CN109777732A - 一种双极性细胞融合仪器及其控制方法 - Google Patents

一种双极性细胞融合仪器及其控制方法 Download PDF

Info

Publication number
CN109777732A
CN109777732A CN201910043383.3A CN201910043383A CN109777732A CN 109777732 A CN109777732 A CN 109777732A CN 201910043383 A CN201910043383 A CN 201910043383A CN 109777732 A CN109777732 A CN 109777732A
Authority
CN
China
Prior art keywords
field
effect tube
signal
pulse
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910043383.3A
Other languages
English (en)
Other versions
CN109777732B (zh
Inventor
李成祥
柯强
姚成
杜建
姚陈果
米彦
吴梦
葛良鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201910043383.3A priority Critical patent/CN109777732B/zh
Publication of CN109777732A publication Critical patent/CN109777732A/zh
Application granted granted Critical
Publication of CN109777732B publication Critical patent/CN109777732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electronic Switches (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明提出了一种双极性细胞融合仪器及其控制方法,包括:所述脉冲切换电路包括:场效应管K6的源极与脉冲第一产生电路的信号第一输出端相连,场效应管K9的源极与脉冲第二产生电路的信号第一输出端相连,场效应管K6的漏极和场效应管K9的漏极分别与负载电阻R2的第一端相连,负载电阻R2的第二端分别与脉冲第一产生电路的信号第二输出端和脉冲第二产生电路的信号第二输出端相连;场效应管K6的栅极与控制器的信号第六输出端相连,场效应管K9的栅极与控制器的信号第九输出端相连。本发明能够获取得到双极性脉冲方波,对于推进细胞电融合技术的发展具有重要意义。

Description

一种双极性细胞融合仪器及其控制方法
技术领域
本发明涉及脉冲切换技术领域,特别是涉及一种双极性细胞融合仪器及其控制方法。
背景技术
细胞融合能够实现远源杂交,其意义在于打破了仅仅依赖有限杂交重组基因创造新种的界限,有可能形成有性杂交方式无法获得的新型的杂交动物或植物细胞, 扩大了遗传物质的重组范围。
细胞融合是生物制备的基本途径。细胞能否有效融合是决定生物制备是否可行的关键,甚至成为制约生物制备技术发展的瓶颈。因此,如何发展和改进现有的细 胞融合方法、提升细胞融合的效果和效率,已成为国内外生物制备领域的一个研究 热点。
根据电融合的基本原理,细胞膜上出现足够数量和尺寸的孔洞(即细胞电穿孔),是细胞融合的先决条件。而细胞要发生电穿孔,细胞的跨膜电压必须大于其细胞膜 穿孔所需的电压阈值。细胞融合的基本步骤是:首先,细胞在电融合之前,两个待 融合的细胞必须先有紧密的接触。然后通过对电极槽施加高频率(1-2MHz)的正弦 交流电压,使细胞在介电泳力的牵引下,依次排列成串。介电泳的基本原理是基于 细胞中的离子的极化,在高频率交流电场内,会受到电场互相吸引,形成串珠状态。 待细胞排列成串状后,需要通过高速的开关切换,将高频正弦电压切换到低频窄脉 冲电压,以使细胞发生电穿孔,使细胞接触区域形成熔融状态。由于传统的单极性 脉冲脉冲细胞电融合,对彼此紧贴的两个细胞施加若干个低场强的单极性微秒脉冲。 场强过低,细胞膜无法达到跨膜电位阈值,不会产生电穿孔。而场强增高,虽然在 一定程度上可以提高融合率,但是与之并存的是细胞死亡率的增加,从而会限制细 胞融合率。传统的单极性微秒脉冲在作用细胞融合的时候容易对细胞造成较大的损 伤,较高的死亡率会导致细胞融合率处于一个很低的水平。由于双极性脉冲具有正 负电荷的累积效应,对细胞膜存在正向充电和反向充电的过程,相同参数下,对细 胞造成的损伤要比单极性脉冲对细胞的损伤小。因此本发明采用双极性脉冲电场作 用细胞融合,通过减小细胞的死亡率,从而提高细胞融合率。仿真和实验结果表明, 相同参数条件下,双极性脉冲作用后细胞融合率远远高于单极性脉冲作用后的细胞 融合率。此外,双极性脉冲作用下的细胞死亡率远低于单极性脉冲作用下的细胞死 亡率,并且具有极显著性差异。双极性脉冲电融合比单极性脉冲具有明显的优势。 如何获取得到双极性脉冲是细胞电融合高效的新型物理手段,对于推进细胞电融合 技术的发展具有重要意义。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种双极性细胞融合仪器及其控制方法。
