV、轴承S8、齿轮副V、第六步进电机D6,机架G4纵向两个板中其中一块板内表面设有滑槽VIII、另一块内表面设有滑槽VII,轴承S8固定在机架G4的横向两块板中其中一块板上,轴承S8与丝杆IV一端相连,机架G4横向另一块板上固定有轴承S7,轴承S7与丝杆IV另一端相连,并且丝杆IV穿过轴承S7与齿轮副V其中一个齿轮相连,齿轮副V中另一个齿轮与第六步进电机D6相连,丝杆套IV套在丝杆IV上,丝杆套IV的横向杆分别置于滑槽VII、滑槽VIII上。The longitudinal motion component S1 described in the further technical solution of the present invention includes a frame G1, a bearing S1, a screw rod I, a screw rod sleeve I, a bearing S2, a gear pair II, and a third stepping motor D3. The inner surface of one of the two longitudinal plates of the frame G1 is provided with a slide groove II, and the inner surface of the other plate is provided with a slide groove I. The bearing S2 is fixed on one of the two transverse plates of the frame G1, and the bearing S2 is connected to one end of the screw rod I. The bearing S1 is fixed on the other transverse plate of the frame G1, and the bearing S1 is connected to the other end of the screw rod I. The screw rod I passes through the bearing S1 and is connected to one of the gears in the gear pair II. The other gear in the gear pair II is connected to the third stepping motor D3. The screw rod sleeve I is sleeved on the screw rod I, and the transverse rods of the screw rod sleeve I are respectively placed on the slide groove I and the slide groove II; the longitudinal motion component S1 includes a bearing S1, a screw rod I, a screw rod I sleeve, and a gear I is connected to the third stepping motor D3. The forward motion component S2 includes a frame G2, a bearing S3, a screw rod II, a screw rod sleeve II, a bearing S4, a gear pair III, and a fourth stepping motor D4. The inner surface of one of the two longitudinal plates of the frame G2 is provided with a slide groove IV, and the inner surface of the other plate is provided with a slide groove III. The bearing S4 is fixed on one of the two transverse plates of the frame G2. The bearing S4 is connected to one end of the screw rod II. A bearing S3 is fixed on the other transverse plate of the frame G2. The bearing S3 is connected to the other end of the screw rod II, and the screw rod II passes through the bearing S3 and is connected to one of the gears in the gear pair III. The other gear in the gear pair III is connected to the fourth stepping motor D4. The screw rod sleeve II is sleeved on the screw rod II, and the transverse rods of the screw rod sleeve II are respectively placed on the slide groove III and the slide groove IV; The vertical motion component S1 includes a frame G3, a bearing S5, a screw rod III, a screw rod sleeve III, a bearing S6, a gear pair IV, and a fifth stepping motor D5. The inner surface of one of the two longitudinal plates of the frame G3 is provided with a slide groove VI, and the inner surface of the other plate is provided with a slide groove V. The bearing S6 is fixed on one of the two transverse plates of the frame G3. The bearing S6 is connected to one end of the screw rod III. The other transverse plate of the frame G3 is fixed with a bearing S5. The bearing S5 is connected to the other end of the screw rod III, and the screw rod III passes through the bearing S5 and is connected to one of the gears in the gear pair IV. The other gear in the gear pair IV is connected to the fifth stepping motor D5. The screw rod sleeve III is sleeved on the screw rod III, and the transverse rods of the screw rod sleeve III are respectively placed on the slide groove V and the slide groove VI. The vertical motion component S2 includes a frame G4, a bearing S7, a screw rod IV, a screw rod sleeve IV, a bearing S8, a gear pair V, and a sixth stepping motor D6. The inner surface of one of the two longitudinal plates of the frame G4 is provided with a slide groove VIII, and the inner surface of the other plate is provided with a slide groove VII. The bearing S8 is fixed on one of the two transverse plates of the frame G4. The bearing S8 is connected to one end of the screw rod IV. A bearing S7 is fixed on the other transverse plate of the frame G4. The bearing S7 is connected to the other end of the screw rod IV, and the screw rod IV passes through the bearing S7 and is connected to one of the gears in the gear pair V. The other gear in the gear pair V is connected to the sixth stepping motor D6. The screw rod sleeve IV is sleeved on the screw rod IV, and the transverse rods of the screw rod sleeve IV are respectively placed on the slide grooves VII and VIII.
本发明更进一步的技术方案所述的传声器阵列主安装臂S1包括基体T1,基体T1的一端设有轴承S10,另一端设有轴承S9,基体T1中间为空心,装有齿轮杆I,齿轮杆I的两端分别固定轴承S10、轴承S9上,基体T1一面设有步进电机D7,步进电机D7固定在基体T1上,第七步进电机D7轴上装有齿轮W1,齿轮W1通过凹口I与齿轮杆I啮合,基体T1另一面设有多个开口凹槽用于安装传声器阵列分安装臂,基体T1上端还设有定标传声器I;所述的传声器阵列主安装臂S2包括基体T2,基体T2的一端设有轴承S12,另一端设有轴承S11,基体T2中间为空心,装有齿轮杆II,齿轮杆II的两端分别固定轴承S12、轴承S11上,基体T2一面设有第八步进电机D8,第八步进电机D8固定在基体T2上,第八步进电机D8轴上装有齿轮W2,齿轮W2通过凹口II与齿轮杆II啮合,基体T2另一面设有多个开口凹槽用于安装传声器阵列分安装臂,基体T1上端还设有定标传声器II;所述的传声器阵列分安装臂22)包括基板,基板背面两侧设有齿条,正面设有多个传声器插入基座,传声器插入传声器插入基座上。A further technical solution of the present invention is a microphone array main mounting arm S1 comprising a base T1, one end of the base T1 is provided with a bearing S10, the other end is provided with a bearing S9, the middle of the base T1 is hollow, and a gear rod I is installed, the two ends of the gear rod I are respectively fixed on the bearing S10 and the bearing S9, a stepper motor D7 is provided on one side of the base T1, the stepper motor D7 is fixed on the base T1, a gear W1 is installed on the shaft of the seventh stepper motor D7, the gear W1 is meshed with the gear rod I through a notch I, a plurality of opening grooves are provided on the other side of the base T1 for installing the microphone array sub-mounting arms, and a calibration microphone I is also provided on the upper end of the base T1; the microphone array main mounting arm S2 comprises a base T2, one end of the base T2 is provided with a There is a bearing S12, and a bearing S11 is provided at the other end. The middle of the base T2 is hollow and equipped with a gear rod II. The two ends of the gear rod II are respectively fixed on the bearing S12 and the bearing S11. An eighth stepper motor D8 is provided on one side of the base T2, and the eighth stepper motor D8 is fixed on the base T2. A gear W2 is installed on the shaft of the eighth stepper motor D8. The gear W2 engages with the gear rod II through the notch II. A plurality of open grooves are provided on the other side of the base T2 for installing a microphone array sub-mounting arm. A calibration microphone II is also provided on the upper end of the base T1; the microphone array sub-mounting arm 22) includes a base plate, racks are provided on both sides of the back of the base plate, and a plurality of microphone insertion bases are provided on the front side, and the microphones are inserted into the microphone insertion bases.
本发明进一步的技术方案所述的传声器较正控制机构I包括第九步进电机D9、套筒I、传声器插入口I、微型消声腔I、互易声学换能器G1、弹簧I、连接件L1、互易声学换能器G2、电磁铁P1、双滑槽C1、电磁线圈U1,第九步进电机D9固定在竖向运动组件S2的机架G4上,第九步进电机D9通过丝杆与连接件L1一端相连,连接件L1另一端与套筒I相连,套筒I内部设有一个圆柱形半通孔,孔内设有双滑槽C1与电磁铁P1,电磁铁P1的耳杆放在双滑槽C1,同时电磁铁P1上设有电磁线圈U1,电磁铁P1另一端套有弹簧I并与微型消声腔I相连,微型消声腔I内部一端设有互易声学换能器G1,另一端设有互易声学换能器G2,另外微型消声腔I中部设有传声器插入口I;所述传声器较正控制机构II包括第十步进电机D10、套筒II、传声器插入口II、微型消声腔II、互易声学换能器G3、弹簧II、连接件L2、互易声学换能器G4、电磁铁P2、双滑槽C2、电磁线圈U2,第十步进电机D10固定在竖向运动组件S1的机架G3上,第十步进电机D10通过丝杆与连接件L2一端相连,连接件L2另一端与套筒II相连,套筒II内部设有一个圆柱形半通孔,孔内设有双滑槽C2与电磁铁P2,电磁铁P2的耳杆放在双滑槽C2上,同时电磁铁P2设有电磁线圈U2,电磁铁P2另一端套有弹簧II并与微型消声腔II,微型消声腔II内部一端设有互易声学换能器G3,另一端设有互易声学换能器G4,另外微型消声腔II中部设有传声器插入口II。The microphone correction control mechanism I described in the further technical solution of the present invention includes a ninth stepper motor D9, a sleeve I, a microphone insertion port I, a micro-muffler chamber I, a reciprocal acoustic transducer G1, a spring I, a connector L1, a reciprocal acoustic transducer G2, an electromagnet P1, a double slide groove C1, and an electromagnetic coil U1. The ninth stepper motor D9 is fixed on the frame G4 of the vertical motion component S2. The ninth stepper motor D9 is connected to one end of the connector L1 through a screw rod. The
本发明进一步的技术方案所述所述的虚拟球设置参考位置测量柱VI包括支架,支架与立式杆相连,立式杆上端部设有激光发射器,上端设有传声器插座。According to a further technical solution of the present invention, the virtual ball setting reference position measurement column VI comprises a bracket, the bracket is connected to a vertical rod, a laser transmitter is provided at the upper end of the vertical rod, and a microphone socket is provided at the upper end.