为了实现本发明的上述目的,本发明提供了一种双极性细胞融合仪器,包括: 脉冲第一产生电路的信号输出端与脉冲切换电路的信号第一输入端相连,脉冲第二 产生电路的信号输出端与脉冲切换电路的信号第二输入端相连;
所述脉冲切换电路包括:场效应管K6的源极与脉冲第一产生电路的信号第一输出端相连,场效应管K9的源极与脉冲第二产生电路的信号第一输出端相连,场效应 管K6的漏极和场效应管K9的漏极分别与负载电阻R2的第一端相连,负载电阻R2 的第二端分别与脉冲第一产生电路的信号第二输出端和脉冲第二产生电路的信号第 二输出端相连;场效应管K6的栅极与控制器的信号第六输出端相连,场效应管K9 的栅极与控制器的信号第九输出端相连。本发明通过脉冲切换电路相互切换正弦脉 冲和双极性方波,切换速度及时可靠,易于细胞融合。
在本发明的一种优选实施方式中,还包括:场效应管K7与场效应管K6串联, 场效应管K7的栅极与控制器的信号第七输出端相连;场效应管K8与场效应管K9 串联,场效应管K8的栅极与控制器的信号第八输出端相连。有利于防止寄生二极管 (体二极管)带来的干扰,由于MOSFET或者IGBT只能控制一种方向的电流的开 通与关断,因此单个MOSFET或者IGBT对双极性电流无法起到切换作用,即单个 开关不能控制双极性电流的开通与关断。因此将MOSFET或IGBT进行反向串联, 利用其中的寄生二极管作为通路,从而可以实现双极性电流的切换。
在本发明的一种优选实施方式中,脉冲第一产生电路包括:高压产生电路的信 号输出端与切换电路的信号输入端相连,切换电路的信号输出端与脉冲切换电路的 信号输入端相连。
在本发明的一种优选实施方式中,高压产生电路包括:第1充放电模块的信号 第一输入端与开关S1的第一端相连,开关S1的第二端与电源S的第一端相连;第 i充放电模块的信号输出端与第i+1充放电模块的信号输入端相连,所述i为小于或 者等于n的正整数,所述n为大于或者等于2的正整数;第n充放电模块的信号输 出端分别与开关K1的第一端、电源S的第二端和切换电路的信号第一输入端相连, 开关K1的第二端与放电电阻R1的第一端相连,放电电阻R1的第二端分别与第1 充放电模块的信号输出端和和切换电路的信号第二输入端相连;开关K1的控制端与 控制器的第一信号输出端相连,开关S1的控制端与控制器的第1充放电信号输出端 相连。通过高压产生电路将电源转换为所需的高压高频双极性方波输出。
在本发明的一种优选实施方式中,第j充放电模块包括:电容Cj的第一端分别 与二极管Dj的负极和场效应管Sj+1的漏极相连,所述j为小于或者等于n的正整数; 电容Cj的第二端与二极管Dn+j的正极相连,二极管Dn+j的负极与场效应管Sj+1 的源极相连;场效应管Sj+1的栅极与控制器的第j+1充放电信号输出端相连。充放 电模块的充放电能力强、满足输出要求。
在本发明的一种优选实施方式中,开关S1为场效应管S1,场效应管S1的源极 与二极管的正极相连,场效应管S1的漏极与电源S的第一端相连,场效应管S1的 栅极与控制器的第1充放电信号输出端相连;场效应管S1作为开关切换速度快,防 止延迟。
或/和开关K1为场效应管K1,场效应管K1的漏极与电源S的第二端相连,场 效应管K1的源极与放电电阻R1的第一端相连,场效应管K1的栅极与控制器的第 一信号输出端相连。场效应管K1作为开关切换速度快,防止延迟。
在本发明的一种优选实施方式中,切换电路包括:场效应管K2的漏极和场效应 管K4的漏极分别与高压产生电路的信号第一输出端相连,场效应管K3的源极和场 效应管K5的源极分别与高压产生电路的信号第二输出端相连,场效应管K2的源极 和场效应管K3的漏极分别与场效应管K6的源极相连,场效应管K4的源极和场效 应管K5的漏极分别与负载电阻R2的第二端相连;场效应管K2的栅极与控制器的 第二信号输出端相连,场效应管K3的栅极与控制器的第三信号输出端相连,场效应 管K4的栅极与控制器的第四信号输出端相连,场效应管K5的栅极与控制器的第五 信号输出端相连。通过切换电路产生双极性方波控制输出。
在本发明的一种优选实施方式中,脉冲第二产生电路包括:市电与信号发生器 模块相连,信号发生器模块的信号输出端与功率运放模块的信号输入端相连,功率 运放模块的信号输出端与脉冲切换电路的信号第二输入端相连。
本发明还公开了一种双极性细胞融合仪器的控制方法,令脉冲个数P=0,包括 以下步骤:
S1,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中控制器向场效应管K8和场效应管K9发送导通命令,向其余场效应管发 送截止命令;此时脉冲第二产生电路向负载电阻R2输出高频高压正弦交流电压;记 录此时时刻为t1;持续时长为T1;
S2,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中,控制器向场效应管S1发送导通信号,向其余场效应管发送截止命令; 电源S分别给电容C1~Cn充电;记录此时时刻为t2;持续时长为T2;
S3,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中控制器向场效应管S1~Sn、场效应管K2以及场效应管K5~K7发送导 通命令,向其余场效应管发送截止命令;此时电容C1~Cn上的电荷通过负载电阻 R2释放,在负载电阻R2上输出正极性的脉冲方波;记录此时时刻为t3;持续时长 为T3;
S4,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中控制器向场效应管S1~Sn、场效应管K3~K4以及场效应管K6~K7发 送导通命令,向其余场效应管发送截止命令;此时电容C1~Cn上的电荷通过负载 电阻R2释放,在负载电阻R2上输出负极性的脉冲方波;P=P+1;记录此时时刻为 t4;持续时长T4;
S5,判断脉冲个数P施加是否完毕:
若脉冲个数P施加完毕,则执行步骤S6;
若脉冲个数P施加未完毕,则执行步骤S1;
S6,当脉冲个数P施加完毕后,控制器分别同时向场效应管K1~K9以及场效 应管S1~Sn发送导通和截止命令,其中控制器向场效应管S1~Sn以及场效应管K1 发送导通命令,向其余场效应管发送截止命令,电容C1~Cn上残余的电荷通过放 电电阻R1进行释放。有利于释放电容C1~Cn上的残余的电荷,防止元器件损坏。
在本发明的一种优选实施方式中,脉冲第二产生电路输出的参数:电压峰峰值 为0~500V,频率为0~3MHz,持续时间为0~100s的正弦电压;
脉冲第一产生电路输出的参数:脉冲幅值为0~5kV,脉冲宽度为100ns~100ms,脉冲频率为0.1~1000Hz,脉冲个数为0~10000个的脉冲方波;
脉冲第二产生电路与脉冲第一产生电路的切换间隔为大于10ns;
或/和正极性的脉冲方波与负极性的脉冲方波的幅值相同或者不同。
综上所述,由于采用了上述技术方案,本发明能够获取得到双极性脉冲方波, 对于推进细胞电融合技术的发展具有重要意义。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明连接示意框图。
图2是本发明双极性细胞融合仪器电路连接示意图。
图2中:
A为高压产生电路电路连接示意图;
B为切换电路电路连接示意图;
C为脉冲切换电路电路连接示意图;
D为第二脉冲产生电路电路连接示意图。
图3是本发明在负载电阻R2上输出正弦电压电路连接示意图。
图4是本发明电容充电电路连接示意图。
图5是本发明在负载电阻R2上输出正极性脉冲电路连接示意图。
图6是本发明在负载电阻R2上输出负极性脉冲电路连接示意图。
图7是本发明脉冲输出完毕后将剩余电荷释放电路连接示意图。
图8为本发明场效应管导通和截止示意图;
其中,Model1为,场效应管K8和场效应管K9导通时,正弦交流电可以通过 场效应管K8和场效应管K9施加在负载电阻R2上;
Model2为,场效应管K8和场效应管K9截止时,正弦交流不能够施加在负载 电阻R2上;
Model3为,场效应管K6和场效应管K7导通时,双极性方波可以通过场效应 管K6和场效应管K7施加在负载电阻R2上;
Model4为,场效应管K6和场效应管K7截止时,双极性方波不能够施加在负 载电阻R2上。
图9是本发明产生脉冲的幅值-时间示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至 终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通 过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明 的限制。
本发明提供了一种双极性细胞融合仪器,如图1~2所示,包括:脉冲第一产生 电路的信号输出端与脉冲切换电路的信号第一输入端相连,脉冲第二产生电路的信 号输出端与脉冲切换电路的信号第二输入端相连。
所述脉冲切换电路包括:场效应管K6的源极与脉冲第一产生电路的信号第一输出端相连,场效应管K9的源极与脉冲第二产生电路的信号第一输出端相连,场效应 管K6的漏极和场效应管K9的漏极分别与负载电阻R2的第一端相连,负载电阻R2 的第二端分别与脉冲第一产生电路的信号第二输出端和脉冲第二产生电路的信号第 二输出端相连;场效应管K6的栅极与控制器的信号第六输出端相连,场效应管K9 的栅极与控制器的信号第九输出端相连。在本实施方式中,市电分别与开关电源M1、 开关电源M2和脉冲第二产生电路相连,其中,开关电源M1将市电转换为控制器 所需的电压,开关电源M2将市电转换为电源S所需的电压;脉冲第二产生电路包 括:信号发生器模块与市电相连,信号发生器模块的信号输出端与功率运放模块的 信号输入端相连,功率运放模块的信号输出端与脉冲切换电路的信号第二输入端相 连。开关电源M1、开关电源M2和脉冲第二产生电路为现有模块或仪器,当控制器 为单片机时,具体为5V供电STC12系列单片机时,开关电源M1向单片机提供5V电压;当电源S为12V蓄电池时,开关电源M2向蓄电池提供12V电压;当脉冲第 二产生电路需要220V 50HZ交流电时,市电直接输入脉冲第二产生电路供电,脉 冲第二产生电路向外输出电压峰峰值为0~500V,频率为0~3MHz,持续时间为0~ 100s的正弦电压。