由于采用上述结构,本发明一种自由声场小型声全息测量及反演装置有以下有益效果:Due to the above structure, the free-field small-scale acoustic holographic measurement and inversion device of the present invention has the following beneficial effects:
1)装置简单、轻巧,调试方便。1) The device is simple, lightweight and easy to debug.
本发明一种自由声场小型声全息测量及反演装置,结构很简单,也很轻巧,克服了以住装置中笨重的缺点,只需简单安装后,后面所有的测试与反演计算都是在控制系统的控制下(不是本发明的重点,在此不做详细描述)自动进行,不需要人工干预,可以大大节省人力物力,减轻人们的劳动强度,特别是在大型、多点测试、多次反演的自由复杂稳定声场中更加明显。The present invention provides a small-scale acoustic holographic measurement and inversion device in a free sound field. The device has a simple structure and is very light, thus overcoming the disadvantage of being bulky in previous devices. After simple installation, all subsequent tests and inversion calculations are automatically performed under the control of a control system (which is not the focus of the present invention and will not be described in detail herein), without the need for human intervention. This can greatly save manpower and material resources and reduce people's labor intensity, which is particularly evident in free, complex and stable sound fields with large-scale, multi-point tests and multiple inversions.
2)能使数据测试与计算更加精确,可靠。2) It can make data testing and calculation more accurate and reliable.
本发明一种自由声场小型声全息测量及反演装置,由于大部分工作不需人工干预,减少了人为误差,所以使测试的数据与反演的结果更加可靠,精确。The invention discloses a small-sized acoustic holographic measurement and inversion device in a free sound field. Since most of the work does not require human intervention, human errors are reduced, so the test data and the inversion results are more reliable and accurate.
下面结合附图和实施例对本发明一种自由声场小型声全息测量及反演装置进一步说明。The following is a further description of a free-field small-scale acoustic holographic measurement and inversion device of the present invention in conjunction with the accompanying drawings and embodiments.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明一种自由声场小型声全息测量及反演装置总体结构示意图;FIG1 is a schematic diagram of the overall structure of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图2是本发明一种自由声场小型声全息测量及反演装置整个装置支撑构构局部示意图;FIG2 is a partial schematic diagram of the supporting structure of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图3是本发明一种自由声场小型声全息测量及反演装置纵竖向运动组件及传声器校正机构局部示意图;3 is a partial schematic diagram of a longitudinal and vertical motion assembly and a microphone correction mechanism of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图4是本发明一种自由声场小型声全息测量及反演装置传声器阵列主安装臂S1的结构示意图;4 is a schematic structural diagram of a microphone array main mounting arm S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图5是本发明一种自由声场小型声全息测量及反演装置传声器阵列主安装臂S2的结构示意图;5 is a schematic structural diagram of a microphone array main mounting arm S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图6是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S1的俯向结构示意图;6 is a schematic diagram of the top view of the longitudinal motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图7是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S1的仰向结构示意图;7 is a schematic diagram of the upward structure of a longitudinal motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图8是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S2的俯向结构示意图;FIG8 is a schematic diagram of the top view structure of a longitudinal motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图9是本发明一种自由声场小型声全息测量及反演装置纵向运动组件S2的仰向结构示意图;9 is a schematic diagram of the upward structure of the longitudinal motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device of the present invention;
图10是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S1的俯向结构示意图;10 is a schematic diagram of the top view of the vertical motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device of the present invention;
图11是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S1的仰向结构示意图;11 is a schematic diagram of the upward structure of a vertical motion component S1 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图12是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S2的俯向结构示意图;12 is a schematic diagram of the top view of the vertical motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图13是本发明一种自由声场小型声全息测量及反演装置竖向运动组件S2的仰向结构示意图;13 is a schematic diagram of the upward structure of a vertical motion component S2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图14是本发明一种自由声场小型声全息测量及反演装置调节支撑I内部结构示意图;FIG14 is a schematic diagram of the internal structure of an adjustment support I of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图15是本发明一种自由声场小型声全息测量及反演装置调节支撑II内部结构示意图;FIG15 is a schematic diagram of the internal structure of an adjustment support II of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图16是本发明一种自由声场小型声全息测量及反演装置调节支撑III内部结构示意图;FIG16 is a schematic diagram of the internal structure of an adjustment support III of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图17是本发明一种自由声场小型声全息测量及反演装置传声器校正机构I结构示意图;17 is a schematic structural diagram of a microphone correction mechanism I of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图18是本发明一种自由声场小型声全息测量及反演装置传声器校正机构I内部结构示意图;18 is a schematic diagram of the internal structure of a microphone correction mechanism I of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图19是本发明一种自由声场小型声全息测量及反演装置传声器校正机构II结构示意图;19 is a schematic structural diagram of a microphone correction mechanism II of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图20是本发明一种自由声场小型声全息测量及反演装置传声器校正机构II内部结构示意图;FIG20 is a schematic diagram of the internal structure of a microphone correction mechanism II of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图21是本发明一种自由声场小型声全息测量及反演装置传声器传声器阵列分安臂及传声器在分安装臂安装示意图;21 is a schematic diagram of the installation of a microphone array arm and a microphone in a sub-mounting arm of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图22是本发明一种自由声场小型声全息测量及反演装置虚拟球设置参考位置测量柱VI;22 is a diagram of a free-field small-scale acoustic holographic measurement and inversion device virtual ball setting reference position measurement column VI of the present invention;
图23是本发明一种自由声场小型声全息测量及反演装置电磁铁P1、P2的示意图FIG. 23 is a schematic diagram of the electromagnets P1 and P2 of a small acoustic holographic measurement and inversion device in a free sound field according to the present invention.
图24是本发明一种自由声场小型声全息测量及反演装置基体T1、T2上的开口凹槽侧面示意图;FIG24 is a side view of an opening groove on a substrate T1 and T2 of a free-field small-scale acoustic holographic measurement and inversion device according to the present invention;
图25是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统整体结构方框图;FIG25 is a block diagram of the overall structure of an intelligent control system for controlling a free-field small-scale acoustic holographic measurement and inversion device of the present invention;
图26是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统内部结构方框图;FIG26 is a block diagram of the internal structure of an intelligent control system for controlling a free-field small-scale acoustic holographic measurement and inversion device of the present invention;
图27是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统声压测试及声学反演计算模块内部结构示意图;27 is a schematic diagram of the internal structure of a sound pressure test and acoustic inversion calculation module of an intelligent control system for controlling a free-field small-scale acoustic holographic measurement and inversion device of the present invention;
图28是控制本发明一种自由声场小型声全息测量及反演装置的智控制系统信息输入显示模块内部结构方框图。Figure 28 is a block diagram of the internal structure of the information input and display module of the intelligent control system that controls a free-field small-scale acoustic holographic measurement and inversion device of the present invention.