在本发明的一种优选实施方式中,还包括:场效应管K7与场效应管K6串联, 场效应管K7的栅极与控制器的信号第七输出端相连;场效应管K8与场效应管K9 串联,场效应管K8的栅极与控制器的信号第八输出端相连。优选的,场效应管K7 的漏极与场效应管K6的漏极相连,场效应管K7的源极与负载电阻R2的第一端相 连,场效应管K8的漏极与场效应管K9的漏极相连,场效应管K8的源极与负载电 阻R2的第一端相连。
在本发明的一种优选实施方式中,脉冲第一产生电路包括:高压产生电路的信 号输出端与切换电路的信号输入端相连,切换电路的信号输出端与脉冲切换电路的 信号输入端相连。
在本发明的一种优选实施方式中,高压产生电路包括:第1充放电模块的信号 第一输入端与开关S1的第一端相连,开关S1的第二端与电源S的第一端相连;第 i充放电模块的信号输出端与第i+1充放电模块的信号输入端相连,所述i为小于或 者等于n的正整数,所述n为大于或者等于2的正整数;第n充放电模块的信号输 出端分别与开关K1的第一端、电源S的第二端和切换电路的信号第一输入端相连, 开关K1的第二端与放电电阻R1的第一端相连,放电电阻R1的第二端分别与第1 充放电模块的信号输出端和和切换电路的信号第二输入端相连;开关K1的控制端与 控制器的第一信号输出端相连,开关S1的控制端与控制器的第1充放电信号输出端 相连。
在本发明的一种优选实施方式中,第j充放电模块包括:电容Cj的第一端分别 与二极管Dj的负极和场效应管Sj+1的漏极相连,所述j为小于或者等于n的正整数; 电容Cj的第二端与二极管Dn+j的正极相连,二极管Dn+j的负极与场效应管Sj+1 的源极相连;场效应管Sj+1的栅极与控制器的第j+1充放电信号输出端相连。
在本发明的一种优选实施方式中,开关S1为场效应管S1,场效应管S1的源极 与二极管的正极相连,场效应管S1的漏极与电源S的第一端相连,场效应管S1的 栅极与控制器的第1充放电信号输出端相连。
或/和开关K1为场效应管K1,场效应管K1的漏极与电源S的第二端相连,场 效应管K1的源极与放电电阻R1的第一端相连,场效应管K1的栅极与控制器的第 一信号输出端相连。
在本发明的一种优选实施方式中,切换电路包括:场效应管K2的漏极和场效应 管K4的漏极分别与高压产生电路的信号第一输出端相连,场效应管K3的源极和场 效应管K5的源极分别与高压产生电路的信号第二输出端相连,场效应管K2的源极 和场效应管K3的漏极分别与场效应管K6的源极相连,场效应管K4的源极和场效 应管K5的漏极分别与负载电阻R2的第二端相连;场效应管K2的栅极与控制器的 第二信号输出端相连,场效应管K3的栅极与控制器的第三信号输出端相连,场效应 管K4的栅极与控制器的第四信号输出端相连,场效应管K5的栅极与控制器的第五 信号输出端相连。
本发明还公开了一种双极性细胞融合仪器的控制方法,如图3~9所示,令脉冲 个数P=0,包括以下步骤:
S1,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中控制器向场效应管K8和场效应管K9发送导通命令,向其余场效应管发 送截止命令;此时脉冲第二产生电路向负载电阻R2输出高频高压正弦交流电压;记 录此时时刻为t1;持续时长为T1;
S2,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中,控制器向场效应管S1发送导通信号,向其余场效应管发送截止命令; 电源S分别给电容C1~Cn充电;记录此时时刻为t2;持续时长为T2;
S3,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中控制器向场效应管S1~Sn、场效应管K2以及场效应管K5~K7发送导 通命令,向其余场效应管发送截止命令;此时电容C1~Cn上的电荷通过负载电阻 R2释放,在负载电阻R2上输出正极性的脉冲方波;记录此时时刻为t3;持续时长 为T3;
S4,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止 命令,其中控制器向场效应管S1~Sn、场效应管K3~K4以及场效应管K6~K7发 送导通命令,向其余场效应管发送截止命令;此时电容C1~Cn上的电荷通过负载 电阻R2释放,在负载电阻R2上输出负极性的脉冲方波;P=P+1;记录此时时刻为 t4;持续时长T4;
S5,判断脉冲个数P施加是否完毕:
若脉冲个数P施加完毕,则执行步骤S6;
若脉冲个数P施加未完毕,则执行步骤S1;
S6,当脉冲个数P施加完毕后,控制器分别同时向场效应管K1~K9以及场效 应管S1~Sn发送导通和截止命令,其中控制器向场效应管S1~Sn以及场效应管K1 发送导通命令,向其余场效应管发送截止命令,电容C1~Cn上残余的电荷通过放 电电阻R1进行释放。在本实施方式中,场效应管K1~K9、S1~Sn以及电容C1~ Cn和二极管D1~2n的型号根据实际情况进行选择;以及t1~t4、T1~T4和P的数 值设定,实现:脉冲第二产生电路输出的参数:电压峰峰值为0~500V,频率为0~ 3MHz,持续时间为0~100s的正弦电压;
脉冲第一产生电路输出的参数:脉冲幅值为0~5kV,脉冲宽度为100ns~100ms,脉冲频率为0.1~1000Hz,脉冲个数为0~10000个的脉冲方波;
脉冲第二产生电路与脉冲第一产生电路的切换间隔为大于10ns;
或/和正极性的脉冲方波与负极性的脉冲方波的幅值相同或者不同。例如正极性的脉冲方波为300V时,负极性的脉冲方波为-300V,此时正极性的脉冲方波与负极 性的脉冲方波的幅值相同;正极性的脉冲方波为300V时,负极性的脉冲方波为-250V 或-350V,此时正极性的脉冲方波与负极性的脉冲方波的幅值不相同。
如图2所示,电源S的第一端(电源的正极)与场效应管S1的漏极相连,场效 应管S1的源极与二极管D1的正极相连,场效应管S1的栅极与控制器的第1充放 电信号输出端相连,二极管D1的负极分别与电容C1的第一端、场效应管S2的漏 极和二极管D2的正极相连,场效应管S2的栅极与控制器的第2充放电信号输出端 相连,电容C1的第二端分别与二极管Dn+1的正极、放电电阻R1的第二端、场效 应管K3的源极和场效应管K5的源极相连,二极管D2的负极分别与电容C2的第 一端、场效应管S3的漏极和二极管D3的正极相连,场效应管S3的栅极与控制器 的第3充放电信号输出端相连,场效应管S2的源极分别与二极管Dn+1的负极、二 极管Dn+2的正极和电容C2的第二端相连,场效应管S3的源极分别与二极管Dn+2 的负极、二极管Dn+3的正极和电容C3的第二端相连,……,二极管Dn的正极分 别与二极管Dn-1的负极、场效应管Sn的漏极和电容Cn-1的第一端相连,二极管 D2n的正极分别与二极管D2n-1的负极、场效应管Sn的源极和电容Cn的第二端相 连,场效应管Sn的栅极与控制器的第n充放电信号输出端相连,二极管Dn的正极 分别与场效应管Sn+1的漏极和电容Cn的第一端相连,场效应管Sn+1的栅极与控 制器的第n+1充放电信号输出端相连,二极管D2n的负极分别与场效应管Sn+1的 源极、电源的第二端(电源的负极)场效应管K1的漏极、场效应管K2的漏极和场 效应管K4的漏极相连,场效应管K1的源极与放电电阻R1的第一端相连,场效应管K2的源极分别与场效应管K3的漏极和场效应管K6的源极相连,场效应管K6 的漏极与场效应管K7的漏极相连,场效应管K7的源极分别与负载电阻R2的第一 端和场效应管K8的源极相连,场效应管K8的漏极与场效应管K9的漏极相连,场 效应管K9的源极与脉冲第二产生电路的信号第一输出端相连,场效应管K4的源极 分别与场效应管K5的漏极、负载电阻R2的第二端和脉冲第二产生电路的信号第二 输出端相连;场效应管K1的栅极与控制器的第1信号输出端相连,场效应管K2的 栅极与控制器的第2信号输出端相连,场效应管K3的栅极与控制器的第3信号输出 端相连,场效应管K4的栅极与控制器的第4信号输出端相连,场效应管K5的栅极 与控制器的第5信号输出端相连,场效应管K6的栅极与控制器的第6信号输出端相 连,场效应管K7的栅极与控制器的第7信号输出端相连,场效应管K8的栅极与控 制器的第8信号输出端相连,场效应管K9的栅极与控制器的第9信号输出端相连。 其中,当n取3时,其连接关系为:电源的正极与场效应管S1的漏极相连,场效应 管S1的源极与二极管D1的正极相连,场效应管S1的栅极与控制器的第1充放电 信号输出端相连,二极管D1的负极分别与电容C1的第一端、场效应管S2的漏极 和二极管D2的正极相连,场效应管S2的栅极与控制器的第2充放电信号输出端相 连,电容C1的第二端分别与二极管D4的正极、放电电阻R1的第二端、场效应管 K3的源极和场效应管K5的源极相连,二极管D2的负极分别与电容C2的第一端、 场效应管S3的漏极和二极管D3的正极相连,场效应管S3的栅极与控制器的第3充放电信号输出端相连,场效应管S2的源极分别与二极管D4的负极、二极管D5 的正极和电容C2的第二端相连,场效应管S3的源极分别与二极管D5的负极、二 极管D6的正极和电容C3的第二端相连,二极管D3的负极分别与场效应管S4的漏 极和电容C3的第一端相连,场效应管S4的栅极与控制器的第4充放电信号输出端 相连,二极管D6的负极分别与场效应管S4的源极、电源的负极、场效应管K1的 漏极、场效应管K2的漏极和场效应管K4的漏极相连,场效应管K1的源极与放电 电阻R1的第一端相连,场效应管K2的源极分别与场效应管K3的漏极和场效应管 K6的源极相连,场效应管K6的漏极与场效应管K7的漏极相连,场效应管K7的源极分别与负载电阻R2的第一端和场效应管K8的源极相连,场效应管K8的漏极与 场效应管K9的漏极相连,场效应管K9的源极与脉冲第二产生电路的信号第一输出 端相连,场效应管K4的源极分别与场效应管K5的漏极、负载电阻R2的第二端和 脉冲第二产生电路的信号第二输出端相连;场效应管K1的栅极与控制器的第1信号 输出端相连,场效应管K2的栅极与控制器的第2信号输出端相连,场效应管K3的 栅极与控制器的第3信号输出端相连,场效应管K4的栅极与控制器的第4信号输出 端相连,场效应管K5的栅极与控制器的第5信号输出端相连,场效应管K6的栅极 与控制器的第6信号输出端相连,场效应管K7的栅极与控制器的第7信号输出端相 连,场效应管K8的栅极与控制器的第8信号输出端相连,场效应管K9的栅极与控 制器的第9信号输出端相连。