主要元件标号说明:1一调节支撑I、2一调节支撑II、3一调节支撑III、4一底座板、5一固定配重圆台、6一水平位置传感器K1、7一水平位置传感器K2、8一立式支撑杆、9一电器箱、10一微型液晶显示触摸屏、11一激光接收器、12一纵向及旋转运动组件安装平台、13一异形齿轮副I、14一第一步进电机D1、15一第二步进电机D2、16一纵向运动组件S1、17一纵向运动组件S2、18一竖向运动组件S1、19一竖向运动组件S2、20一传声器阵列主安装臂S1、21一传声器阵列主安装臂S2、22一传声器阵列分安装臂、23一传声器、24一机械连接组件、25一传声器校正机构I、26一传声器校正机构II、27一标定传声器S1、28一标定传声器S2、29、一支架、30一立式杆、31一激光发射器、32一传声器插座、1601一机架G1、1602一轴承S1、1603一齿轮副II、1604一第三步进电机D3、1605一丝杆I、1606一丝杆套I、1607一轴承S2、1608一滑槽I、1609一滑槽II、1701一机架G2、1702一轴承S3、1703一齿轮副III、1704一第四步进电机D4、1705一丝杆II、1706一丝杆套II、1707一轴承S4、1708一滑槽III、1709一滑槽IV、1801一机架G3、1802一轴承S5、1803一齿轮副IV、1804一第五步进电机D5、1805一丝杆III、1806一丝杆套III、1807一轴承S6、1808一滑槽V、1809一滑槽VI、1901一机架G4、1902一轴承S7、1903一齿轮副V、1904一第六步进电机D6、1905一丝杆IV、1906一丝杆套IV、1907一轴承S8、1908一滑槽VII、1909一滑槽VIII、101一调节支撑I基座、102一第一丝杆电机M1、201一调节支撑II基座、202一第二丝杆电机M2、301一调节支撑III基座、302一第三丝杆电机M3、2001一基体T1、2002一轴承S9、2003一第七步进电机D7、2004一齿轮W1、2005一轴承S10、2006一凹口I、2007一齿轮杆I、2101一基体T2、2102一轴承S11、2103一第八步进电机D8、2104一齿轮W2、2105一轴承S12、2106一凹口II、2107一齿轮杆II、2201一齿条、2202分安装臂基板、2203一传声器插入基座、2501一第九步进电机D9、2502一套筒I、2503一传声器插入口I、2504一微型消声腔I、2505一互易声学换能器G1、2506一弹簧I、2507一连接件L1、2508一互易声学换能器G2、2509一电磁铁P1、2510一双滑槽C1、2511一电磁线圈B1、2601一第十步进电机010、2602一套筒II、2603一传声器插入口II、2604一微型消声腔II、2605一互易声学换能器G3、2606一弹簧II、2607一连接件L2、2608一互易声学换能器G4、2609一电磁铁P2、2610一双滑槽C2、2611一电磁线圈B2Main component number description: 1-adjustment support I, 2-adjustment support II, 3-adjustment support III, 4-base plate, 5-fixed counterweight round table, 6-horizontal position sensor K1, 7-horizontal position sensor K2, 8-vertical support rod, 9-electrical box, 10-micro LCD touch screen, 11-laser receiver, 12-longitudinal and rotational motion component installation platform, 13-special-shaped gear pair I, 14-first stepper motor D1, 15-second stepper motor Machine D2, 16-longitudinal motion assembly S1, 17-longitudinal motion assembly S2, 18-vertical motion assembly S1, 19-vertical motion assembly S2, 20-microphone array main mounting arm S1, 21-microphone array main mounting arm S2, 22-microphone array sub-mounting arm, 23-microphone, 24-mechanical connection assembly, 25-microphone calibration mechanism I, 26-microphone calibration mechanism II, 27-calibration microphone S1, 28-calibration microphone S2 , 29, a bracket, 30 a vertical rod, 31 a laser transmitter, 32 a microphone socket, 1601 a frame G1, 1602 a bearing S1, 1603 a gear pair II, 1604 a third stepping motor D3, 1605 a thread rod I, 1606 a thread rod sleeve I, 1607 a bearing S2, 1608 a slide I, 1609 a slide II, 1701 a frame G2, 1702 a bearing S3, 1703 a gear pair III, 1704-the fourth stepper motor D4, 1705-a thread rod II, 1706-a thread rod sleeve II, 1707-a bearing S4, 1708-a slide III, 1709-a slide IV, 1801-a frame G3, 1802-a bearing S5, 1803-a gear pair IV, 1804-a fifth stepper motor D5, 1805-a thread rod III, 1806-a thread rod sleeve III, 1807-a bearing S6, 1808-a slide V, 1809- Slideway VI, 1901-frame G4, 1902-bearing S7, 1903-gear pair V, 1904-sixth stepper motor D6, 1905-screw IV, 1906-screw sleeve IV, 1907-bearing S8, 1908-slideway VII, 1909-slideway VIII, 101-adjusting support I base, 102-first screw motor M1, 201-adjusting support II base, 202-second screw motor M2, 301- Adjust support III base, 302-third screw motor M3, 2001-base T1, 2002-bearing S9, 2003-seventh stepper motor D7, 2004-gear W1, 2005-bearing S10, 2006-notch I, 2007-gear rod I, 2101-base T2, 2102-bearing S11, 2103-eighth stepper motor D8, 2104-gear W2, 2105-bearing S12, 2106- Notch II, 2107-gear rod II, 2201-rack, 2202-mounting arm base, 2203-microphone insertion base, 2501-ninth stepper motor D9, 2502-sleeve I, 2503-microphone insertion port I, 2504-micro muffler I, 2505-reciprocal acoustic transducer G1, 2506-spring I, 2507-connecting piece L1, 2508-reciprocal acoustic transducer G2, 2509-electromagnet P1, 2 510 a double slide C1, 2511 an electromagnetic coil B1, 2601 a tenth stepper motor 010, 2602 a sleeve II, 2603 a microphone insertion port II, 2604 a micro muffler II, 2605 a reciprocal acoustic transducer G3, 2606 a spring II, 2607 a connecting piece L2, 2608 a reciprocal acoustic transducer G4, 2609 an electromagnet P2, 2610 a double slide C2, 2611 an electromagnetic coil B2
具体实施方式DETAILED DESCRIPTION
如图1至图24所示,本发明一种自由声场小型声全息测量及反演装置,该装置包括整个装置支撑调整机构I、传声器阵列纵向运动控制机构II、传声器阵列旋转运动控制机构III、传声器阵列竖向运动控制机构IV、传声器阵列横向运动控制机构V、传声器校正控制机构VI、虚拟球设置参考位置定位测量柱VII;所述的整个装置支撑调整机构I包括调节支撑I1、调节支撑II 2、调节支撑III 3,三个调节支撑分别通过各自的丝杆电机与底座板4上的螺孔相连,底座板4上设有固定配重圆台5,固定配重圆台5固定在底座板4上,该固定配重圆台4可以增加底座的重量,以防止整个机构翻倒,底座板4还设有水平位置传感器K1,水平位置传感器K2,这两个水平位置传感器可以检测底座板4在两个方向的水平度,再结合调节支撑I、II、III可以调整底座板4的水平度,固定配重圆台5上表面与立式支撑杆8相连,立式支撑杆8上端与纵向及旋转运动组件安装平台12相连,立式支撑杆8上端还设有激光接收器11,纵向及旋转运动组件安装平台12侧面设有电器箱9与微型液晶显示触摸屏10,电器箱9中安装与控制系统有关的电路板,微型液晶显示触摸屏10可以完成一些预置数据的输入以及测试计算的结果显示;所述的传声器阵列旋转运动控制机构III包括设在纵向及旋转运动组件安装平台12下面的第一步进电机D1、第二步进电机D2,第一步进电机D1通过轴承与设在纵向及旋转运动组件安装平台12上的异形齿轮副I 13其中一个齿轮相连,第二步进电机D2通过轴承与异形齿轮副I 13的另一个齿轮相连,异形齿轮副I 13通过设在纵向及旋转运动组件安装平台12的机械连接组件24分别与纵向运动控制机构II的纵向运动组件S1、纵向运动组件S2相连,通过第一步进电机D1、第二步进电机D2的正反向运动,从而带动异形齿轮副I 13的正反转,通过异形齿轮副I13的传递,从而带动纵向运动组件S1、纵向运动组件S2的旋转,进而带动传声器阵列的旋转;所述的传声器阵列纵向运动控制机构II包括纵向运动组件S1、纵向运动组件S2、它们分别通过机械连接组件24与异形齿轮副I 13相连,纵向运动组件S1还通过它的丝杆套I 1606与坚向运动组件S1的机架G3相连,纵向运动组件S2还通过它的丝杆套II 1706与坚向运动组件S2的机架G4相连;所述的传声器阵列竖向运动控制机构IV包括竖向运动组件S1、竖向运动组件S2,竖向运动组件S1通过其丝杆套III 1806与传声器阵列横向运动控制机构V的传声器阵列主安装臂S2的基体T2相连,竖向运动组件S2通过其丝杆套IV 1906与传声器阵列横向运动控制机构V的传声器阵列主安装臂S1 20的基体T1 2001相连;所述的传声器阵列横向运动控制机构V包括传声器阵列主安装臂S1 20、传声器阵列主安臂S2 21、多条传声器阵列分安装臂22、多个传声器23组成,传声器阵列分安装臂22分别安装在传声器阵列主安装臂S1 20、传声器阵列主安装臂S2 21上,传声器23安装在传声器阵列分安装臂22上;所述的传声器校正控制机构VI包括传声器校正机构I 25和传声器校正机构II 26,传声器校正机构I 25和传声器校正机构II 26分别固定竖向运动组件S2 19、竖向运动组件S1 18上;所述的调节支撑I 1包括第一丝杆电机M1 102、基座I101,第一丝杆电机M1 102装在基座I 101里,调节支撑II 2包括第二丝杆电机M2 202、基座II 201,第二丝杆电机M2 202装在基座II 201里,调节支撑III 3包括第三丝杆电机M3302、基座III 301,第三丝杆电机M3 302装在基座III 301里,通过第一丝杆电机M1,第二丝杆电机M2,第三丝杆电机M3的正反运动可以调节底座板4的水平度。As shown in Figures 1 to 24, the present invention is a free-field small-scale acoustic holographic measurement and inversion device, which includes a whole device support adjustment mechanism I, a microphone array longitudinal motion control mechanism II, a microphone array rotational motion control mechanism III, a microphone array vertical motion control mechanism IV, a microphone array lateral motion control mechanism V, a microphone correction control mechanism VI, and a virtual ball setting reference position positioning measurement column VII; the whole device support adjustment mechanism I includes an adjustment support I1, an adjustment support II 2, and an
所述的纵向运动组件S1 16包括机架G1 1601、轴承S1 1602、丝杆I 1605、丝杆套I1606、轴承S2 1607、齿轮副II 1603、第三步进电机D3 1604,机架G1 1601纵向两个板中其中一块板内表面设有滑槽II 1609、另一块板内表面设有滑槽I 1608,轴承S2 1607固定在机架G1 1601横向两块板中其中一块上,轴承S2 1607与丝杆I 1605一端相连,机架G1 1601横向另一块板上固定轴承S1 1602,轴承S1 1602与丝杆I 1605另一端相连,并且丝杆I1605穿过轴承S1 1602与齿轮副II 1603其中一个齿轮相连,齿轮副II 1603中另一个齿轮与第三步进电机D3 1604相连,丝杆套I 1606套在丝杆I 1605上,丝杆套I 1605的横向杆分别置于滑槽I 1608、滑槽II 1609上,通过第三步进电机D3 1604的正反转,再通过齿轮副II1603的传递,带动丝杆I 1605的旋转、进而带动丝杆套I 1606在滑槽I 1608、滑槽II 1609上滑动,从而带动竖向运动组件S1 18作纵向动动,再而带动传声器阵列主安装臂S2 21的传声器阵列做纵向运动;所述的纵向运动组件S2 17包括机架G2 1701、轴承S3 1702、丝杆II 1705、丝杆套II 1706、轴承S4 1707、齿轮副III 1703、第四步进电机D4 1704,机架G21701纵向两个板中其中一块板内表面设有滑槽IV 1709、另一块板内表面设有滑槽III1708,轴承S4 1707固定在机架G2 1701横向两块板中其中一块板上,轴承S4 1707与丝杆II1705一端相连,机架G2 1701横向另一块板上固定有轴承S3 1702,轴承S3 1702与丝杆II1705另一端相连,并且丝杆II 1705穿过轴承S3 1702与齿轮副III 1703其中一个齿轮相连,齿轮副III 1703中另一个齿轮与第四步进电机D4 1704相连,丝杆套II 1706套在丝杆II 1705上,丝杆套II 1705的横向杆分别置于滑槽III 1708、滑槽IV 1709上,通过第四步进电机D4 1704的正反转,再通过齿轮副II 1703的传递,带动丝杆II 1705的旋转、进而带动丝杆套II 1706在滑槽III 1708、滑槽IV 1709滑动,从而带动竖向运动组件S119作纵向动动,再而带动传声器阵列主安装臂S1 20上的传声器阵列做纵向运动;所述的竖向运动组件S1 18包括机架G3 1801、轴承S5 1802、丝杆III 1805、丝杆套III 1806、轴承S6 1807、齿轮副IV 1803、第五步进电机D5 1804,机架G3 1801的纵向两个板中其中一块板内表面设有滑槽VI 1809、另一块板内表面设有滑槽V 1808,轴承S6 1807固定在机架G3 1801横向两块板中其中一块板上,轴承S6 1807与丝杆III 1805一端相连,机架G3 1801横向另一块板固定有轴承S5 1802,轴承S5 1802与丝杆III 1805另一端相连,并且丝杆III 1805穿过轴承S5 1802与齿轮副IV 1803其中一个齿轮相连,齿轮副IV 1803中另一个齿轮与第五步进电机D5 1804相连,丝杆套III 1806套在丝杆III 1805上,丝杆套III 1805的横向杆分别置于滑槽V 1808、滑槽VI 1809上,第五步进电机D5 1804的正反转,再通过齿轮副IV 1803的传递,带动丝杆III 1805旋转,进而带动丝杆套III 1806在滑槽V 1808与滑槽VI 1809上滑动,从而传声器阵列主安装臂S2 21上的传声器阵列做纵向运动;所述的竖向运动组件S219包括机架G4 1901、轴承S7 1902、丝杆IV 1905、丝杆套IV 1906、轴承S8 1907、齿轮副V1903、第六步进电机D6 1904,机架G4 1901纵向两个板中其中一块板内表面设有滑槽VIII1909、另一块内表面设有滑槽VII 1908,轴承S8 1907固定在机架G4 1901的横向两块板中其中一块板上,轴承S8 1907与丝杆IV 1905一端相连,机架G4 1901横向另一块板上固定有轴承S7 1902,轴承S7 1902与丝杆IV 1905另一端相连,并且丝杆IV 1905穿过轴承S7 1902与齿轮副V 1903其中一个齿轮相连,齿轮副V 1903中另一个齿轮与第六步进电机D6 1904相连,丝杆套IV 1906套在丝杆IV 1905上,丝杆套IV 1905的横向杆分别置于滑槽VII1908、滑槽VIII 1909上,第六步进电机D6 1904的正反转,再通过齿轮副V 1903的传递,带动丝杆IV 1905旋转,进而带动丝杆套IV 1906在滑槽VII 1908与滑槽VIII 1909上滑动,从而传声器阵列主安装臂S0 20上的传声器阵列做纵向运动;The longitudinal
所述的传声器阵列主安装臂S1(20)包括基体T1 2001,基体T1 2001的一端设有轴承S10 2005,另一端设有轴承S9 2002,基体T1 2001中间为空心,装有齿轮杆I 2007,齿轮杆I 2007的两端分别固定轴承S10 2005、轴承S9 2002上,基体T1 2007一面设有步进电机D7 2003,步进电机D7 2003固定在基体T1 2001上,第七步进电机D7 2003轴上装有齿轮W12004,齿轮W1 2004通过凹口I 2006与齿轮杆I 2007啮合,基体T1 2001另一面设有多个开口凹槽用于安装传声器阵列分安装臂22,基体T1 2001上端还设有定标传声器I 27,通过第七步进电机D7 2003的正反转,通过齿轮W1 2004的传递,带动齿轮杆I 2007旋转,进而带动传声器阵列分安装臂22作横向运动;所述的传声器阵列主安装臂S2 21包括基体T2 2101,基体T2 2101的一端设有轴承S12 2105,另一端设有轴承S11 2102,基体T2 2101中间为空心,装有齿轮杆II 2107,齿轮杆II 2107的两端分别固定轴承S12 2105、轴承S11 2102上,基体T2 2101一面设有第八步进电机D8 2103,第八步进电机D8 2103固定在基体T2 2101上,第八步进电机D8 2103轴上装有齿轮W2 2104,齿轮W2 2104通过凹口II 2106与齿轮杆II 2107啮合,基体T2 2101另一面设有多个开口凹槽用于安装传声器阵列分安装臂22,基体T1 2101上端还设有定标传声器II 28,通过第八步进电机D8 2103的正反转,通过齿轮W22104的传递,带动齿轮杆II 2107旋转,进而带动传声器阵列分安装臂22作横向运动;所述的传声器阵列分安装臂22包括基板2202,基板2202背面两侧设有齿条2201,正面设有多个传声器插入基座2203,传声器23插入传声器插入基座2203上。The microphone array main mounting arm S1 (20) comprises a
所述的传声器较正控制机构I 25包括第九步进电机D9 2501、套筒I 2502、传声器插入口I 2503、微型消声腔I 2504、互易声学换能器G1 2505、弹簧I 2506、连接件L1 2507、互易声学换能器G2 2508、电磁铁P1 2509、双滑槽C1 2510、电磁线圈U1 2511,第九步进电机D9 2501固定在竖向运动组件S2 19的机架G4 1901上,第九步进电机D9 2501通过丝杆与连接件L1 2507一端相连,连接件L1 2507另一端与套筒I 2502相连,套筒I 2502内部设有一个圆柱形半通孔,孔内设有双滑槽C1 2510与电磁铁P1 2509,电磁铁P1 2509的耳杆放在双滑槽C1 2510上,同时电磁铁P1 2509上设有电磁线圈U1 2511,电磁铁P1 2509另一端套有弹簧I 2506并与微型消声腔I 2504相连,微型消声腔I 2504内部一端设有互易声学换能器G1 2505,另一端设有互易声学换能器G2 2508,另外微型消声腔I 2504中部设有传声器插入口I 2503,通过第九步进电机D9 2501,再通过连接件L1 2507传递,可以使传声器较正控制机构I 25可以正向旋转90度或反向旋转90度,通过电磁线圈U1 2511通过与断电,可以使电磁铁P1 2509在双滑槽C1 2510里滑动,进而带动微型消声腔I 2504伸与缩,而可以使微型消声腔I 2504的传声器插入口I 2503套上传声器23或离开传声器23;所述传声器较正控制机构II 26包括第十步进电机D10 2601、套筒II 2602、传声器插入口II 2603、微型消声腔II 2604、互易声学换能器G3 2605、弹簧II 2606、连接件L2 2607、互易声学换能器G42608、电磁铁P2 2609、双滑槽C2 2610、电磁线圈U2 2611,第十步进电机D10 2601固定在竖向运动组件S1 18的机架G3 1801上,第十步进电机D10 2601通过丝杆与连接件L2 2607一端相连,连接件L2 2607另一端与套筒II 2602相连,套筒II 2602内部设有一个圆柱形半通孔,孔内设有双滑槽C2 2610与电磁铁P2 2609,电磁铁P2 2609的耳杆放在双滑槽C2 2610上,同时电磁铁P2 2609设有电磁线圈U2 2611,电磁铁P2 2609另一端套有弹簧II 2606并与微型消声腔II 2604,微型消声腔II 2604内部一端设有互易声学换能器G3 2605,另一端设有互易声学换能器G4 2608,另外微型消声腔II 2604中部设有传声器插入口II 2603,通过第十步进电机D10 2601,再通过连接件L2 2607传递,可以使传声器较正控制机构II 26可以正向旋转90度或反向旋转90度,通过电磁线圈U2 2611通过与断电,可以使电磁铁P22609在双滑槽C2 2610里滑动,进而带动微型消声腔II 2604伸与缩,而可以使微型消声腔II 2604的传声器插入口II 2603套上传声器23或离开传声器23,传声器较正控制机构II26主要是作为传声器较正控制机构I 25的备用,当传声器较正控制机构I 2坏了以后再起作用;The microphone correction control mechanism I 25 includes a ninth
所述的虚拟球设置参考位置测量柱VI包括支架29,支架29与立式杆30相连,立式杆30上端部设有激光发射器31,上端设有传声器插座32,该参考柱主要确定声学反演时虚拟球设置参考位置。The virtual ball setting reference position measurement column VI includes a