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在 不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换 和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

1.一种双极性细胞融合仪器,其特征在于,包括:脉冲第一产生电路的信号输出端与脉冲切换电路的信号第一输入端相连,脉冲第二产生电路的信号输出端与脉冲切换电路的信号第二输入端相连;
所述脉冲切换电路包括:场效应管K6的源极与脉冲第一产生电路的信号第一输出端相连,场效应管K9的源极与脉冲第二产生电路的信号第一输出端相连,场效应管K6的漏极和场效应管K9的漏极分别与负载电阻R2的第一端相连,负载电阻R2的第二端分别与脉冲第一产生电路的信号第二输出端和脉冲第二产生电路的信号第二输出端相连;场效应管K6的栅极与控制器的信号第六输出端相连,场效应管K9的栅极与控制器的信号第九输出端相连。
2.根据权利要求1所述的双极性细胞融合仪器,其特征在于,还包括:场效应管K7与场效应管K6串联,场效应管K7的栅极与控制器的信号第七输出端相连;场效应管K8与场效应管K9串联,场效应管K8的栅极与控制器的信号第八输出端相连。
3.根据权利要求1所述的双极性细胞融合仪器,其特征在于,脉冲第一产生电路包括:高压产生电路的信号输出端与切换电路的信号输入端相连,切换电路的信号输出端与脉冲切换电路的信号输入端相连。
4.根据权利要求3所述的双极性细胞融合仪器,其特征在于,高压产生电路包括:第1充放电模块的信号第一输入端与开关S1的第一端相连,开关S1的第二端与电源S的第一端相连;第i充放电模块的信号输出端与第i+1充放电模块的信号输入端相连,所述i为小于或者等于n的正整数,所述n为大于或者等于2的正整数;第n充放电模块的信号输出端分别与开关K1的第一端、电源S的第二端和切换电路的信号第一输入端相连,开关K1的第二端与放电电阻R1的第一端相连,放电电阻R1的第二端分别与第1充放电模块的信号输出端和和切换电路的信号第二输入端相连;开关K1的控制端与控制器的第一信号输出端相连,开关S1的控制端与控制器的第1充放电信号输出端相连。
5.根据权利要求4所述的双极性细胞融合仪器,其特征在于,第j充放电模块包括:电容Cj的第一端分别与二极管Dj的负极和场效应管Sj+1的漏极相连,所述j为小于或者等于n的正整数;电容Cj的第二端与二极管Dn+j的正极相连,二极管Dn+j的负极与场效应管Sj+1的源极相连;场效应管Sj+1的栅极与控制器的第j+1充放电信号输出端相连。
6.根据权利要求4所述的双极性细胞融合仪器,其特征在于,开关S1为场效应管S1,场效应管S1的源极与二极管的正极相连,场效应管S1的漏极与电源S的第一端相连,场效应管S1的栅极与控制器的第1充放电信号输出端相连;
或/和开关K1为场效应管K1,场效应管K1的漏极与电源S的第二端相连,场效应管K1的源极与放电电阻R1的第一端相连,场效应管K1的栅极与控制器的第一信号输出端相连。
7.根据权利要求3所述的双极性细胞融合仪器,其特征在于,切换电路包括:场效应管K2的漏极和场效应管K4的漏极分别与高压产生电路的信号第一输出端相连,场效应管K3的源极和场效应管K5的源极分别与高压产生电路的信号第二输出端相连,场效应管K2的源极和场效应管K3的漏极分别与场效应管K6的源极相连,场效应管K4的源极和场效应管K5的漏极分别与负载电阻R2的第二端相连;场效应管K2的栅极与控制器的第二信号输出端相连,场效应管K3的栅极与控制器的第三信号输出端相连,场效应管K4的栅极与控制器的第四信号输出端相连,场效应管K5的栅极与控制器的第五信号输出端相连。
8.根据权利要求1所述的双极性细胞融合仪器,其特征在于,脉冲第二产生电路包括:市电与信号发生器模块相连,信号发生器模块的信号输出端与功率运放模块的信号输入端相连,功率运放模块的信号输出端与脉冲切换电路的信号第二输入端相连。
9.根据权利要求1~8之一所述的双极性细胞融合仪器的控制方法,其特征在于,令脉冲个数P=0,包括以下步骤:
S1,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止命令,其中控制器向场效应管K8和场效应管K9发送导通命令,向其余场效应管发送截止命令;此时脉冲第二产生电路向负载电阻R2输出高频高压正弦交流电压;记录此时时刻为t1;持续时长为T1;
S2,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止命令,其中,控制器向场效应管S1发送导通信号,向其余场效应管发送截止命令;电源S分别给电容C1~Cn充电;记录此时时刻为t2;持续时长为T2;