本发明一种自由声场小型声全息测量及反演装置智能控制系统(不是本发明的重点,这里只是简要说明)包括控制中心模块70及分别与控制中心模块相连的附属模块71、与上位机接口模块72、信息输入显示模块73、测距模块74、声压测试及声学反演计算模块75、整个装置水平调整驱动模块76、传声器阵列竖向运动驱动模块77、传声器阵列旋转运动驱动模块78、传声器阵列横向运动驱动模块79、传声器阵列纵向运动驱动模块80、传声器阵列校正运动驱动模块81、传感器信号输入模块82;其控制过程为:首先所示系统上电,首先进行控制中心模块70初始化,然后判初始化是否成功,如不成功,则判断是否超时,如不超时,则继续判断初始化是否成功,如超时则显示系统错误,如果初始化成功,则控制中心模块70向各分模块发出初始化命令并发出应答确认信号,然后判断是否收到全部应答信号,如没有全部收到,则判断初始化是否超时,如超时,则显示系统错误,如不超时,则继续判断是否收到全部应答信号,如收到,则进行进入系统就绪,组出“请输入参下参数”K,N1,N2,N3,w[x],H1(x1,y1,z1),H2(x2,y2,z2),H(x3,y3,z3),h1,其中x为1到N2,然后进入全息面形状选择分流程,全息面形状选择分流程结束以后进入整个装置水平定位分流程,整个装置水平定位分流程结束以后,进入标定数据测试通道多频率幅值与相位及标定传声器多频率幅值灵敏度与相位测试计算分流程,标定数据测试通道多频率幅值与相位及标定传声器多频率幅值灵敏度与相位测试计算分流程结束以后,进入普通待测数据测试通道幅值与相位及传声器阵列多频率幅值灵敏度与相位计算测试分流程,普通待测数据测试通道幅值与相位及传声器阵列多频率幅值灵敏度与相位计算测试分流程结束以后进入声压测试计算分流程,声压测试计算分流程结束后进入声学反演计算分流程,声学反演计算分流程结束以后判断测试反演任务结束了吗,如不是就返回系统就绪,如果是就任务结束,该流程中的参数K为全息面形状选择参数,N1为待测传声器个数也是待测测试通道个数,N2为要校正的频数个数,N3为做FFT运算进行采集的周期数,w[x]为需校正的频率值,H1(x1,y1,z1)为虚拟球面所在的参考位置坐标、H2(x2,y2,z2)为全息面的位置坐标H3(x3,y3,z3)为重建面的位置坐标,h1为支撑座I的初始预定高度。The present invention provides an intelligent control system for a small acoustic holographic measurement and inversion device in a free sound field (not the focus of the present invention, but only briefly described here) including a
所述的全息面形状选择分流程图如图6,首先传入选择参数K,然后判断K是否等1,如是则选择全息面形状1,如不是就判断K是否等于2,如是则选择全息面形状2,如不是就判断K是否等于3,如是则选择全息面形状3,如不是就判断K是否等于4,如是则选择全息面形状4,如不是就结束,该流程中的参数K为全息面形状选择参数。The holographic surface shape selection sub-flow chart is shown in Figure 6. First, the selection parameter K is passed in, and then it is determined whether K is equal to 1. If so,
所述的整个装置水平定位分流程控制过程为:首先传入参数h1,驱动第一丝杆电机N1运动,使支撑座I的高度等于给定的设定值h1,检测水平位置传感器K2的值,然后判断该值是否大于0,如果不大于0,则驱动第三丝杆N3正向运动,使支撑座III抬高,再返回检测水平位置传感器K2的值,如果大于0则驱动第三丝杆N3反向运动,再返回检测水平位置传感器K2的值,如果等于0,则检测水平位置传感器K1的值,然后判断该值是否大于0,如果不大于0,则驱动第二丝杆N2电机正向转动,然后再返回检测水平位置传感器K1的值,使支撑座II抬高,如果大于0,则驱动第二丝杆N2电机反向转动,然后再返回检测水平位置传感器K1的值,如果等于0,则结束,该流程中h1为支撑座I的初始预定高度。The horizontal positioning sub-process control process of the entire device is as follows: first, the parameter h1 is passed in to drive the first screw motor N1 to move so that the height of the support seat I is equal to the given set value h1 , and the value of the horizontal position sensor K2 is detected, and then it is determined whether the value is greater than 0. If it is not greater than 0, the third screw rod N3 is driven to move forward to lift the support seat III, and then return to detect the value of the horizontal position sensor K2. If it is greater than 0, the third screw rod N3 is driven to move reversely, and then return to detect the value of the horizontal position sensor K2. If it is equal to 0, the value of the horizontal position sensor K1 is detected, and then it is determined whether the value is greater than 0. If it is not greater than 0, the second screw rod N2 motor is driven to rotate forward, and then return to detect the value of the horizontal position sensor K1 to lift the support seat II. If it is greater than 0, the second screw rod N2 motor is driven to rotate reversely, and then return to detect the value of the horizontal position sensor K1. If it is equal to 0, it ends. In this process, h1 is the initial predetermined height of the support seat I.
所述的标定数据测试通道多频率幅值与相位及标定传声器多频率幅值灵敏度与相位测试计算分流程图控制过程为;首先传入参数N2,N3,w[x],其中x的范围为1到N2,然后给循环变量L1,L2预置初值为1,即L1=1,L2=1,然后对频率变量w及循环变量赋值即w=w[L2],L2=L2+1,然后进定标定数据测试通道单一频率幅值与相位测试计算分流程,该流程结束以后进入标定传声器的单一步率幅值灵敏度与相位测试计算分流程,该流程结束后保存两个流程的输出数据,即:The control process of the calibration data test channel multi-frequency amplitude and phase and calibration microphone multi-frequency amplitude sensitivity and phase test calculation sub-flow chart is as follows: firstly, input parameters N2 , N3 , w[x], where x ranges from 1 to N2 , then preset the initial value of loop variables L1 , L2 to 1, that is, L1 = 1, L2 = 1, then assign values to the frequency variable w and the loop variable, that is, w = w[ L2 ], L2 = L2 + 1, then enter the calibration data test channel single frequency amplitude and phase test calculation sub-flow, after the process is completed, enter the calibration microphone single frequency amplitude sensitivity and phase test calculation sub-flow, after the process is completed, save the output data of the two processes, that is:
B1[L1][L2]=Aj,β1[L1][L2]=θj,B2[L1][L2]=A04,β2[L1][L2]=θ04,B3[L1][L2]=An1,β3[L1][L2]=θn1B4[l1][L2]=A01,β4[L1][L2]=θ01,数据保存结束后,判断L2是否大于N2,如果不大于,则返回对频率变量w及循环变量赋值即w=w[L2],L2=L2+1,如果大于,则L2=L2+1,然后判断L1是否大于等于1,如果不大于,则L1=L1+1,并且返回对频率变量w及循环变量赋值即w=w[L2],L2=L2+1,如果大于等于1,则输出数据B1[L1][L2],β1[L1][L2],B2[L1][L2],β2[L1][L2],B1[L1][L2],β3[L1][L2],B4[L1][L2],β4[L1][L2],其中L1为1-1,L2为1到N2,然后结束任务,该流程中N2为要校正的频数个数,N3为做FFT运算进行采集的周期数,w[x]为需校正的频率值。 B1 [ L1 ] [ L2 ]= Aj , β1 [L1][ L2 ]= θj , B2[ L1 ][ L2 ]= A04 , β2 [L1][L2]= θ04 , B3 [ L1 ][ L2 ]= An1 , β3[ L1 ] [ L2]= θn1 B4[l1][L2]=A01, β4 [ L1 ] [ L2 ] = θ01 , after data saving, determine whether L2 is greater than N2 , if not, return to assign frequency variable w and loop variable, that is, w=w[ L2 ], L2 = L2 + 1 , if greater, L2 = L2 +1, then determine whether L1 is greater than or equal to 1, if not, L1 =L 1 +1, and returns the assignment of the frequency variable w and the loop variable, that is, w=w[L 2 ], L 2 =L 2 +1. If it is greater than or equal to 1, the output data B 1 [L 1 ][L 2 ], β 1 [L 1 ][L 2 ], B 2 [L 1 ][L 2 ], β 2 [L 1 ][L 2 ], B 1 [L 1 ][L 2 ], β 3 [L 1 ][L 2 ], B 4 [L 1 ][L 2 ], β 4 [L 1 ][L 2 ], where L 1 is 1-1 and L 2 is 1 to N 2 , and then the task is terminated. In this process, N 2 is the number of frequencies to be corrected, N 3 is the number of cycles collected for FFT operation, and w[x] is the frequency value to be corrected.
所述的普通待测数据测试通道与传声器阵列多频率幅值灵敏度与相位计算测试分流程控制过程为:传入参数:N1,N2,N3,w[x],B1[L1][L2],β1[L1][L2],B2[L1][L2],β2[L1][L2],其中x的范围为1到N2,L1为1到1,L2为1到N2,然后置循环变量赋初值m1=1,m2=1,然后对频率变量赋值w=w[m2],然后进入单一待测数据测试通道单一频率幅值与相位测试信号加载步骤流程,该流程结以后进入单一待测传声器单一频率幅值灵敏度与相位测试信号加载步骤流程,该流程结束后得出测试通道的幅值与相位以及传声器的幅值灵敏度与相位,即: ,并对变量m2进行加1再赋给m2,然后再判断m2是否大于N2,如果不大于则返回对对频率变量赋值w=w[m2],如果大于,则m1=m1+1,然后再判断m1是否大于N1,如果不大于,则返回对对频率变量赋值w=w[m2],如果大于则输出C1[m1][m2],δ1[m1][m2],C2[m1][m2],δ2[m1][m2],其中C1[m1][m2],δ1[m1][m2]分别为m1路待测数据测试通道在频率为w[m2]的幅值与相位,C2[m1][m2],δ2[m1][m2]为第m1路待测传声器在频率为w[m2]的幅值与相位,m1为1到N1,m2为1到N2。The control process of the common test data test channel and microphone array multi-frequency amplitude sensitivity and phase calculation test sub-process is as follows: input parameters: N 1 , N 2 , N 3 , w[x], B 1 [L 1 ][L 2 ], β 1 [L 1 ][L 2 ], B 2 [L 1 ][L 2 ], β 2 [L 1 ][L 2 ], where x ranges from 1 to N 2 , L 1 is 1 to 1, and L 2 is 1 to N 2 , then the loop variables are assigned initial values m 1 =1, m 2 =1, then the frequency variable is assigned w=w[m 2 ], then the single test data test channel single frequency amplitude and phase test signal loading step process is entered, after the process is completed, the single test microphone single frequency amplitude sensitivity and phase test signal loading step process is entered, after the process is completed, the amplitude and phase of the test channel and the amplitude sensitivity and phase of the microphone are obtained, that is: , and add 1 to the variable m 2 and assign it to m 2 , then determine whether m 2 is greater than N 2 , if not, return the value w=w[m 2 ] assigned to the frequency variable, if greater, then m 1 =m 1 +1, then determine whether m 1 is greater than N 1 , if not, return the value w=w[m 2 ] assigned to the frequency variable, if greater, output C 1 [m 1 ][m 2 ], δ 1 [m 1 ][m 2 ], C 2 [m 1 ][m 2 ], δ 2 [m 1 ][m 2 ], where C 1 [m 1 ][m 2 ], δ 1 [m 1 ][m 2 ] are the amplitude and phase of the m 1 test data channel at the frequency w[m 2 ], respectively, and C 2 [m 1 ][m 2 ], δ 2 [m 1 ][m 2 ] are the amplitude and phase of the m 1 test data channel at the frequency w[m 2 ], respectively. ] is the amplitude and phase of the m1th microphone to be tested at the frequency w[m 2 ], m1 is 1 to N 1 , and m 2 is 1 to N 2 .
所述的声压测试计算分流程图控制过程为:传入参数N1,N2,N3w[x],C1[m1][m2],δ1[m1][m2],C2[m1][m2],δ2[m1][m2],其中m1为1到N1,m2为1到N2,x为1到N2;然后信号的加载与计算,即主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS单元在脉冲同步下,N1个数据测试通道分别同时采集N3周期数据,N1组数据经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w[x]的信号幅值R[m1][m2]及相位ψ[m1][m2],最后求出全息面N1个点上的全息面复声压即:The sound pressure test calculation sub-flow chart control process is as follows: input parameters N 1 , N 2 , N 3 w[x], C 1 [m 1 ][m 2 ], δ 1 [m 1 ][m 2 ], C 2 [m 1 ][m 2 ], δ 2 [m 1 ][m 2 ], where m1 is 1 to N 1 , m 2 is 1 to N 2 , and x is 1 to N 2 ; then the signal is loaded and calculated, that is, the synchronization pulse distribution sub-unit inside the
P[m1][m2]=R[m1][m2]/(C1[m1][m2]*C2[m1][m2]),其中m1为1到N1,m2为1到N2,最后输出数据P[m1][m2],然后结束,P[m1][m2],为全息面上第m1路传声器在频率为w[m2]的幅值与相位,m1为1到N1,m2为1到N2。P[m 1 ][m 2 ]=R[m 1 ][m 2 ]/(C 1 [m 1 ][m 2 ]*C 2 [m 1 ][m 2 ]), Where m1 is 1 to N 1 , m 2 is 1 to N 2 , and the final output data is P[m 1 ][m 2 ], Then end, P[m 1 ][m 2 ], are the amplitude and phase of the m1th microphone on the holographic plane at the frequency w[ m2 ], m1 is 1 to N1 , and m2 is 1 to N2 .
所述的声学反演计算分流程图控制过程为:传入虚拟球面所在参考中心坐标H1(x1,y1,z1)、全息测量面的中心坐标H2(x2,y2,z2)、重建面的中心坐标H3(x3,y3,z3)、虚拟球的个数N4以及全息面H面复声压数据P[m1][m2],其中m1为1到N1,m2为1到N2,把全息面复声压数据P赋给pE(H),然后根据等效源强理论公式对未知源强密度函数σ(rQ)进行双向Fourier级数展开,同时利用二维FFT及梯形公式对格林函数K(r,rQ)进行离散化,建立声全息测量面与虚拟球等效源强声压值之间的关系距阵TH,从而pE(H)=[TH]Q,pE(H)为全息面测量值,Q为虚拟球未知源强密度函数σ(rQ)双向傅立叶分解后的系数,最后采用与建立TH同样的方法建立待反演面上H+声压值与拟球之间传递矩阵结合pE(H)=[TH]Q与求出并TH进行正则化处理得到:上面各式中S′是振动体内某一虚拟源强分布表面,σ(rQ)为待求的虚拟源强密度函数,K(r,rQ)为积分核函数,即格林函数K(r,rQ)=g(r,rQ)=(1/4πR)eikR,rQ虚拟球半径,r为虚拟源强到测量面或重建面的距离。The acoustic inversion calculation sub-flowchart control process is as follows: inputting the reference center coordinates H 1 (x 1 , y 1 , z 1 ) of the virtual spherical surface, the center coordinates H 2 (x 2 , y 2 , z 2 ) of the holographic measurement surface, the center coordinates H 3 (x 3 , y 3 , z 3 ) of the reconstruction surface, the number N 4 of virtual spheres, and the complex sound pressure data P [m 1 ] [m 2 ] of the holographic surface H, Where m1 is 1 to N 1 , m 2 is 1 to N 2 , assign the holographic surface complex sound pressure data P to p E (H), and then according to the equivalent source intensity theory formula The unknown source intensity density function σ(r Q ) is bidirectionally expanded by Fourier series, and the Green function K(r, r Q ) is discretized by two-dimensional FFT and trapezoidal formula. The relationship matrix TH between the acoustic holographic measurement surface and the equivalent source intensity sound pressure value of the virtual sphere is established, so that p E (H) = [ TH ]Q, p E (H) is the holographic surface measurement value, and Q is the coefficient of the bidirectional Fourier decomposition of the unknown source intensity density function σ(r Q ) of the virtual sphere. Finally, the transfer matrix between the H + sound pressure value on the inversion surface and the pseudo-sphere is established by the same method as that of establishing TH. Combining p E (H) = [ TH ] Q with Find And TH is regularized to get: In the above formulas, S′ is a virtual source intensity distribution surface in the vibrating body, σ(r Q ) is the virtual source intensity density function to be determined, K(r, r Q ) is the integral kernel function, that is, Green's function K(r, r Q )=g(r, r Q )=(1/4πR)e ikR , r Q is the radius of the virtual sphere, and r is the distance from the virtual source intensity to the measurement surface or the reconstruction surface.
所述的标定数据测试通道单一频率幅值与相位测试计算步骤分流程控制过程为:传入频率w及采集周期个数N3,其计算步骤为;The calculation steps of the calibration data test channel single frequency amplitude and phase test are divided into a flow control process as follows: input frequency w and the number of acquisition cycles N 3 , and the calculation steps are as follows;
(a)主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I 7504上,该信号再经过高速多支路电子选择开关M2(7505)直接加到标定数据测试通道7512上,信号变为:(a) The synchronization pulse distribution unit inside the
即A01=ArAq1Aj θ01=θq1+θj对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号的幅值A01及相位θ01,上面各式中Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角。 That is, A 01 =A r A q1 A j θ 01 =θ q1 +θ j pair Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the
(b)主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道II 7503上,该信号再经过高速多支路电子选择开关M2 7505直接加到标定数据测试通道7512上,信号变为:即:A02=ArAq2Aj,θ02=θq2+θj,对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w信号的幅值A02及相位θ02,上面各式中Bq2(jw)信号驱动通道II 7503的频率响应函数为,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角。(b) The synchronization pulse distribution subunit inside the
(c)主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I 7504上,该信号再经过高速多支路电子选择开关M2 7505加到信号驱动通道II 7503上,再经过高速多支路电子选择开关M2 7505加到标定数据测试通道7512上,信号变为:(c) The synchronization pulse distribution subunit inside the
即:A03=ArAq1Aq2Aj,θ03=θq1+θq2+θj,对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w信号幅值A03及相位θ03,上式Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Bq2(jw)信号驱动通道II 7503的频率响应函数为,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角。That is: A 03 =A r A q1 A q2 A j , θ 03 =θ q1 +θ q2 +θ j , for Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the
(d)由A01,A02,A03,Ar求出Aq1,Aq2,Aj,由θ01,θ02,θ03求出θq1,θq2,θj即:(d) From A 01 , A 02 , A 03 , and A r , we can obtain A q1 , A q2 , and A j . From θ 01 , θ 02 , and θ 03 , we can obtain θ q1 , θ q2 , and θ j . That is:
Aq1=A03/A02,Aq2=A03/A01,Aj=(A01A02)/(ArA03),A q1 =A 03 /A 02 , A q2 =A 03 /A 01 , A j =(A 01 A 02 )/(A r A 03 ),
θq1=θ03-θ02,θq2=θ03-θ01,θj=θ01+θ02-θ03,θ q1 =θ 03 -θ 02 , θ q2 =θ 03 -θ 01 , θ j =θ 01 +θ 02 -θ 03 ,
最后输出A01,A02,A03,A04,θ01,θ02,θ03,θj,N3。The final outputs are A 01 , A 02 , A 03 , A 04 , θ 01 , θ 02 , θ 03 , θ j , and N3.