S3,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止命令,其中控制器向场效应管S1~Sn、场效应管K2以及场效应管K5~K7发送导通命令,向其余场效应管发送截止命令;此时电容C1~Cn上的电荷通过负载电阻R2释放,在负载电阻R2上输出正极性的脉冲方波;记录此时时刻为t3;持续时长为T3;
S4,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止命令,其中控制器向场效应管S1~Sn、场效应管K3~K4以及场效应管K6~K7发送导通命令,向其余场效应管发送截止命令;此时电容C1~Cn上的电荷通过负载电阻R2释放,在负载电阻R2上输出负极性的脉冲方波;P=P+1;记录此时时刻为t4;持续时长T4;
S5,判断脉冲个数P施加是否完毕:
若脉冲个数P施加完毕,则执行步骤S6;
若脉冲个数P施加未完毕,则执行步骤S1;
S6,当脉冲个数P施加完毕后,控制器分别同时向场效应管K1~K9以及场效应管S1~Sn发送导通和截止命令,其中控制器向场效应管S1~Sn以及场效应管K1发送导通命令,向其余场效应管发送截止命令,电容C1~Cn上残余的电荷通过放电电阻R1进行释放。
10.根据权利要求9所述的双极性细胞融合仪器的控制方法,其特征在于,脉冲第二产生电路输出的参数:电压峰峰值为0~500V,频率为0~3MHz,持续时间为0~100s的正弦电压;
脉冲第一产生电路输出的参数:脉冲幅值为0~5kV,脉冲宽度为100ns~100ms,脉冲频率为0.1~1000Hz,脉冲个数为0~10000个的脉冲方波;
脉冲第二产生电路与脉冲第一产生电路的切换间隔为大于10ns;
或/和正极性的脉冲方波与负极性的脉冲方波的幅值相同或者不同。
CN201910043383.3A 2019-01-17 2019-01-17 一种双极性细胞融合仪器及其控制方法 Active CN109777732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910043383.3A CN109777732B (zh) 2019-01-17 2019-01-17 一种双极性细胞融合仪器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910043383.3A CN109777732B (zh) 2019-01-17 2019-01-17 一种双极性细胞融合仪器及其控制方法

Publications (2)

Publication Number Publication Date
CN109777732A true CN109777732A (zh) 2019-05-21
CN109777732B CN109777732B (zh) 2020-12-18

Family

ID=66500917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910043383.3A Active CN109777732B (zh) 2019-01-17 2019-01-17 一种双极性细胞融合仪器及其控制方法

Country Status (1)

Country Link
CN (1) CN109777732B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481094A (zh) * 2021-07-09 2021-10-08 重庆大学 一种基于hb-mmc的非对称双极性细胞融合仪及控制方法
CN113755318A (zh) * 2021-09-03 2021-12-07 重庆大学 一种复合脉冲细胞电融仪和控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120764A2 (en) * 2004-05-11 2005-12-22 General Motors Corporation Laser welding of conductive coated metallic bipolar plates
CN104104066A (zh) * 2013-04-15 2014-10-15 海洋王(东莞)照明科技有限公司 一种用于电池反接保护的稳压控制电路
CN106357246A (zh) * 2016-10-14 2017-01-25 上海健康医学院 一种细胞电穿孔的脉冲发生器
CN106834272A (zh) * 2017-03-08 2017-06-13 重庆大学 基于复合脉冲电场诱导细胞融合的方法
CN108322198A (zh) * 2018-02-10 2018-07-24 西安交通大学 一种双极性高压脉冲电源的控制系统及方法
CN108365743A (zh) * 2018-02-09 2018-08-03 上海理工大学 一种磁隔离型带负电压偏置的多路同步触发电路