所述的标定传声器的单一频率幅值灵敏度与相位测试计算步骤分流程控制过程为:,首先传入参数w,A01,A02,A03,θ01,θ02,θ03,N3,其计算步骤为:The calculation steps of the single frequency amplitude sensitivity and phase test of the calibration microphone are divided into a flow control process as follows: firstly, the parameters w, A 01 , A 02 , A 03 , θ 01 , θ 02 , θ 03 , N 3 are input, and the calculation steps are as follows:
(g1)传声器校正机构I 25在传声器阵列坚向运运动控制机构IV、传声器阵列横向运动控制机构V配合下,使传声器校正机构I 25的传声器插入口I 2503插入标定传器27上,同时主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I 7504,再经过高速多支路电子选择开关M2 7505,加到互易声学换能G1 2505上,推动互易声学换能器G1 2505发声,辐射声波,该声波被与互易声学换能G1 2502相距为r/2的标定传声器27接收,该信号经过高速多支路电子选择开关M3 7509加到标定数据测试通道7512,信号变为:(g1) The microphone correction mechanism I 25, in cooperation with the microphone array vertical motion control mechanism IV and the microphone array lateral motion control mechanism V, inserts the microphone insertion port I 2503 of the microphone correction mechanism I 25 into the
即得:A04=ArAq1Ar1An1Aj,θ04=θq1+θtr1+θn1+θj,对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFF计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号幅值A04及相位θ04,上式Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Bq2(jw)信号驱动通道II7503的频率响应函数为,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角,Btr1(jw)为互易声学换能G1 2505发射频率响应函数,Atr1为Btr1(jw)的幅值,θtr1为Btr1(jw)相位延迟角,Bn1(w)为标定传声器(27)接收频率响应函数,An1为Bn1(w)的幅值,θn1为为Bn1(w)的相位延迟角。That is: A 04 =A r A q1 A r1 A n1 A j ,θ 04 =θ q1 +θ tr1 +θ n1 +θ j , right Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional mixed FFF calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w Amplitude A 04 and phase θ 04 , the above formula is the frequency response function of the B q1 (jw) signal driving channel I 7504, A q1 is the amplitude of B q1 (jw), θ q1 is the phase delay angle of B q1 (jw) , B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), θ j is the phase delay angle of B j (jw), and B q2 (jw) is the signal driving channel II7503 The frequency response function is: A q2 is the amplitude of B q2 (jw), θ q2 is the phase delay angle of B q2 (jw), B tr1 (jw) is the reciprocal acoustic transducer G1 2505 transmission frequency response function, A tr1 is the amplitude of B tr1 (jw), θ tr1 is the phase delay angle of B tr1 (jw), B n1 (w) is the receiving frequency response function of the calibration microphone (27), A n1 is the amplitude of B n1 (w), and θ n1 is the phase delay angle of B n1 (w).
(g2)传声器校正机构I 25在传声器阵列坚向运运动控制机构IV、传声器阵列横向运动控制机构V配合下,使传声器校正机构I 25的传声器插入口I 2503插入标定传器27上,同时主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经高速多支路电子选择开关M1 7502,加到信号驱动通道II 7503,该信号经过高速多支路电子开关M2 7505,加到互易声学换能G2 2508上,推动互易声学换能器G2 2508发声,辐射声波,该声波被与互易声学换能G2 2508相距为r/2的标定传声器27接收,该信号经过高速多支路电子选择开关M37509加到标定数据测试通道7512,信号变为:(g2) The microphone correction mechanism I 25, in cooperation with the microphone array vertical motion control mechanism IV and the microphone array lateral motion control mechanism V, inserts the microphone insertion port I 2503 of the microphone correction mechanism I 25 into the
即得:A05=ArAq2Atr2An1Aj,θ05=θq2+θtr2+θn1+θj,对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号的幅值A05及相位θ05,上式Bq2(jw)信号驱动通道II 7503的频率响应函数,Aq2为Bq2(jw)的幅值,θq2为Bq2(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Btr2(jw)为互易声学换能G2 2508发射频率响应函数,Atr2为Btr2(jw)的幅值,θtr2为Btr2(jw)相位延迟角,Bn1(w)为标定传声器27接收频率响应函数,An1为Bn1(w)的幅值,θn1为为Bn1(w)的相位延迟角。That is: A 05 =A r A q2 A tr2 A n1 A j , θ 05 =θ q2 +θ tr2 +θ n1 +θ j , right Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the
(g3)主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS分单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502,加到信号驱动通道I 7504,该信号经过高速多支路电子选择开关M2 7505上加到互易声学换能G1 2505上,推动互易声学换能器G1 2505发声,辐射声波,该声波被与互易声学换能器G1 2505相距为r的互易声学换能器G2 2508接收,该信号经过高速多支路电子选择开关M3 7509加到数据测试通道,信号变为:(g3) The synchronization pulse distribution subunit inside the
即得:A06=ArAq1Atr1Atr2[2r/(ρf)]Aj,θ06=θq1+θtr1+θtr2-kr+π/2+θj,对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号幅值A06及相位θ06,上式Bq1(jw)信号驱动通道I 7504的频率响应函数,Aq1为Bq1(jw)的幅值,θq1为Bq1(jw)的相位延迟角,Bj(jw)为标定数据测试通道7512的频率响应函数,Aj为Bj(jw)的幅值,θj为Bj(jw)相位延迟角,Btr1(jw)为互易声学换能G1 2505发射频率响应函数,Atr1为Btr1(jw)的幅值,θtr1为Btr1(jw)相位延迟角,Btr2(jw)为互易声学换能G2(2508)发射频率响应函数,Atr2为Btr2(jw)的幅值,θtr2为Btr2(jw)相位延迟角,B′tr2(jw)为互易声学换能G2(2508)接收频率响应函数,ρ0为空气密度,f为声波的频率,2r/ρ0f为球面自由声场的互易参量,对于其他自由声场这个参数要适当修正,同样可以适用用其他类型的自由声场来做为测试声源。That is: A 06 =A r A q1 A tr1 A tr2 [2r/(ρf)]A j , θ 06 =θ q1 +θ tr1 +θ tr2 -kr+π/2+θ j , right Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the main control unit 7501 to obtain a signal with a frequency of w Amplitude A 06 and phase θ 06 , the above formula is the frequency response function of the B q1 (jw) signal driving channel I 7504, A q1 is the amplitude of B q1 (jw), θ q1 is the phase delay angle of B q1 (jw) , B j (jw) is the frequency response function of the calibration data test channel 7512, A j is the amplitude of B j (jw), θ j is the phase delay angle of B j (jw), B tr1 (jw) is the reciprocal acoustic Transducer G1 2505 transmit frequency response function, A tr1 is the amplitude of B tr1 (jw), θ tr1 is the phase delay angle of B tr1 (jw), and B tr2 (jw) is the transmit frequency of the reciprocal acoustic transducer G2 (2508) Response function, A tr2 is the amplitude of B tr2 (jw), θ tr2 is the phase delay angle of B tr2 (jw), B′ tr2 (jw) is the receiving frequency response function of the reciprocal acoustic transducer G2 (2508), ρ 0 is the air density, f is the frequency of the sound wave, 2r/ρ 0 f is the reciprocal parameter of the spherical free sound field, and for other free sound fields, The parameters need to be modified appropriately, and other types of free sound fields can also be used as test sound sources.
(g4)由A01,A02,A03,A04,A05,A06,Ar求出Atr1,Atr2,An1:(g4) Find A tr1 , A tr2 , A n1 from A 01 , A 02 , A 03 , A 04 , A 05 , A 06 , A r :
由θ01,θ02,θ03,θ04,θ05,θ06求出θtr1,θtr2,θn1: θn1=(θ01+θ04+θ05-θ03-θ06-θj+k-π/2)/2,所求得的An1、θn1就是待测传声器的幅值灵敏度与相位校正系数,输出An1,θn1A04,θ04。 Find θ tr1 , θ tr2 , θ n1 from θ 01 , θ 02 , θ 03 , θ 04 , θ 05 , θ 06 : θ n1 =(θ 01 +θ 04 +θ 05 -θ 03 -θ 06 -θ j +k-π/2)/2. The obtained A n1 and θ n1 are the amplitude sensitivity and phase of the microphone to be tested. Correction coefficient, output A n1 , θ n1 A 04 , θ 04 .
所述的单一待测数据测试通道单一频率幅值与相位测试信号加载步骤流程控制过程为:传入参数N3,然后进行信号的加载计算,即:主控制单元7501内部的同步脉冲分送分单元给出同步脉冲,内部DDS单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1(7502)加到信号驱动通道I 7504上,该信号再经过高速多支路电子选择开关M2 7505直接加到第m1路数据测试通道7511上,信号变为:The control process of the loading step of the single frequency amplitude and phase test signal of the single data test channel to be tested is as follows: the parameter N3 is input, and then the signal loading calculation is performed, that is, the synchronization pulse distribution sub-unit inside the
即: 对同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算分单元及频谱能量重心法校正分单元的计算与校正得出频率为w的信号幅值及相位最后输出幅值及相位 Right now: right Synchronously sample N 3 integer periodic signals, which are calculated and corrected by the one-dimensional and two-dimensional hybrid FFT calculation subunit and the spectrum energy centroid correction subunit in the
所述的单一待测传声器单一频率幅值灵敏度与相位测试试号加载步骤流程控制过程为:传入参数N3,然后进行信号的加载计算,即:传声器校正机构I 25在传声器阵列坚向运运动控制机构IV、传声器阵列横向运动控制机构V配合下,使传声器校正机构I 25的传声器插入口I 2503插入第m1路传声器,同时主控制单元7501内部的同步脉冲分送单元给出同步脉冲,内部DDS单元在脉冲同步下给出一个正弦波信号sr=Are-jw,其中Ar为信号sr的幅值,w为信号sr的频率,该信号经过高速多支路电子选择开关M1 7502加到信号驱动通道I7504,再经过高速多支路电子选择开关M2 7505上,加到互易声学换能器G1 2505上,推动互易声学换能器G1 2505发声,辐射声波,该声波被与互易声学换能器G1 2505相距为r/2的第m1路传声器接收,该信号经过高速多支路电子选择开关M3 7509加到第m1路数据测试通道7511上,信号变为:The control process of the single frequency amplitude sensitivity and phase test number loading step of the single microphone to be tested is as follows: input parameter N3 , and then perform signal loading calculation, that is: the microphone correction mechanism I25, under the cooperation of the microphone array vertical motion control mechanism IV and the microphone array lateral motion control mechanism V, makes the microphone insertion port I2503 of the microphone correction mechanism I25 insert the m1- th microphone, and at the same time, the synchronization pulse distribution unit inside the
即得: You will get:
对s同步采样N3个整数周期信号,该信号经主控制单元7501中一、二维混合FFT计算及频谱能量重心法校正单元的计算与校正得出频率为w的信号幅值及相位输出幅值及相位 The signal of N 3 integer periodic signals is synchronously sampled at s, and the signal with frequency w is obtained by the one-dimensional and two-dimensional hybrid FFT calculation and the spectrum energy centroid method correction unit in the
所述的能量重心法频谱校正法为Δw对频率校正,对幅值进行校正,其中M一般取1或2,Xk为快速傅里叶变换中频谱图中k位置的复值谱,Kt为能量恢系数,Kt的取一般与窗函数的选取有关,用Hanning窗时一般取8/3。The energy centroid method spectrum correction method is: Δw for frequency correction, The amplitude is corrected, where M is generally 1 or 2, Xk is the complex spectrum at position k in the spectrum diagram in the fast Fourier transform, Kt is the energy recovery coefficient, and Kt is generally related to the selection of the window function. When using the Hanning window, it is generally 8/3.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910082823.6A CN109782230B (en) | 2019-01-21 | 2019-01-21 | Free sound field small-sized acoustic holographic measurement and inversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910082823.6A CN109782230B (en) | 2019-01-21 | 2019-01-21 | Free sound field small-sized acoustic holographic measurement and inversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109782230A CN109782230A (en) | 2019-05-21 |
CN109782230B true CN109782230B (en) | 2023-03-31 |
Family
ID=66502913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910082823.6A Active CN109782230B (en) | 2019-01-21 | 2019-01-21 | Free sound field small-sized acoustic holographic measurement and inversion device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109782230B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112432698A (en) * | 2020-11-12 | 2021-03-02 | 中国航空工业集团公司北京长城计量测试技术研究所 | Double-coil standard vibration table with reciprocity |
CN117429888A (en) * | 2023-12-20 | 2024-01-23 | 珠海博杰电子股份有限公司 | High-precision flexible parallel adjusting mechanism |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014206212A1 (en) * | 2013-06-26 | 2014-12-31 | 浙江工业大学 | Digital image generation method through 3d spatial distribution of sound quality objective parameters |
CN105588637A (en) * | 2016-01-31 | 2016-05-18 | 广西科技大学 | Complicated stable sound field sound pressure testing device |
CN105675125A (en) * | 2016-01-31 | 2016-06-15 | 广西科技大学 | Intelligent control system for acoustic pressure testing device in complicated stable sound field |
CN209590258U (en) * | 2019-01-21 | 2019-11-05 | 柳州市展虹科技有限公司 | A free-field small-scale acoustic holographic measurement and inversion device |
-
2019
- 2019-01-21 CN CN201910082823.6A patent/CN109782230B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014206212A1 (en) * | 2013-06-26 | 2014-12-31 | 浙江工业大学 | Digital image generation method through 3d spatial distribution of sound quality objective parameters |
CN105588637A (en) * | 2016-01-31 | 2016-05-18 | 广西科技大学 | Complicated stable sound field sound pressure testing device |
CN105675125A (en) * | 2016-01-31 | 2016-06-15 | 广西科技大学 | Intelligent control system for acoustic pressure testing device in complicated stable sound field |
CN209590258U (en) * | 2019-01-21 | 2019-11-05 | 柳州市展虹科技有限公司 | A free-field small-scale acoustic holographic measurement and inversion device |
Also Published As
Publication number | Publication date |
---|---|
CN109782230A (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105588637B (en) | A kind of complicated stable sound field acoustic pressure test device | |
CN109782230B (en) | Free sound field small-sized acoustic holographic measurement and inversion device | |
CN105675125B (en) | A kind of complicated stable sound field acoustic pressure test device intelligence control system | |
CN102854251B (en) | Supersonic imaging system utilizing virtual instrument technology, and imaging method thereof | |
CN108008348A (en) | Underwater Wave arrival direction estimating method and device based on adjustable angle even linear array | |
CN112146833B (en) | Experimental device for simulating submarine pipeline vortex-induced vibration in complex marine environment | |
JP2000028589A (en) | Three-dimensional ultrasonic imaging device | |
CN209590258U (en) | A free-field small-scale acoustic holographic measurement and inversion device | |
CN108519576A (en) | Underwater DOA Estimation Method and Device Based on Angle Adjustable Non-uniform Linear Array | |
CN108414967A (en) | Based on L gusts of underwater two-dimension Wave arrival direction estimating method and device of angle adjustable double | |
CN102411030A (en) | Ultrasonic nondestructive detection device of elastic constant of small-size test piece made of non-conventional material | |
CN109917338B (en) | Intelligent control system of free sound field small-sized acoustic holographic measurement and inversion device | |
CN209928010U (en) | Intelligent control system of small-sized acoustic holographic measurement and inversion device of free sound field | |
CN109281651B (en) | Ultrasonic borehole wall imaging method applied to cylindrical surface ultrasonic array | |
CN209707674U (en) | A kind of free found field batch mouthpiece amplitude sensitivity and phase measurement device | |
KR20170005963A (en) | performance measuring system for ultrasonic transducers | |
CN109709519B (en) | Free sound field batch microphone amplitude sensitivity and phase quantity measuring device | |
CN205670047U (en) | A kind of complexity stablizes sound field sound compression testing device intelligence control system | |
CN205670046U (en) | A kind of complexity stablizes sound field sound compression testing device | |
CN209746115U (en) | An intelligent control system for the amplitude sensitivity and phase measurement device of a free sound field batch microphone | |
CN211205203U (en) | An automatic rotating three-dimensional scanning device | |
CN208000373U (en) | Based on L gusts of underwater two-dimension Mutual coupling device of angle adjustable double | |
CN111551126A (en) | Irregular pipeline inner wall mobile measurement robot and three-dimensional reconstruction method and system | |
CN108958551A (en) | The bearing calibration of laminating apparatus and its depth of parallelism | |
CN109696659B (en) | Intelligent control system for amplitude sensitivity and phase measurement of free sound field batch microphone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: No. 2 Wenchang Road, Liuzhou City, Guangxi Zhuang Autonomous Region, 545005 Patentee after: GUANGXI University OF SCIENCE AND TECHNOLOGY Patentee after: LIUZHOU ZHANHONG TECHNOLOGY CO.,LTD. Address before: 545616 No. 4, No. C standard workshop, No. 7 Che yuan six road, Liuzhou, the Guangxi Zhuang Autonomous Region, 308 Patentee before: LIUZHOU ZHANHONG TECHNOLOGY CO.,LTD. Patentee before: GUANGXI University OF SCIENCE AND TECHNOLOGY |