CN108462482A (zh) * 2018-02-10 2018-08-28 西安交通大学 一种产生双极性高压脉冲的装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120764A2 (en) * 2004-05-11 2005-12-22 General Motors Corporation Laser welding of conductive coated metallic bipolar plates
CN104104066A (zh) * 2013-04-15 2014-10-15 海洋王(东莞)照明科技有限公司 一种用于电池反接保护的稳压控制电路
CN106357246A (zh) * 2016-10-14 2017-01-25 上海健康医学院 一种细胞电穿孔的脉冲发生器
CN106834272A (zh) * 2017-03-08 2017-06-13 重庆大学 基于复合脉冲电场诱导细胞融合的方法
CN108365743A (zh) * 2018-02-09 2018-08-03 上海理工大学 一种磁隔离型带负电压偏置的多路同步触发电路
CN108322198A (zh) * 2018-02-10 2018-07-24 西安交通大学 一种双极性高压脉冲电源的控制系统及方法
CN108462482A (zh) * 2018-02-10 2018-08-28 西安交通大学 一种产生双极性高压脉冲的装置和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENGUO YAO等: ""A Novel Configuration of Modular Bipolar Pulse"", 《IEEE TRANSACTIONS ON PLASMA SCIENCE》 *
CHENGXIANG LI等: ""Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research"", 《IEEE》 *
舒承松等: ""基于显微操作的高效电融合芯片设计"", 《化学与生物工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481094A (zh) * 2021-07-09 2021-10-08 重庆大学 一种基于hb-mmc的非对称双极性细胞融合仪及控制方法
CN113755318A (zh) * 2021-09-03 2021-12-07 重庆大学 一种复合脉冲细胞电融仪和控制方法

Also Published As

Publication number Publication date
CN109777732B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN103560544B (zh) 一种启动微电网内大型动力负荷的系统
CN104617808B (zh) 极性可调方波高压脉冲电源电路及产生双极性脉冲的控制策略
CN201805353U (zh) 预充电控制电路
CN104953811B (zh) 一种图腾无桥pfc电路的控制电路
WO2011032149A9 (en) Bipolar solid state marx generator
CN104578288B (zh) 一种双层桥臂串联蓄电池组高效均衡器拓扑电路及其控制方法
CN109777732A (zh) 一种双极性细胞融合仪器及其控制方法
CN105137246A (zh) 重复频率脉冲下的金属化膜电容器的寿命测试系统及方法
CN110071707A (zh) 协同脉冲信号发生装置
CN102710159A (zh) 混合驱动的低谐波逆变控制方法及其调制模式切换电路
CN107809184A (zh) 一种脉冲电压发生装置、方法及控制器
CN109628438B (zh) 一种基于双极性脉冲电场诱导细胞融合的方法
CN104410136A (zh) 一种交错模块化的Pack to Cell均衡电路及控制方法
CN208862744U (zh) 一种低压直流双向双极性dcdc变换器
CN211300301U (zh) 一种高压复合电脉冲调制电路及消融设备
CN108462482A (zh) 一种产生双极性高压脉冲的装置和方法
CN103683981A (zh) 单极性低温等离子体电源
CN113481094A (zh) 一种基于hb-mmc的非对称双极性细胞融合仪及控制方法
CN109756208A (zh) 一种多电容串联的经颅磁刺激系统及其电容充电管理方法
CN207053403U (zh) 盖革米勒探测器用的低功耗高压电源模块
CN106885961B (zh) Mmc-hvdc黑启动模拟试验系统和试验方法
CN206004420U (zh) 开关电路以及多控串联谐振电路
CN203617707U (zh) 一种用于微电网内大型动力负荷启动的装置
CN205160375U (zh) 输出电源的开关控制装置
CN103956929B (zh) 逆变器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant