CN109776663B - Gene fragments related to DHA and EPA synthesis and application thereof - Google Patents

Gene fragments related to DHA and EPA synthesis and application thereof Download PDF

Info

Publication number
CN109776663B
CN109776663B CN201711102734.0A CN201711102734A CN109776663B CN 109776663 B CN109776663 B CN 109776663B CN 201711102734 A CN201711102734 A CN 201711102734A CN 109776663 B CN109776663 B CN 109776663B
Authority
CN
China
Prior art keywords
ala
leu
sequence
glu
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711102734.0A
Other languages
Chinese (zh)
Other versions
CN109776663A (en
Inventor
陈礼毅
钟惠昌
陈水荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Huison Biotech Co ltd
Original Assignee
Xiamen Huison Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Huison Biotech Co ltd filed Critical Xiamen Huison Biotech Co ltd
Priority to CN201711102734.0A priority Critical patent/CN109776663B/en
Priority to EP18810206.5A priority patent/EP3628679B1/en
Priority to JP2019566735A priority patent/JP7039625B2/en
Priority to PCT/CN2018/087613 priority patent/WO2018219171A1/en
Publication of CN109776663A publication Critical patent/CN109776663A/en
Priority to US16/696,331 priority patent/US10941185B2/en
Application granted granted Critical
Publication of CN109776663B publication Critical patent/CN109776663B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a group of gene fragments related to DHA and EPA synthesis and application thereof. The group of gene segments related to DHA and EPA synthesis provided by the invention consists of gene segments 1 to 6, and the nucleotide sequences are sequentially shown as sequences 3 to 8 in a sequence table. Experiments prove that a recombinant bacterium is obtained by introducing gene segments 1 to 6 into schizochytrium MYA-1381; the recombinant strain has greatly improved DHA and EPA producing capacity. Therefore, the 6 gene segments provided by the invention, the proteins coded by the 6 gene segments, and the vectors, cells or organisms containing the 6 gene segments have important application values in the production of DHA and EPA.

Description

Gene fragments related to DHA and EPA synthesis and application thereof
Technical Field
The invention relates to the field of industrial microorganisms and food and feed industries, in particular to a group of gene segments related to DHA and EPA synthesis and application thereof.
Background
Polyunsaturated fatty acids are linear fatty acids containing two or more double bonds, typically with a carbon chain length of 18-22 carbon atoms. Polyunsaturated fatty acids can be classified into omega-3 and omega-6 depending on the position of the double bond, and in the polyunsaturated fatty acid molecule, the double bond furthest from the carboxyl group is designated omega-3 at the 3 rd last carbon atom and omega-6 at the 6 th carbon atom. Polyunsaturated fatty acids are essential fatty acids for human body, and mainly include Docosahexaenoic Acid (DHA), docosapentaenoic Acid (DPA), Eicosapentaenoic Acid (EPA), and the like.
DHA is the most predominant class of polyunsaturated fatty acids. In terms of molecular structure, DHA is a straight-chain fatty acid having 22 carbon atoms and 6 double bonds, and belongs to OMEGA-3 series fatty acids (OMEGA-3) because the 1 st double bond is present at the 3 rd carbon atom on the methyl end of the fatty acid chain. DHA is mainly present in the brain and retina of the human body and has important physiological functions, such as promoting development of the nervous system, improving retinal function, improving vision, preventing cardiovascular diseases, treating cardiovascular diseases, anti-inflammation, and suppressing allergic reactions, etc. Since the human body cannot synthesize sufficient DHA by itself, it is obtained mainly by ingestion from food. Because the DHA content in daily diet is often insufficient, the supplement of DHA or the addition of DHA to foods or milk powder is of great significance to humans, especially infants and the elderly.
At present, there are two main methods for producing DHA: one is a conventional DHA source, i.e., extracted from tissues of marine fishes (mainly including salmon, mackerel, salmon and sardine), but the quality of fish oil obtained by extraction is affected by the variety, season and place of fishing of the fishes, and the quality of fish oil is also affected by the increasingly serious shortage of fish resources and environmental pollution; the other is a novel DHA production method, namely DHA is produced by fermenting marine microorganisms, and the method has the advantages of short period, no objective condition influence, no fishy smell and the like, and has wide prospect. The marine microorganism used for fermentation production of DHA is mainly Schizochytrium (Schizochytrium), but the current Schizochytrium used for fermentation production of DHA cannot further improve yield and reduce cost due to the limitation of technical indexes such as self total fatty acid content, DHA content, growth rate and the like.
In DHA-producing strains, the DHA biosynthetic pathway is catalyzed by a series of enzymes in the relevant anabolic pathway. Mining, modifying and heterogeneously expressing related genes in a DHA biosynthesis pathway, and providing favorable conditions for further improving the yield of DHA. Therefore, the acquisition of the new key genes in the DHA biosynthesis pathway is beneficial to the modification and process optimization of the DHA producing strain. Two DHA synthesis pathways exist in nature: (1) the elongation-desaturation pathway (E-D pathway) is mainly based on the fatty acid synthesis pathway, and DHA is further synthesized by the action of elongases and desaturases; (2) the Polyketide synthase pathway (PKS pathway) is mainly used for the synthesis of DHA from acetyl CoA and malonyl CoA as precursors by Polyketide synthase. Wherein, in Schizochytrium limacinum
In Schizochytrium, the synthesis of DHA mainly adopts PKS pathway. It is currently believed that both DPA and EPA synthesis have E-D pathways and PKS pathways.
Disclosure of Invention
The technical problem to be solved by the present invention is how to prepare DPA and/or EPA.
To solve the above technical problems, the present invention firstly provides a combination of proteins for the preparation of DPA and/or EPA, which may be (X1) or (X2) or (X3) or (X4) as follows:
(X1) includes protein 1, protein 2, protein 3, protein 4, protein 5 and protein 6;
(X2) consisting of protein 1, protein 2, protein 3, protein 4, protein 5 and protein 6;
(X3) consists of any two, any three, any four, or any five of said protein 1, said protein 2, said protein 3, said protein 4, said protein 5, and said protein 6;
(X4) said protein 1, said protein 2, said protein 3, said protein 4, said protein 5, or said protein 6;
the protein 1 may be a1) or a2) or a3) or a4) or a 5):
a1) the amino acid sequence is protein shown as a sequence 9 in a sequence table;
a2) a fusion protein obtained by connecting labels to the N end or/and the C end of the protein shown in the sequence 9 in the sequence table;
a3) the protein with the same function is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 9 in the sequence table;
a4) protein which has 80 percent or more than 80 percent of identity with the amino acid sequence limited by the sequence 9 in the sequence table, is derived from schizochytrium and is related to the synthesis of polyunsaturated fatty acid;
a5) a protein having an amino acid sequence shown in a sequence 9 in a sequence table;
the protein 2 may be b1) or b2) or b3) or b4) or b 5):
b1) the amino acid sequence is protein shown as a sequence 10 in a sequence table;
b2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 10 in the sequence table;
b3) the protein with the same function is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 10 in the sequence table;
b4) protein which has 80 percent or more than 80 percent of identity with the amino acid sequence limited by the sequence 10 in the sequence table, is derived from schizochytrium and is related to the synthesis of polyunsaturated fatty acid;
b5) a protein having an amino acid sequence shown in a sequence 10 in a sequence table;
the protein 3 may be c1) or c2) or c3) or c4) or c 5):
c1) the amino acid sequence is a protein shown as a sequence 11 in a sequence table;
c2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 11 in the sequence table;
c3) the protein with the same function is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 11 in the sequence table;
c4) protein which has 80 percent or more than 80 percent of identity with the amino acid sequence limited by the sequence 11 in the sequence table, is derived from schizochytrium and is related to the synthesis of polyunsaturated fatty acid;
c5) a protein having an amino acid sequence shown in a sequence 11 in a sequence table;
the protein 4 may be d1) or d2) or d3) or d4) or d 5):
d1) the amino acid sequence is protein shown as a sequence 12 in a sequence table;
d2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 12 in the sequence table;
d3) the protein with the same function is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 12 in the sequence table;
d4) protein which has 80 percent or more than 80 percent of identity with the amino acid sequence limited by the sequence 12 in the sequence table, is derived from schizochytrium and is related to the synthesis of polyunsaturated fatty acid;
d5) a protein having an amino acid sequence shown as a sequence 12 in a sequence table;
the protein 5 may be e1) or e2) or e3) or e4) or e 5):
e1) the amino acid sequence is protein shown as a sequence 13 in a sequence table;
e2) a fusion protein obtained by connecting labels to the N end or/and the C end of the protein shown in the sequence 13 in the sequence table;
e3) the protein with the same function is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 13 in the sequence table;
e4) protein which has 80 percent or more than 80 percent of identity with the amino acid sequence limited by the sequence 13 in the sequence table, is derived from schizochytrium and is related to the synthesis of polyunsaturated fatty acid;
e5) a protein having an amino acid sequence shown as a sequence 13 in a sequence table;
the protein may 6 be f1) or f2) or f3) or f4) or f 5):
f1) the amino acid sequence is protein shown as a sequence 14 in a sequence table;
f2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 14 in the sequence table;
f3) the protein with the same function is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 14 in the sequence table;
f4) protein which has 80 percent or more than 80 percent of identity with the amino acid sequence defined by the sequence 14 in the sequence table, is derived from schizochytrium and is related to the synthesis of polyunsaturated fatty acid;
f5) a protein having an amino acid sequence shown as a sequence 14 in a sequence table.
Wherein, sequence 9 in the sequence table is composed of 669 amino acid residues, sequence 10 in the sequence table is composed of 1193 amino acid residues, sequence 11 in the sequence table is composed of 773 amino acid residues, sequence 12 in the sequence table is composed of 2189 amino acid residues, sequence 13 in the sequence table is composed of 1672 amino acid residues, and sequence 14 in the sequence table is composed of 21 amino acid residues.
In order to facilitate the purification of the protein in a1), the amino terminal or the carboxyl terminal of the protein shown in the sequence 9 in the sequence table can be connected with a label shown in the table 1. In order to facilitate the purification of the protein in b1), the amino terminal or the carboxyl terminal of the protein shown in the sequence 10 in the sequence table can be connected with a label shown in the table 1. In order to facilitate the purification of the protein in c1), the amino terminal or the carboxyl terminal of the protein shown in the sequence 11 in the sequence table can be connected with a label shown in the table 1. In order to facilitate the purification of the protein in d1), the amino terminal or the carboxyl terminal of the protein shown in the sequence 12 in the sequence table can be connected with the label shown in the table 1. In order to facilitate the purification of the protein in e1), the amino terminal or the carboxyl terminal of the protein shown in the sequence 13 in the sequence table can be connected with a label shown in the table 1. In order to facilitate the purification of the protein in f1), the amino terminal or the carboxyl terminal of the protein shown in sequence 14 in the sequence table can be connected with a label shown in Table 1.
TABLE 1 sequence of tags
Label (R) Residue of Sequence of
Poly-Arg 5-6 (typically 5) RRRRR
Poly-His 2-10 (generally 6) HHHHHH
FLAG 8 DYKDDDDK
Strep-tag II 8 WSHPQFEK
c-myc 10 EQKLISEEDL
The protein 1 in a3) above, the protein 2 in b3) above, the protein 3 in c3) above, the protein 4 in d3) above, the protein 5 in e3) above, and the protein 6 in f3) above, wherein the substitution and/or deletion and/or addition of one or more amino acid residues is a substitution and/or deletion and/or addition of not more than 10 amino acid residues.
Protein 1 in a3) above, protein 2 in b3) above, protein 3 in c3) above, protein 4 in d3) above, protein 5 in e3) above, and protein 6 in f3) above can be artificially synthesized, or can be obtained by synthesizing the coding genes thereof and then performing biological expression.
The gene encoding protein 1 in a3) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence 9 in the sequence table, and/or performing missense mutation of one or several base pairs, and/or connecting the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end.
The gene encoding protein 2 in b3) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence No. 10 in the sequence table, and/or performing missense mutation of one or several base pairs, and/or connecting the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end.
The gene encoding protein 3 in c3) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence 11 in the sequence table, and/or performing missense mutation of one or several base pairs, and/or connecting the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end.
The gene encoding protein 4 in d3) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence 12 in the sequence table, and/or performing missense mutation of one or several base pairs, and/or connecting the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end.
The gene encoding protein 5 in e3) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence 13 in the sequence table, and/or performing missense mutation of one or several base pairs, and/or connecting the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end.
The gene encoding protein 6 in f3) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence 14 in the sequence table, and/or performing missense mutation of one or several base pairs, and/or connecting the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end.
The term "identity" as used above refers to sequence similarity to a native amino acid sequence. "identity" includes amino acid sequences that are 80%, or 85% or more, or 90% or more, or 95% or more identical to the amino acid sequence of a protein provided by the present invention.
Nucleic acid molecules encoding such combinations of proteins are also within the scope of the invention.
The nucleic acid molecule encoding the protein 1 can be a DNA molecule shown in the following A1) or A2) or A3) or A4):
A1) the coding region is a DNA molecule shown in the 1044 th to the 3050 th site from the 5' end of a sequence 3 in a sequence table;
A2) the nucleotide sequence is a DNA molecule shown in a sequence 3 in a sequence table;
A3) a DNA molecule which has 75% or more 75% identity with the nucleotide sequence defined by A1) or A2), is derived from Schizochytrium limacinum and encodes the protein 1;
A4) a DNA molecule which hybridizes with the nucleotide sequence limited by A1) or A2) under strict conditions and codes for the protein 1.
The nucleic acid molecule encoding the protein 2 can be a DNA molecule shown in the following B1) or B2) or B3) or B4):
B1) the coding region is a DNA molecule shown in 1068 th to 2737 th and 3254 th to 5162 th from the 5' end of a sequence 4 in the sequence table;
B2) the nucleotide sequence is a DNA molecule shown as a sequence 4 in the sequence table;
B3) a DNA molecule having 75% or more 75% identity to the nucleotide sequence defined in B1) or B2), derived from Schizochytrium sp, and encoding said protein 2;
B4) a DNA molecule which hybridizes with the nucleotide sequence defined by B1) or B2) under strict conditions and codes for the protein 2.
The nucleic acid molecule encoding the protein 3 can be a DNA molecule shown in the following C1) or C2) or C3) or C4):
C1) the coding region is a DNA molecule shown in 1094 to 3415 th sites from the 5' end of a sequence 5 in a sequence table;
C2) the nucleotide sequence is a DNA molecule shown as a sequence 5 in a sequence table;
C3) a DNA molecule derived from Schizochytrium limacinum and encoding the protein 3, having 75% or more 75% identity with the nucleotide sequence defined by C1) or C2);
C4) a DNA molecule which hybridizes with the nucleotide sequence limited by C1) or C2) under strict conditions and codes for the protein 3.
The nucleic acid molecule encoding the protein 4 can be a DNA molecule shown in D1) or D2) or D3) or D4) as follows:
D1) the coding region is a DNA molecule shown in 1409 th to 5044 th, 7004 th to 7234 th and 7700 th to 10399 th positions of the 5' end of a sequence 6 in the sequence table;
D2) the nucleotide sequence is a DNA molecule shown as a sequence 6 in a sequence table;
D3) a DNA molecule derived from Schizochytrium limacinum and encoding the protein 4, having 75% or more 75% identity with the nucleotide sequence defined by D1) or D2);
D4) a DNA molecule which hybridizes with the nucleotide sequence limited by D1) or D2) under strict conditions and codes for the protein 4.
The nucleic acid molecule encoding the protein 5 can be a DNA molecule shown in the following E1) or E2) or E3) or E4):
E1) the coding region is a DNA molecule shown in 1473 th to 6488 th positions from the 5' end of a sequence 7 in a sequence table;
E2) the nucleotide sequence is a DNA molecule shown as a sequence 7 in a sequence table;
E3) a DNA molecule derived from Schizochytrium limacinum and encoding said protein 5, having 75% or more 75% identity with the nucleotide sequence defined in E1) or E2);
E4) a DNA molecule which hybridizes with the nucleotide sequence defined by E1) or E2) under strict conditions and codes for the protein 5.
The nucleic acid molecule encoding the protein 6 can be a DNA molecule shown in the following F1) or F2) or F3) or F4):
F1) the coding region is a DNA molecule shown in 953 th to 991 th and 1063 th to 1090 th positions from the 5' end of a sequence 8 in a sequence table;
F2) the nucleotide sequence is a DNA molecule shown as a sequence 8 in a sequence table;
F3) a DNA molecule derived from Schizochytrium limacinum and encoding said protein 6, having 75% or more 75% identity with the nucleotide sequence defined by F1) or F2);
F4) a DNA molecule which hybridizes with the nucleotide sequence defined by F1) or F2) under strict conditions and codes for the protein 6.
Wherein the nucleic acid molecule may be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule may also be RNA, such as mRNA or hnRNA, etc. The nucleic acid molecule may be a nucleic acid molecule formed by genes encoding the combination of proteins and their regulatory sequences.
Wherein, the sequence 3 in the sequence table consists of 4100 nucleotides, and the nucleotide shown in the sequence 3 in the sequence table codes an amino acid sequence shown in the sequence 9 in the sequence table. The sequence 4 in the sequence table is composed of 6200 nucleotides, and the nucleotides shown in the sequence 4 in the sequence table encode an amino acid sequence shown in a sequence 10 in the sequence table. Sequence 5 in the sequence table consists of 4500 nucleotides, and the nucleotide shown in sequence 5 in the sequence table encodes an amino acid sequence shown in sequence 11 in the sequence table. The sequence 6 in the sequence table is composed of 11100 nucleotides, and the nucleotide shown in the sequence 6 in the sequence table codes an amino acid sequence shown in a sequence 12 in the sequence table. The sequence 7 in the sequence table consists of 7767 nucleotides, and the nucleotide shown in the sequence 7 in the sequence table encodes an amino acid sequence shown in the sequence 13 in the sequence table. Sequence 8 in the sequence table consists of 7800 nucleotides, and the nucleotides shown in sequence 8 in the sequence table encode the amino acid sequence shown in sequence 14 in the sequence table.
The nucleotide sequence encoding the combination of proteins of the present invention can be readily mutated by one of ordinary skill in the art using known methods, such as directed evolution and point mutation. Those nucleotides which have been artificially modified to have 75% or more homology with the nucleotide sequence of the protein combination of the present invention are derived from the nucleotide sequence of the present invention and are identical to the sequence of the present invention as long as they encode the protein combination and are derived from Schizochytrium. The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "identity" includes nucleotide sequences that are 75% or more, 80% or more, or 85% or more, or 90% or more, or 95% or more identical to the nucleotide sequence that encodes the protein combination of the present invention.
Expression cassettes, recombinant vectors, recombinant microorganisms or transgenic cell lines containing said nucleic acid molecules also belong to the scope of protection of the present invention.
The recombinant vector can be a recombinant plasmid obtained by inserting a nucleic acid molecule encoding the protein 1 (namely, a DNA molecule shown in a sequence 3 in a sequence table), a nucleic acid molecule encoding the protein 2 (namely, a DNA molecule shown in a sequence 4 in the sequence table), a nucleic acid molecule encoding the protein 3 (namely, a DNA molecule shown in a sequence 5 in the sequence table), a nucleic acid molecule encoding the protein 4 (namely, a DNA molecule shown in a sequence 6 in the sequence table), a nucleic acid molecule encoding the protein 5 (namely, a DNA molecule shown in a sequence 7 in the sequence table) and a nucleic acid molecule encoding the protein 6 (namely, a DNA molecule shown in a sequence 8 in the sequence table) into a starting plasmid.
The recombinant microorganism can be obtained by introducing the recombinant vector into the starting microorganism.
The starting microorganism may be a yeast, bacterium, algae or fungus. The fungus may be schizochytrium limacinum. The Schizochytrium limacinum can be specifically the strain Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381.
The recombinant microorganism may specifically be the GS-C06 strain mentioned in the examples.
The use of any of the above combinations of proteins, or any of the above nucleic acid molecules, or any of the above expression cassettes, recombinant vectors, recombinant microorganisms or transgenic cell lines comprising said nucleic acid molecules, for the production of DHA and/or EPA is also within the scope of the present invention.
The invention also protects a recombinant bacterium B, and the preparation method can be as follows: and introducing a substance which improves the expression and/or activity of the protein combination into the initial strain to obtain a recombinant strain B. The "introduction of a substance which increases the expression and/or activity of a combination of proteins" into an outgrowth bacterium is effected by introducing a nucleic acid molecule encoding said combination of proteins into the outgrowth bacterium. The outgrowing bacteria may be schizochytrium limacinum. The Schizochytrium limacinum can be specifically the strain Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381.
The recombinant strain B can be GS-C06 strain mentioned in the examples.
The invention also relates to a method for producing DHA and/or EPA, which comprises the following steps in sequence:
(1) introducing a substance that increases the expression and/or activity of the combination of proteins into the initial bacteria to obtain recombinant bacteria A; the recombinant bacterium A has an improved ability to produce DHA and/or EPA compared to the starting bacterium;
(2) fermenting and culturing the recombinant bacterium A to obtain DHA and/or EPA.
In the above method, the recombinant bacterium A may be the recombinant bacterium B.
In the above method, the "introducing a substance that increases the expression and/or activity of a combination of proteins" into the microorganism is carried out by introducing a nucleic acid molecule encoding the combination of proteins into the microorganism.
In the above method, the outbreak fungus may be schizochytrium limacinum.
In the above method, the Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381 may be specifically mentioned.
In the above method, the recombinant bacterium A may specifically be GS-C06 strain mentioned in the examples.
As used herein above, the "introduction of a nucleic acid molecule encoding said combination of proteins into the starting bacterium" can be achieved by introducing a recombinant vector into the starting bacterium; the recombinant vector can be a recombinant plasmid obtained by inserting a nucleic acid molecule encoding the protein 1 (namely, a DNA molecule shown in a sequence 3 in a sequence table), a nucleic acid molecule encoding the protein 2 (namely, a DNA molecule shown in a sequence 4 in the sequence table), a nucleic acid molecule encoding the protein 3 (namely, a DNA molecule shown in a sequence 5 in the sequence table), a nucleic acid molecule encoding the protein 4 (namely, a DNA molecule shown in a sequence 6 in the sequence table), a nucleic acid molecule encoding the protein 5 (namely, a DNA molecule shown in a sequence 7 in the sequence table) and a nucleic acid molecule encoding the protein 6 (namely, a DNA molecule shown in a sequence 8 in the sequence table) into an expression vector.
The group of gene segments related to DHA and EPA synthesis provided by the invention consists of gene segments 1 to 6, and the nucleotide sequences are sequentially shown as sequences 3 to 8 in a sequence table. Experiments prove that a recombinant bacterium is obtained by introducing gene segments 1 to 6 into schizochytrium MYA-1381; the recombinant strain has greatly improved DHA and EPA producing capacity. Therefore, the 6 gene segments provided by the invention, the proteins coded by the 6 gene segments, and the vectors, cells or organisms containing the 6 gene segments have important application values in the production of DHA and EPA.
Drawings
FIG. 1 shows the colony morphology characteristics of Schizochytrium HS 01.
FIG. 2 shows morphological characteristics of Schizochytrium HS 01.
Deposit description
The strain name is as follows: schizochytrium limacinum (Fr.) Kuntze
Latin name: schizochytrium limacinum
The strain number is as follows: HS01
The preservation organization: china general microbiological culture Collection center
The preservation organization is abbreviated as: CGMCC (China general microbiological culture Collection center)
Address: xilu No.1 Hospital No. 3 of Beijing market facing Yang district
The preservation date is as follows: 3 and 10 months in 2017
Registration number of the preservation center: CGMCC No.13746
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the invention. The experimental procedures in the following examples are conventional unless otherwise specified. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified. The quantitative tests in the following examples, all set up three replicates and the results averaged.
The media used in the following examples are as follows:
wort agar medium: dissolving 150g of malt extract powder in 1L of mixed solution (prepared by mixing 1 volume of natural seawater and 1 volume of distilled water), wherein the pH value is natural; agar powder was then added to a concentration of 15g/100mL to obtain a medium.
Screening a liquid culture medium: 50g of glucose and 15g of yeast powder are dissolved in 1L of mixed solution (formed by mixing 1 volume of natural seawater and 1 volume of distilled water), and the pH value is natural.
Screening a solid culture medium: agar powder was added to the screening liquid medium to a concentration of 15g/100mL to obtain a medium.
Screening the plates: the screened solid medium at about 55 ℃ is poured into a petri dish and cooled to obtain a solid plate.
Shake flask culture medium: dissolving glucose 50g and yeast powder 15g in 1L distilled water, and adjusting pH to natural value.
Seed culture medium: 60g of glucose, 10g of yeast powder and NaSO4 10g、KCl 0.5g、MgSO4 2.0g、K2SO41.0g、KH2Po4 1.0g、(NH4)2SO41.0g and CaCl20.5g of this solution was dissolved in 1L of distilled water, and the pH was adjusted to 6.0.
Fermentation medium: mixing glucose 60g, glutamic acid or sodium glutamate 10g, corn steep liquor dry powder 10g, and NaSO4 14g、KCl 0.5g、MgSO4 2.0g、K2SO4 1.0g、KH2PO4 1.0g、(NH4)2SO41.0g and CaCl20.5g of this solution was dissolved in 1L of distilled water, and the pH was adjusted to 6.0.
The corn steep liquor dry powder is a product of Beijing Sorlebao science and technology Limited, and the product catalog number is FA 0010. The yeast powder is a product of Angel Yeast GmbH, and the product catalog number is LMO 2. The yeast genome extraction kit is a product of Tiangen Biotechnology Ltd, and the catalog of the product is DP 307. The high fidelity TransStart FastPfu DNA polymerase is Beijing Quanji Biotechnology, Inc., and the catalog is AP 221. The agarose gel DNA recovery kit is a product of Tiangen Biochemical technology Ltd, and the catalog of the product is DP 210. The pEASY-Blunt vector is a product of Beijing Quanjin Biotechnology Co., Ltd, and the product catalog is CB 301-01.
The strain Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381 is deposited in American Type Culture Collection (ATCC, address: American Type Culture Collection (ATCC)10801University Boulevard Manassas, VA 20110USA), and is publicly available from the American Type Culture Collection. The strain Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381 is hereinafter referred to as MYA-1381.
Example 1 isolation, identification and preservation of Schizochytrium limacinum HS01CGMCC No.13746
Separation of Schizochytrium HS01
1. The inventor collects schizochytrium limacinum from a plurality of mangrove forests in Yuanxiao county of Zhangzhou city in Fujian province, and mixes the schizochytrium limacinum and the mangrove forests to obtain mixed liquid; inoculating 0.5mL of the mixed solution to 5mL of a screening liquid culture medium, and then culturing at 25 ℃ and 200rpm/min for 2d to obtain a culture solution.
2. And (3) uniformly coating the culture bacterial liquid obtained in the step (1) on a screening plate, and performing static culture at 25 ℃ for 2d to generate a single bacterial colony.
3. After the step 2 is completed, single colonies are respectively selected and inoculated to 5mL of fermentation culture medium, and then cultured for 2d at 25 ℃ and 200rpm/min to obtain culture bacteria liquid.
4. And (4) centrifuging the culture solution obtained in the step (3) at 4 ℃ and 2000rpm for 5min, and collecting thalli.
5. Taking 1.0-2.0 g of the thalli to a measuring cylinder with a plug (the specification is 100mL), firstly adding 15mL of HCl aqueous solution with the concentration of 8.3mol/L, covering a cover, and hydrolyzing in a water bath at 70-80 ℃ for 50-60 min (during the hydrolysis, placing the measuring cylinder with the plug on a vortex mixer for 1 time every 10 min); after cooling to room temperature, firstly adding 10mL of 95% (v/v) ethanol aqueous solution, sufficiently and uniformly shaking, then adding 20mL of anhydrous ether, sufficiently shaking for extraction for 1-2 min, finally adding 20mL of petroleum ether, sufficiently shaking for extraction for 1-2 min, standing for layering, placing the upper organic phase in a glass weighing dish (dried and weighed), placing the glass weighing dish on a boiling water bath in a ventilation cabinet to sufficiently evaporate the organic phase completely (sufficiently and completely volatilize completely), and obtaining the liquid phase as the grease.
6. And (3) taking the grease extracted in the step (5), detecting the DHA content according to the national standard of GB 26400-2011 food safety, and detecting the composition and the content of the fatty acid according to the method of AOAC 996.06.
And selecting strains with higher DHA content, and repeatedly purifying for 24 times. The screened schizochytrium limacinum strain is named as schizochytrium limacinum HS 01.
And (3) inoculating the schizochytrium HS01 monoclonal to a fermentation medium for continuous passage of 12 generations, and detecting the DHA content according to the steps. The result shows that the stability of DHA produced by schizochytrium HS01 is good.
II, identification of Schizochytrium HS01
1. Morphological identification
The schizochytrium HS01 is inoculated on a wort agar culture medium, dark culture is carried out at 25 ℃, the morphology of a bacterial colony is observed after 5 days, and the morphological characteristics of the bacterial body are analyzed and observed by a high-resolution transmission electron microscope.
The results of the experiment are shown in FIGS. 1 and 2. The result shows that the colony diameter of the schizochytrium HS01 is 2-4.3 mm, the schizochytrium HS01 is white (light orange at the later stage), and the edge is irregular; the thallus is proliferated in a fission mode, the cell wall is thin, spherical, colorless or light orange, transparent and 4.5-15.5 mu m in size, and zoospores and an exoplasmic reticulum are not seen.
2. 18s rDNA sequence homology analysis
The partial sequence of the 18s rDNA of the schizochytrium HS01 is shown as the sequence 1 in the sequence table.
The partial sequence of the 18s rDNA of the schizochytrium HS01 is shown as the sequence 2 in the sequence table.
Combining the above identification results, the Schizochytrium HS01 is Schizochytrium limacinum (Schizochytrium limacinum).
Third, preservation of Schizochytrium HS01
Schizochytrium limacinum HS01 has been deposited in China general microbiological culture Collection center (CGMCC, address: No. 3, Xilu No.1, Beijing area, Chaoyang area, China) in 2017, 03 and 10 days, and the deposit number is CGMCC No. 13746. The schizochytrium limacinum HS01 is called schizochytrium limacinum HS01CGMCC No.13746, abbreviated as schizochytrium HS 01.
Example 2 discovery of Gene fragments involved in DHA and EPA Synthesis
Production of polyunsaturated fatty acid by fermentation of schizochytrium limacinum HS01
1. The schizochytrium HS01 is inoculated into a shake flask (with the specification of 10mL) filled with 2mL of shake flask culture medium in a single clone mode, and the culture is carried out for 24-48 h at the temperature of 22-28 ℃ and at the speed of 150-250 rpm/min, so as to obtain first-level seed liquid.
2. Taking the first-stage seed solution, inoculating the first-stage seed solution into a shake flask (the shake flask specification is 1L) filled with 250mL of shake flask culture medium in an inoculation amount of 3-10% (v/v), and culturing at 22-28 ℃ at 150-250 rpm/min for 24-48 h to obtain a second-stage seed solution.
3. Inoculating the second-stage seed solution into a fermentation tank (5L in the specification of the fermentation tank) filled with 3L of seed culture medium in an inoculation amount of 3-10% (v/v), and culturing at 22-28 ℃ for 24-48 h (10-80% of dissolved oxygen) to obtain a first-stage fermentation seed solution.
4. Inoculating the first-stage fermentation seed liquid with 3-10% (v/v) of inoculum size to a fermentation tank (100L fermentation tank specification; initial biomass is 1.0 × 10 after inoculation)8~2.5×108cfu/mL) at 22-28 ℃ for 72-120 h (dissolved oxygen of 5-80%) to obtain a fermentation broth.
The fermentation broth contains DHA.
5. According to the method in the step one of the embodiment 1, the method comprises the steps of extracting grease from fermentation liquor, detecting DHA content according to GB 26400-2011 national food safety standard, detecting DPA content according to GB28404-2012 national food safety standard, detecting EPA content according to GB5009.168-2016 national food safety standard, and detecting the composition and content of fatty acid according to AOAC 996.06.
The results are shown in Table 2. The results show that DHA accounts for 45.0-60.0% of the grease, DPA accounts for 9.0-17.0% of the grease, and EPA accounts for 0.2-1.0% of the grease.
TABLE 2
Name (R) Composition (%)
Lauric acid 0~1.0
Myristic acid 0.5~1.0
Palmitic acid 22~32
Stearic acid 1.0~2.5
Dihomo-gamma-linolenic acid 0.1~0.3
Arachidonic acid 0~0.8
EPA 0.2~1.0
DPA 9.0~17.0
DHA 45.0~60.0
Fermentation production of polyunsaturated fatty acid by using MYA-1381
According to the method of the first step, the schizochytrium HS01 is replaced by MYA-1381, and other steps are not changed. The results show that DHA accounts for 12-23% of the grease, DPA accounts for 20-39% of the grease, and EPA accounts for 0.5-3% of the grease.
According to the above results, Schizochytrium HS01 is a high-producing strain synthesizing DHA and EPA, and MYA-1381 is a low-producing strain synthesizing DHA and EPA.
Third, discovery of gene fragment related to DHA and EPA synthesis
The genome DNA of Schizochytrium HS01 and MYA-1381 were extracted with a yeast genome extraction kit, and whole genome sequencing was performed by PacBio RS II and Illumina HiSeq 4000 from Beijing Nuo Poa-induced science and technology Ltd.
Results show that compared with MYA-1381, the schizochytrium HS01 contains 6 unique gene segments which are respectively named as gene segment 1, gene segment 2, gene segment 3, gene segment 4, gene segment 5 and gene segment 6, and the nucleotide sequences of the gene segments are sequentially shown as a sequence 3 to a sequence 8 in a sequence table.
The 1044 th to 3050 th positions of a sequence 3 in the sequence table from the 5' terminal encode protein 1, and the amino acid sequence of the protein 1 is shown as a sequence 9 in the sequence table.
The 1068 th to 2737 th site and the 3254 th to 5162 th site of the sequence 4 in the sequence table from the 5' end encode protein 2, and the amino acid sequence of the protein 2 is shown as a sequence 10 in the sequence table.
The 1094 th to 3415 th positions of the sequence 5 in the sequence table code protein 3 from the 5' end, and the amino acid sequence of the protein 3 is shown as the sequence 11 in the sequence table.
The amino acid sequence of the protein 4 is shown as the sequence 12 in the sequence table from 1409 th to 5044 th, 7004 th to 7234 th and 7700 th to 10399 th of the sequence 6 in the sequence table from the 5' end.
The 1473 th to 6488 th positions of the sequence 7 in the sequence table from the 5' end code protein 5, and the amino acid sequence of the protein 5 is shown as the sequence 13 in the sequence table.
The 953 th to 991 th sites and the 1063 th to 1090 th sites of the sequence 8 in the sequence table from the 5' end encode protein 6, and the amino acid sequence of the protein 6 is shown as a sequence 14 in the sequence table.
EXAMPLE 3 amplification of 6 Gene fragments and Synthesis of primers therefor
1. Extracting the genomic DNA of Schizochytrium HS01 by using a yeast genome extraction kit, taking the genomic DNA as a template, and carrying out PCR amplification by using high-fidelity TransStart FastPfu DNA polymerase and primer pairs (a primer pair HS01-1, a primer pair HS01-2, a primer pair HS01-3, a primer pair HS01-4, a primer pair HS01-5 and a primer pair HS01-6) to obtain a PCR amplification product.
The nucleotide sequences of the forward and reverse primers constituting each primer pair are shown in Table 3.
Reaction procedure: 2min at 98 ℃; 30 cycles of 98 ℃ for 30s, 56 ℃ for 30s and 72 ℃ for 3 min; 5min at 72 ℃.
TABLE 3
Figure BDA0001463673840000101
2. After step 1 was completed, the PCR amplification product was recovered using agarose gel DNA recovery kit.
3. And (3) after the step 2 is completed, connecting the recovered PCR amplification product with a pEASY-Blunt vector to obtain a recombinant bacterium plasmid.
4. After step 3 was completed, the recombinant plasmid was sequenced.
The sequencing result shows that the nucleotide sequence of the PCR amplification product obtained by amplification with the primer pair HS01-1 is shown as sequence 3 in the sequence table (namely, gene fragment 1), the nucleotide sequence of the PCR amplification product obtained by amplification with the primer pair HS01-2 is shown as sequence 4 in the sequence table (namely, gene fragment 2), the nucleotide sequence of the PCR amplification product obtained by amplification with the primer pair HS01-3 is shown as sequence 5 in the sequence table (namely, gene fragment 3), the nucleotide sequence of the PCR amplification product obtained by amplification with the primer pair HS01-4 is shown as sequence 6 in the sequence table (namely, gene fragment 4), the nucleotide sequence of the PCR amplification product obtained by amplification with the primer pair HS01-5 is shown as sequence 7 in the sequence table (namely, gene fragment 5), and the nucleotide sequence of the PCR amplification product obtained by amplification with the primer pair HS01-6 is shown as sequence 8 in the sequence table (namely, gene fragment 6). Therefore, 6 gene fragments can be amplified using the primers in Table 2.
Example 4, 6 applications of Gene fragments in the production of DHA and EPA
In this example, the nucleotide sequences of the primers involved are shown in Table 4.
TABLE 4
Primer name Nucleotide sequence (5 '-3')
HS01-1-UF CACATTCGCTACAAAACGCCGCAGTTTCTA
HS01-1-UR ACGGTAGAGCGCTTTTGAAGCTGGGGTGGGGTGCGAGGAAGTTGCGTATCCCAGGCTCTC
HS01-1-DF GGTAAGGAGGATATTCTCGAGACTAGTCTGACGCTCCCATCAATCTTTGGACACTACGAC
HS01-1-DR CGCAAACTATTTGCTAACCTATTTATCGTA
HS01-2-UF CTGCTGCTACTTCAACATCACTTTGCTCGT
HS01-2-UR ACGGTAGAGCGCTTTTGAAGCTGGGGTGGGTTGCGATGAATAGCAAACCCCAGAAGTGTG
HS01-2-DF GGTAAGGAGGATATTCTCGAGACTAGTCTGGCGAATCCGAGACTCCTTTAAATAGCCAAG
HS01-2-DR ACTGTAAGTTTATTAAATTGGTCGAGGATG
HS01-3-UF ACCGTGGGCCAAGCTGGCCGCCCCAAGACG
HS01-3-UR ACGGTAGAGCGCTTTTGAAGCTGGGGTGGGGTGTGAGGCCACTTGTATCAACAGAGGTAA
HS01-3-DF GGTAAGGAGGATATTCTCGAGACTAGTCTGTACAATTGAAGAGCCATTGGATAAGTTCGA
HS01-3-DR CTTATCTTTGAGGGTAAGAAGGTCTGGTAT
HS01-4-UF CATTGATTGATTGCAGATGATCTTGGGCAA
HS01-4-UR ACGGTAGAGCGCTTTTGAAGCTGGGGTGGGCCTACAAGGTGTGTTGGTTCGGAAGTTGGT
HS01-4-DF GGTAAGGAGGATATTCTCGAGACTAGTCTGATTACAACCACAACTTTCTATAAATAGTGC
HS01-4-DR CTTTCGCCGTTAGAGAAAAAACCCAAACGA
HS01-5-UF TATTGCTATTACTTGAATTTGAATTTGAAT
HS01-5-UR ACGGTAGAGCGCTTTTGAAGCTGGGGTGGGGTATGATATGTTATGTACTCGAGGAATGTA
HS01-5-DF GGTAAGGAGGATATTCTCGAGACTAGTCTGATCAAAGAAATTAAAAAGAAAACAAACATT
HS01-5-DR CAGCAACTTTCACTCGCCCATTCAATCAAT
HS01-6-UF CCACATAATTTGAAAGAAACATTGACCACG
HS01-6-UR ACGGTAGAGCGCTTTTGAAGCTGGGGTGGGAAATATTCAATCGAAATAAATGCACTGTTT
HS01-6-DF GGTAAGGAGGATATTCTCGAGACTAGTCTGCCTGATCATCCTTTCGTTACTTCTCAACTC
HS01-6-DR GTGCACCGTTCTTATGCATATTTTAAAATC
Zeo-F CCCACCCCAGCTTCAAAAGCGCTCTACCGT
Zeo-R CAGACTAGTCTCGAGAATATCCTCCTTACC
A. Acquisition of GS-C06 Strain
Preparation of targeting fragment HS01-1-Zeo
1. The recombinant plasmid pUC57-LZ was synthesized by Nanjing Kinshire Biotech Ltd. The recombinant plasmid pUC57-LZ was obtained by ligating the nucleotide sequence shown by sequence 15 in the sequence listing with the pUC57 vector. In the sequence 15 in the sequence table, the 25 th to 58 th positions from the 5' end are Lox66 sequences, the 626 th to 997 th positions are zeocin resistance genes, and the 2293 th to 2326 th positions are Lox71 sequences.
2. The yeast genome extraction kit is adopted to extract the genome DNA of the schizochytrium HS 01.
3. PCR amplification is carried out by taking genome DNA of schizochytrium HS01 as a template and HS01-1-UF and HS01-1-UR as primers to obtain a PCR amplification product of about 3100bp, wherein the PCR amplification product is HS01-1 upstream homologous fragment AU.
4. The genome DNA of the schizochytrium HS01 is used as a template, and HS01-1-DF and HS01-1-DR are used as primers to carry out PCR amplification to obtain a PCR amplification product of about 1000bp, wherein the PCR amplification product is the downstream homologous fragment AD of HS 01-1.
5. And (2) carrying out PCR amplification by using the recombinant plasmid pUC57-LZ synthesized in the step (1) as a template and Zeo-F and Zeo-R as primers to obtain a PCR amplification product of about 2350bp (the nucleotide sequence is shown as a sequence 15 in the sequence table), wherein the PCR amplification product is a Zeo fragment.
6. Taking HS01-1 upstream homologous fragment AU, HS01-1 downstream homologous fragment AD and Zeo fragment as templates, and HS01-1-UF and HS01-1-DR as primers to perform overlap amplification, and obtaining PCR amplification product of about 6450 bp. And recovering the PCR amplification product by using an agarose gel DNA recovery kit to obtain the targeting fragment HS 01-1-Zeo.
II, obtaining pretreated MYA-1381
1. Adding 10 mM LYMA-1381 bacterial liquid (concentration of 1 × 10) into sterile pre-cooled polypropylene tube (50 mL)8cfu/mL), centrifuging at 4 deg.C and 5000r/min for 10min, discarding supernatant, and collecting thallus.
2. After completing step 1, repeating the following steps twice: and (3) taking the polypropylene tube, adding 10mL of precooled sterile water to clean the thalli, centrifuging for 10min at 4 ℃ under 4472g, and collecting the thalli.
3. And (3) after the step 2 is finished, taking the polypropylene tube, adding 10mL of precooled 1mol/L sorbitol aqueous solution for resuspension, centrifuging for 10min at 4 ℃ at 5000r/min, and collecting thalli.
4. And (3) after the step 3 is finished, adding 10mL of precooled 1mol/L sorbitol aqueous solution into the polypropylene tube for resuspension to obtain the pretreated MYA-1381.
III, electric conversion
1. 30 mu L of pretreated MYA-1381 is taken, added with 1 mu g of targeting fragment HS01-1-Zeo, mixed gently, stood for 5min in ice bath, and then transferred into an ice-precooled electric shock cup for electric shock (the electric shock parameters are 0.75KV and 50 mu F).
2. And (3) after the step 1 is finished, adding 1mL of seed culture medium into the electric shock cup, culturing for 1h at 30 ℃ and 200r/min, centrifuging for 10min at 4 ℃ and 5000r/min, mixing thalli and a small amount of supernatant, uniformly coating the mixture on a resistant plate, and performing inverted culture for 48h at 30 ℃ to obtain a pseudotransformant.
Resistant plates: zeocin was added to the screening solid medium at about 55 ℃ to a concentration of 200. mu.g/mL, and then poured into a petri dish, and the resulting solid plate was cooled.
Fourth, obtaining and identifying positive transformant
And respectively extracting the genomic DNA of the pseudotransformant by using a yeast genome extraction kit, and performing PCR amplification by using the genomic DNA as a template and HS01-1-F and HS01-1-R as primers to obtain a PCR amplification product.
If the size of the PCR amplification product of a pseudotransformant is 4100bp (or the nucleotide sequence of the PCR amplification product is shown as a sequence 3 in a sequence table), the pseudotransformant is a positive transformant.
Fifthly, obtaining a transformant GS-C01
The pSH65 plasmid (a product of Biovector Inc.; the plasmid contains Cre enzyme) was introduced into the positive transformant, and then the Zeo gene was deleted according to the procedures described in the specification for the pSH65 plasmid to obtain a transformant GS-C01.
According to the steps from one to five, replacing 'HS 01-1-UF' with 'HS 01-2-UF', 'HS 01-1-UR' with 'HS 01-2-UR', 'HS 01-1-DF' with 'HS 01-2-DF', 'HS 01-1-DR' with 'HS 01-2-DR', 'HS 01-1-F' with 'HS 01-2-F', 'HS 01-1-R' with 'HS 01-2-R', 'MYA-1381' with 'transformant GS-C01', and the other steps are not changed to obtain the transformant GS-C02.
According to the steps from one to five, replacing 'HS 01-1-UF' with 'HS 01-3-UF', 'HS 01-1-UR' with 'HS 01-3-UR', 'HS 01-1-DF' with 'HS 01-3-DF', 'HS 01-1-DR' with 'HS 01-3-DR', 'HS 01-1-F' with 'HS 01-3-F', 'HS 01-1-R' with 'HS 01-3-R', 'MYA-1381' with 'transformant GS-C02', and the other steps are not changed to obtain the transformant GS-C03.
According to the steps from one to five, replacing 'HS 01-1-UF' with 'HS 01-4-UF', 'HS 01-1-UR' with 'HS 01-4-UR', 'HS 01-1-DF' with 'HS 01-4-DF', 'HS 01-1-DR' with 'HS 01-4-DR', 'HS 01-1-F' with 'HS 01-4-F', 'HS 01-1-R' with 'HS 01-4-R', 'MYA-1381' with 'transformant GS-C03', and the other steps are not changed to obtain the transformant GS-C04.
According to the steps from one to five, replacing 'HS 01-1-UF' with 'HS 01-5-UF', 'HS 01-1-UR' with 'HS 01-5-UR', 'HS 01-1-DF' with 'HS 01-5-DF', 'HS 01-1-DR' with 'HS 01-5-DR', 'HS 01-1-F' with 'HS 01-5-F', 'HS 01-1-R' with 'HS 01-5-R', 'MYA-1381' with 'transformant GS-C04', and the other steps are not changed to obtain the transformant GS-C05.
According to the steps from one to five, replacing 'HS 01-1-UF' with 'HS 01-6-UF', 'HS 01-1-UR' with 'HS 01-6-UR', 'HS 01-1-DF' with 'HS 01-6-DF', 'HS 01-1-DR' with 'HS 01-6-DR', 'HS 01-1-F' with 'HS 01-6-F', 'HS 01-1-R' with 'HS 01-6-R', 'MYA-1381' with 'transformant GS-C05', and the other steps are not changed to obtain the transformant GS-C06.
The transformant GS-C06 is the GS-C06 strain.
B. Application of 6 gene segments in production of DHA and EPA
The bacteria to be detected are schizochytrium HS01, MYA-1381 or GS-C06 strains.
1. And (3) inoculating the single clone of the bacteria to be detected into a shake flask (with the specification of 10mL) filled with 2mL of shake flask culture medium, and culturing at the temperature of 22-28 ℃ and at the speed of 150-250 rpm/min for 24-48 h to obtain a first-stage seed solution.
2. Taking the first-stage seed solution, inoculating the first-stage seed solution into a shake flask (500 mL in shake flask specification) filled with 50mL of shake flask culture medium in an inoculation amount of 3-10% (v/v), and culturing at 22-28 ℃ and 150-250 rpm/min for 24-48 h to obtain a second-stage seed solution.
3. Inoculating the second-stage seed solution into a fermentation tank (1L of the fermentation tank specification) filled with 500mL of seed culture medium in an inoculation amount of 3-10% (v/v), and culturing at 22-28 ℃ for 24-48 h (10-80% of dissolved oxygen) to obtain a third-stage seed solution.
4. Inoculating the third-stage seed solution to a fermentation tank (10L in specification) containing 5L fermentation medium at an inoculation amount of 3-10% (v/v), wherein the initial biomass is 0.3 × 108~0.5×108cfu/mL) at 22-28 ℃ for 72-120 h (dissolved oxygen of 5-80%) to obtain a fermentation broth. The fermentation liquor contains DHA, DPA and EPA.
5. According to the method in the step one of the embodiment 1 and the step 5, the grease of the fermentation liquor is extracted, and then the DHA content is detected according to the GB5009.168-2016 food safety national standard, the DPA content is detected according to the GB28404-2012 food safety national standard, and the EPA content is detected according to the GB5009.168-2016 food safety national standard.
The results are shown in Table 5. The results show that 6 gene fragments obtained by the invention are transformed into MYA-1381, and a high-yield strain (namely GS-C06 strain) for synthesizing DHA and EPA can be obtained. Therefore, the 6 gene segments provided by the invention, the proteins coded by the 6 gene segments, and the vectors, cells or organisms containing the 6 gene segments have important application values in the production of DHA and EPA. By modifying the protein coded by the 6 gene segments in the original strain, the engineering strain with high DHA and EPA yield can be constructed.
TABLE 5
MYA-1381 Schizochytrium HS01 GS-C06 strain
DHA content in fat (%) 12.38 45.02 30.50
DPA content (%) in fats and oils 25.26 12.74 17.50
EPA content (%) in fat and oil 0.50 1.30 0.71
<110> Xiamen Huishi Biometrics Ltd
<120> a group of gene fragments related to DHA and EPA synthesis and application thereof
<160> 15
<170> PatentIn version 3.5
<210> 1
<211> 207
<212> DNA
<213> Artificial sequence
<220>
<223>
<400> 1
agccatgcat gtgtaagtat aagcgattgt actgtgagac tgcgaacggc tcattatatc 60
agtaataatt tcttcggtag tttcttttat atggatacct gcagtaattc tggaaataat 120
acatgctgta agagccctgt atggggctgc acttattaga ttgaagccga ttttattggt 180
gaatcatgat aattgagcag attgact 207
<210> 2
<211> 239
<212> DNA
<213> Artificial sequence
<220>
<223>
<400> 2
gagttctgcc tctgtccaaa aattaatcca aacagaaaca tcccatggtt tcatcggacc 60
gttcaatcgg taggtgcgac gggcggtgtg tacaaagggc agggacgtat tcaatgcaag 120
ctgatgactt gcgtttacta ggaattcctc gttggagatt aataattgca aaaatctagc 180
cccagcacga tgagcgttcc aaggattagc caggccttcc gaccaagcac tcaattcca 239
<210> 3
<211> 4100
<212> DNA
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 3
cacattcgct acaaaacgcc gcagtttcta tggtttgatt cctttgaccc ctaaagaatt 60
gttcgaaagg gtgtgttctc ctggagagga catcaccgat tcttcgttag atgccgactc 120
cgtagagacg gcagaaagcg agccttctgc agagcccaag aacaagcaag atggggttca 180
tcgtgccgag gttgctactt tggatggatt cgggtaagtt catgcggtta atctttgttt 240
gggatcgtgt gatcaatcat tccacgaatt gtgttattga gatagaggga atcctaactt 300
tttgcttcta attttattac tccttcaccc tgctcgtttg cttacgtctt cttattcgcc 360
tcagagaacg gccggatgga gcgagcgtga gtttcgctga tgtggtgcag cttgccaaaa 420
acgtctcgaa cttgcgcgcg gaccgaggcg gggtcagagg aaactccctg cagactggga 480
ttgccttgct tgaggaattt attcgaccgg cgatccaggg ctactttggc caagtgaagt 540
tgcgacaggt ctccgctgac atcaagaact ccaaacagtg tcttgatgca ctacaaggcc 600
agattcgtgc aagctctgca aatgagttgc ccagtctcat cgaaaagcgg aatgctgaac 660
gagaccgcct acgtttacta atgcaagtcg tgtacccatg gactcgcgca aacctctgcg 720
aaagtgatga ggatgtagtc cgcgatttca aaatgagaat tgaaagtttg gtacacgatt 780
taaagatcac tcttgcaccg gttactgaaa agaccagcac agatgacttc aaacactgcc 840
aagaactcgt tgctcgggct gtccaatgcg tcgaaggata caagagaaat ggagatggcc 900
gaccaaacaa cattggcgaa cgaagccaac aagctgcaaa atgcgtcgtc tctcgattgt 960
ctgagctaga acttggtgat ggattatggg ttgctcttag gatacctgag caggccatga 1020
atctcggacc cgaattatcc gagcttgagc gtgctcttca agaagagatt gaagtgctac 1080
aaggagatac acttagtgcc cacttatcta agatactttg cgcaataagt tcaacattcg 1140
ctcgtttcga atcatactgt gaaaacactg tgctgaatga agcgagcaag tgcacaccac 1200
aagagctctc tgaactatat gattatacat cactgggttt gaaagaacct tccgtcttag 1260
atgttgataa attgtatcag aaacttggca agtcgaggga agccacaaag agtttgaaaa 1320
gagctagaga agagctcgaa gctgaggacc tggaagagga agaacgagaa tattttagaa 1380
atcgaatcaa gaaacagaag cgcattcttt ctaaaggcaa ccctatcgag ctcagcaaag 1440
tttttcgtca taagcttgct gaaactctgc aacacgcgca ggaacattat cctgagttgt 1500
tgcaagatag agcttggcta gaaaagcttc acgtagctgc agagggtgtt tttgaagtag 1560
catgttctga cctttggttg acaaatgtga cagtttcgga ctttcagcgt gtcggtgagc 1620
ccctatcctt tagaggtggc aagaaagtcc aaaaggttct tgacaacgtt ggaaaaacta 1680
tggttctcaa agagtttcaa cttgggcatc ctagtcaatc gaaaactttc taccagcagg 1740
ttgccaatct gggcaaagtg gtgtcccagc acgtaatacg tatcactggt gcttttgtgg 1800
acatgacaca tggagagtca cgtggttgta tcgtcatgcc tttctacgag caaggtgacc 1860
ttgccaagtg gattgagagt catcctaacg aaggcaaaga agcacgtgac cgacttgctg 1920
tgggtctgct tgtcggtgtg gcggatttac atgcccactg cattgtgcat tgtgacatca 1980
aaccagaaaa cattttcctc acaagcaacg gaacaccatt gatcggtgac tttgacggca 2040
tcaaggttgt aaactacact gcaacataca catcacttca ggcaacgcca cggtacattg 2100
cccctgagtt gcagaatggg cctgtacata ggtttgaaac agcaatggac atgtactctg 2160
tgggcataag cttaaaagag ctgtatccca ctgaacggac tgctgcaatg cagacactta 2220
tcgaagctct taccgcgaga gacccaagtc aacgtccaag cgctcgtcaa gcactccaac 2280
atcaagcttt tggagctcca caaatccctc tcatggaatg tcttgtatgt ttcgagaagc 2340
atcggctttc tgagggcacg agctgcgagg agggggactt cctttgcaga ggctgtatcg 2400
aatctgcagt agaagcagcg gcacaaccac ttgctaacgt cagagtggat gctgatggaa 2460
cgatggcatg catgaaacct gaatgtagtg gaaaaatatc aggtcaagaa atcacccgtc 2520
ttgcaccaac tgccttgaat catcttttgt tgattgcgaa gatgaaggca gaaagtgagg 2580
cagcagtttg ggctgagaaa gagatccaaa ggcgcatagc ggaagttgta cgtgcagaag 2640
aacaaaatag tgacgcacgg tggcatttac tgcatattca agagaacatc ttgagcacat 2700
gttgcccgaa ctgtaaggct tatgtacacg actttgacgg ttgctgcgct gtaaaatgtg 2760
gtaataatgc ttgtggacac ctcttctgcg cttggtgtct tgggtatagt tctcaggatg 2820
gagatgtttg ccatgctcat gtgagaacct gttcaagaag acttgggcaa gatctatatt 2880
tccctggttc actcgagcag gtttgtgaag cgtggcggtt gctccgcgca gaacgtctgc 2940
gtgagtactg gaatgcacaa attcaggata gaaatcttcg actcgttctg aaagacttat 3000
tgtcaccttt gctaacacca gatattgttg gcgcagattt tagattggaa taattaaaaa 3060
taaacgaatc tctgcaactc taaatctggc gatttgtttc catttcttta cacctccttg 3120
caaccaattt atatttttgg acatctgatc gctgctccaa tctaccatca gagagcctgg 3180
gatacgcaac ttcctcgcac acgctcccat caatctttgg acactacgac acgaaggttg 3240
tggagttttg cgcttttcta attttgcaca aggacttcat taaacgtaga gaccagtgta 3300
gtatcacaga cacaacactt tctccgaaat cgttacgtac tctttaacag gttattgcat 3360
attagcttgt gtagtagagt gtacataggt agtctgacaa gaaaatggcg aactcagatg 3420
aagtaatgaa gtgaagcctg tcgacgaagg tgaaagtaaa aaggatgaga cttggttctt 3480
gatgttctag gatgaatgta ccatgttgag gcaaagagtg tcgggctgta gagttaggtt 3540
agtttaaatt gaggtagggt aaggcaccta gctgaacatt acttcgaaat aggatataat 3600
ctttgtttta gtctatgtaa tattacacaa tagaacaaat atataagtag caagctctga 3660
ccaaaagctt ttgcattcca accactgtag gacgctgtaa tgagtctgcc aggttcttct 3720
gcttatttat accctcacaa agtggtttcc tccttcactt tcttaagcca tatattcaga 3780
tctactacta gcaataaatc gacggactct tatacagaga gccatatatt tgccacaagt 3840
tgacccaacc aatctccaaa aggcaaaagg ctacagctct gcaatttatt attcaaagtg 3900
cttgtagaat caaacagagc aacgacacgc aaagtgatga ggagaattca accatgcata 3960
cgtgcttgct caaaacgtac accaagattt ctgatcctgt attgatccgc aatgcctgtg 4020
caagagaaca tccgccgctc gaagtaattc tattgttatt caagctgcaa tacgataaat 4080
aggttagcaa atagtttgcg 4100
<210> 4
<211> 6200
<212> DNA
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 4
ctgctgctac ttcaacatca ctttgctcgt ttgtttacgt ctttttgttc acctcagaga 60
tttgacggat agagcgaacg tgcgtttcgc taatgtggtg cggcttgcca aggaagtctc 120
ggacttgcgc gcggaccgag gcggggtcag agaaaactcc ctgcagactg ggattgcctt 180
gcttgaggaa ttcgtagggc cggcgattca ggactacctt gcccaagtga agttgcgaca 240
ggtttccgct gacatcaaga actccaaaga gagtcttgac gcactacaag gccagattcg 300
tgcaagctct gcaaatgact tgcccagcct catcgaaaag cggaacgccg aacggaggca 360
cctgcattca cttttgcagg tcgtgtaccc atgggttcgt gcaaaccttt gcgaaagtga 420
tgaggatgta gtgcgcgaat tcaaagtgag agttgaaagt actattttta aatatcaatc 480
ttgcaccagt cactgaagag acaagcgcag atggtttcca acagtgccga gaactcgttg 540
tgcaggctgc caggtgcgtc gaagaataca agaagaacgg agaaaacaga ccaaacaacg 600
ttggcgagca aagccaacaa gctgaaaaac gcgccctctc tcaattgtct gatctagaac 660
ttggtgataa attatcgggt cccaagagca tgacacctga gcaggccatg aagctagaac 720
ccgaattatc taaactggag agtgctctcc aggaagagct cgaagttcta caaggagata 780
cacttagtgg cccattgtcc agaatacttt gcgcgataag ttcaacattt gttcgtttgg 840
aaaataactc tgcaagtgct gtgttgaatg gagcgagcaa gtgcacgcca caagagatct 900
ctgaactgca tgactatgta gtactgggtc taggaaagcc aagtacctca gatgttgagg 960
agctatacca gaaacttgac aagtcgagga aagccacaga aagtctaaag aaagccaaag 1020
aacttgaaac agaggacttg gacgaggagg ttcgagcata ttttagggat cgaatcaatg 1080
aacaagagct cattctctct caaggcaatc ctatcgagct tagcaaagcc tttcgtcata 1140
agcttgctga aactctgcaa catgcgcagg aacattatcc tgagctactg caagatagag 1200
cctggctgaa aaggcttcac ataagcgcag agggtgtttt tgaagtagct tgttctgatc 1260
tttggctggc gaacgtcgag atttcagact tcaagcctgt tggagaactc ctagcttcca 1320
gaggaggtaa gactgtccag aaggttcttg atggagatgg cagaactcta gttctcaaac 1380
agtttcagct tgggcataca agtcaatcca aaaccttcta caaacaagtt gccaatctgg 1440
gcaaagttgt ttctcagaac gtgatccgta tcactggtgc ttttgtggac atgactcatg 1500
gagcaccgcg tggctgtatt gtcatgcctt tctacgagca aggtgacctt gccaagtgga 1560
ttgagtctca tcctaacgaa ggcaaagcag cgcgcgaccg acttgctatg ggcctgctca 1620
tcggtatggc ggatttacat acccatggca ttgtgcattg tgacatcaaa ccagaaaaca 1680
ttttcctcac aagcaacggg acaccattaa tcggcgattt tgacggaatt aaggttgcag 1740
actacactgc aacgtacaca tcacttcaag taacgccaaa gtatcttgcc cccgagttgc 1800
agaatgggcc tgtttataag tttgaaacag cgatggacat gtattccgtg ggtgtaagct 1860
taaaggagct gtatcacact gaacggactg ctgcgatgca gacacttatc gatgctctta 1920
ccgcaacaga tcctggtcag cgtccaaccg cgcgccaagc actccaacat gaagcttttg 1980
gagctcctaa gatccctgtc aagatatgtc tagtatgcat ggaggagtat cagctttccg 2040
aaggcacgag ctgcgaggag ggagacttcc tttgtagaga ctgtatcgaa tctgcagtag 2100
aagcggcggc acagccacta gctaacgtaa gagtcgatgc tgatggaacg atggagtgca 2160
tgaaacctga atgtgttgga agaatatcag gtcaagaaat cactcgtctt gcaccaagtg 2220
ctttaaatca tcttttgttg attgcgaaga cgaaggcaga aattgaagca gcagtttggg 2280
ctgagcaaga gatccaaagg cgcatagcag aagctttgcg tgcagatgga cagaatcgcg 2340
acgcacagcg gcatttactt catattcaag agaagatctt gagcacatgt tgtccgaact 2400
gcaaggcata tgtacacgat tttgacggtt gttgcgctgt agagtgtggt aatgatggtt 2460
gtggtcatag tttctgcgct tggtgtcttg agtttagttc tcaggattca caagcttgtc 2520
atgctcatgt gctagtctgc tcaagaaatc ttagcaataa taagtcatat ttcgctgagt 2580
cattcgagca ggttcgtgag gcgtggcagt tgttacgcgc agaacgccta cacgagtact 2640
ggaatgcgaa tattcaagat gaaaatcttg gacatgctct cgaacagcag cttgtgccgc 2700
tgctaacgcc agacatcgtt ggcccagagt ttaaactgtg aaaactttta aaaaatgatt 2760
ttagtaacta agctttaggt gcattgtgct ttttgtgtag atgcctaggc ttgggtaaga 2820
gcaaggtttg atctttcttg cttaaaatga aatttgctac taccaagcgt tacaatagct 2880
caatattgtc atgcacaaat cctacttact atgatacaag tttagagaca aatatcagaa 2940
atttactgat attgtgaaaa gcttcattct acctgtcacg aattgtttgt gtgtctaaag 3000
tatcgtggta aaagtagaag cagactattc tctcgcttct ttaaatgttc ttagaagcac 3060
aacatctctg gctttaggat gcacttctgt ggtatctgct gatcaaattc taagcgaaac 3120
tgtctttgat cacattttaa ttcatgaata ttgaactcaa ggcctcagcc tctagtttta 3180
gtctttccta aggacacttc gtcggcgttg gcctccccgg gatctgcttc gccataggac 3240
ctaaactgtg cagcatcgag gatgttctgc caagtcacta ctgtagtatc tccgccacgg 3300
ttcccaccac taccactact accaccacca ccgctatcgt ccgaggtgta ggcttcgtcg 3360
ctgccacctt cgtactcact attgccgagc aaccgtccac gaccgtcgca ataggctttg 3420
tccttcttca accacttgct tacgttttgc atgcaccagt ccgagttttt caatacctca 3480
acgaatctgg aaagaaaaat tggtttgatg agccaacaca agaaatgatc gagttcctct 3540
taagtgaaaa cgaagcaatc ctcgccgaag gtcgcgccga aggtcgcgcc aaagttctcg 3600
ccgagttcat tgaacccctc ttggcggggc ttagaaagcc cctgtttctc aaagttacgc 3660
ttcgtgttca tgcatcaact gctgcgacac cttcggcatg gggtcttgag ttcatatccc 3720
tcaagctatg gcggggtttt acaagtgaaa ttataaaccc gtttctcagt gcaaatttac 3780
tcaacatgca aatacgcaat acttcgtttc gaacctcgct ctatccacta aacattagcg 3840
gaaacaccaa tgcaatggct agtttgttta ataattggtg ctgcaggcca tttgttggac 3900
ttcacactga ggttgcaaat tttcctaaag tcatcgtacg catagaagac gatatcggcc 3960
tttcagccaa gcctgatctc accttggtca aaattgatga tcaaagaaat gagactgtct 4020
tctctattgt tgaagttaaa catcctaatc attttttgcc cttgtctgag aaccccaatt 4080
ggaccgacag gcgaaacgcc gctgcagctg cgggaattgc tatttttaca tctagaggcc 4140
aaccgagaca agctcttgaa caattacatg gtaatatgct tatccacggg gttaaatacg 4200
caattctgac atcagtagaa ctcacttatt ttgttaagcg ggataacaag ggtaacatgc 4260
ggatcacccg tggtttctac ggtgctgaaa ctgggggcgc aagagtaata agcaccaacg 4320
aggcaatggc tgcttttata tatattgcgt ccagggatcc tgacaatgga aagtttagac 4380
caagatcaaa tagcacgagc acagaaatca gggcttattc tgaacgtatc cagacaaaat 4440
ttggtggtcg ttcgataagt gatagagcca cagagaagtt caaagatagg gtgggcgaaa 4500
cagccttaca attcatgaaa ggtctaaacc aactcgcagt aaatatagag gagctacgca 4560
gcaatcttat tgaagtttta cctttcaagg atgaagctta ccttttcatg ccgctgccat 4620
ggtccaaaga ctaccgactt gtcacaagtt atgtggttcg gattccctgg gtttcaaaca 4680
aagacttcaa ctgggatatc tttgtgaaga ccatggcggt ctctaaagac tgggcgagag 4740
agacatatga gttcgaaaaa tccttctttc tcaacgaagt taagctgtac cttggccccc 4800
tgcgcctgct ccaaggtaaa cacgcgccct ttttggtgta cggcggcaca tttcataaac 4860
gaatcatcat tgccacaacc ttctctgggg agaccgcaac aaaagaactt attcttgcta 4920
acagtagctg ggcaattaca gccattcgag catcactttc cgcgctgcac caggtcggtg 4980
tgctccatgg cgacatcgcg ctgcgtaata tcgccatcga caccactacc aagaccgccc 5040
acttgatcga ttttggccgc tcctcacaag acaaaaccac caagaaaaac agggacacag 5100
aaatgaaaga actgaacaca cttctggggt ttgctattca tcgcaagcga atccgagact 5160
cctaactgaa cacacttctg gggtttgcta ttcatcgcaa gcgaatccga gactccttta 5220
aatagccaag acgacagaat acagaatcaa atgaccttct gaacgagtaa acaaatatat 5280
atattttttt taagactaca aatttcttac accaaaatca gcaaagaagg tcttctactg 5340
aaaaaagtgc ctgacgttgc aggatttaat ccaagaaaga ccggtagcat tttgggatct 5400
cttagacgag atatgatttt gtctaaccca acataaaata ctacttaagt ttttttataa 5460
tcggttgata gggaagtagc caagcacatg acccaaaaga aagttaaaag caaggtttcg 5520
cctcatcagt ggctggaatt tctttagttg ctcttggggg ttgacacttt tgtcccttgt 5580
ttcatctttt gcagtgatgt ttgcttcaga agttccccaa ttatttccat ctcctagtac 5640
tacataatgt agtgcggcta ctactggtac ctttatggat aggtaggtaa tttttagtca 5700
attcaatgag gtttggcgcg catcaaaatt tatgctgacg cttcttaata tatatgattc 5760
aatgtgaagt ggggaaatgc gggtaaatga tctgctaaaa tccaatagag tggaactttt 5820
ctagataggc ctaatttatt attgagtatt agccactctg aataaacatc cgaggataga 5880
taagagcttg gaagaaaacg taagaaatga agaaaatcaa ttcatgaacc tgaccgaatg 5940
ggactgactt aggaaataat aatcatttcg ctaatcctgc agatgctgaa gaatgaatgg 6000
aaaaagatga cctccaggtc tgtgaaagta atgttgttgt tgatatcaga cactcattta 6060
catcttcagg gcggaacata atttcaacga atgatcatcg cagcaagaga taaacaatca 6120
caaagagttc tttaatgcat ggcctccgtt gtactccaaa gtatgcgatg catcctcgac 6180
caatttaata aacttacagt 6200
<210> 5
<211> 4500
<212> DNA
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 5
accgtgggcc aagctggccg ccccaagacg atcactggct tccagactca ctcgactcct 60
gtgctcatga gctttggcga ccgtgctgag ctcgtctctg atgactacga accattgaca 120
agcgtcttgg agggcgttgt tcttctcaag aagaagaaga agcgttcctc caaggatcgt 180
gatggtgatg tggaaatggc aaaataaata attcagactt gcattatctt aaaaaaaaac 240
aaagtgcagc ggtaacaacg actctgttgt tgcgtctact tctaccccga cttattcttt 300
aagaagttcg ttcatagaaa ggctggggtg tgagagagag agcatgtttt ttaactcaac 360
atggataagt aaaaaaaagg ccaggaacat caaggagaag cttcaaatga ctgttaggta 420
gctgttgtag ctccttagca tattcttctt cttactactt aacatctctg ctttcggccc 480
caaatcgctc gcttgcttgt tcgctcgtcc cgatagacgc ttctcattcc tatagcattc 540
tctaaaaaaa taatctaaac attacacctc tcaaaataga aaatctatct tccacacgtt 600
gatctaaatt ctccggcttt tgtatctttg tatcacagtc ctgccaacat tcagcatgtt 660
cactcagccc cgcggattgg tctctctctc cctaaggctg agcctgagca gatctaaacg 720
gacgtcgtga attcatcata tcattgctaa taatttaccg taagttaagc actagaaccc 780
tcttattgtg cctcatatca ttgtaacggg cttggggact catagaggtt gtccgggtaa 840
tgcggggaat atagcgacct aacgaccgct ttaacaaagg gaaataatta ggcagtacgt 900
aaagagtact actggtacct agttatgtaa caaggtaatg aattgtcaat gattcaatgc 960
ttggtaagtt tgttcaagtt cgttccgaag cgaagcaaac tcgtgcaagc ggggtcgcgg 1020
agacgagctc gtcccgcgga cgtacgcacg caggaggttg ggaaggtggt caagtaaagg 1080
ttttgacagc aagatgctct ggccggcaga acacctgcat gaaacctacg agcacattcg 1140
taacgatgcc cttggtagtg ggtgctcagt tgtgatttat gtggcgcttg actgcgatgc 1200
gctatgcgct gtgaagatct tgacaagttt gttgaaagcg gataatgtag cgtataagct 1260
gagacccgtt cgaggatata gtgatatttt agaggatttc cgcgagacat caaaggcaga 1320
agcgattaag tccatcatta tgatcaactg cggtggtgat gtcaatgcac aggaaatgtt 1380
taacttggac gacggcatga catgctatat cattgactcg gcgaggccct acaatcatgc 1440
aaacctactc cggtctcata tgcacacgat tgtgtttgca gatgacttca tgaaggagga 1500
agatctcgtt aaggaggcag aactgctcga gcacctggat gaggataacg tagatgaact 1560
cctgggatcg aacgacaacg acgatgacga cgatgacgac gatgacgacg atagcgatga 1620
tggtaaagga gaggtcgagg acgggaatga tgcaaactct gctcgtaacg ggcaagaagg 1680
agagattgat tccgacgaag aacacgaatt cgatggaggt aaccctcagc agaatgcctc 1740
agatagtgat gacgatgaaa atgaagatgc caataagcag actagcaaca acacaaacaa 1800
taagacaagc aaagcaaagt ctgcatctca acttctgaca gagcaagagg aggcagagat 1860
cgagcgtgag cttgctgcag aaaatggcac ccgaaagaag cggaggcgga cttcttcctc 1920
ctcatcctct tcacaaaacg acaaaaacaa cgatagtggc gatgatgatg atgatgatga 1980
tgatgacgat gataaggatg atgatagtct tcctaaacgg aaggtccgtg aaaaggttga 2040
cgctgaggaa cccatggatg acaaagcacg tgtagcaaag tactacgctg ggtcattccg 2100
gggtacatcg gcagcacatg tcctgttttc cctctcacag cgtctcaaca aagatcaaaa 2160
gatttttctt tggcttgcca tcgttgggac tactcaccac ttcatcaatt ctgaactcag 2220
cgaggaggac taccttctcc gtgtactcac ataccaggat ctcgttaaag accgctccat 2280
gtctcgtcga gcaggccaac atacagtcac agaagatggt gctgaggtgc ctcttatgga 2340
aggccaaagc atggaattca ttgaagaact tcgtcttatg ctgcatcgcc actggtcgtt 2400
gcacgaggcg tttctgtact ctgactacat tgctgccaag cttggaatct ggaaaaatga 2460
cggtgaagcc aagcttcgca catttttcgc caagatggga attagtcgga aagaagcaga 2520
gcaaaagtat tctttcatga acatgagtgt taagagggct ctcaaagata aaattggtgc 2580
tcatggagcg gacttttctc ttgacgaaag cttcgtctac gcatcattcc agttccgggc 2640
tggctttggg caccaactat cagctgctga taccgcatac tgtatggctg ctttgctcga 2700
gagtgcagct acacacccta cagtttttgc cgatgattct ggtgctgatg ctacagagga 2760
tgctactgaa atccccgagg ttgaccttga cggggacgac cttgattatg ctggtgaaga 2820
tggagcaaat gggcaaaagg aaaatagcaa ggcaattctg gcagcttcac tttggaaaca 2880
aagcttcaat gcagcttatg atgctctctc tttctcacaa acaactcgca accagcatct 2940
cctggaacaa ggccttaacc tcgccaaagc tctgcaaaag gctattattc aggagggtgg 3000
aaatataatt tcaggaacaa agattgccag tgcaggttct tttcgctact gtattctgga 3060
aggtttgcca cccaagctgg tgagtatttt ttcccagcct gatacacttc tccgccttgc 3120
caaattcatc atgctcgcgt acacaagtgc cggcaagtgg tcgggcctgg gcgccaaacc 3180
ccttgttctt ggtgtcaaaa acctcaagac aaacaaagct cattttgttg gcctccccca 3240
cccaactttt ggagatgacg cgattgcaaa gaaccccttt ggcagatatt ttcgtgtggc 3300
cgcccaaaaa gtgggcacgg cccacatcca tgttggcttt agctcggcat gtatcgagat 3360
ccccctcgag cttgtgcaga aattcttagt ggcattgcat gaaataacag cttgaataaa 3420
tggttgatta tatgctttaa ggttcctttt cctctttgtt cccattgctt ttacctctgt 3480
tgatacaagt ggcctcacac tacaattgaa gagccattgg ataagttcga ttattaatta 3540
gagaatgagt ttccactctc aattctttct attaggcagt gttgattatt acatgagcat 3600
acgtgcatca tcgtcattat atcggcaaat acgaatatct agatgtgcta accgaaagag 3660
ttccaagatt acagtgatat tgttggaagc atatatatga attaatatgc tgcagaatct 3720
ttgaacccgc cgggtgtgtt atcgttctat tggaactggc agtggccctg atgttggcta 3780
ttaagtaggg gagaaggttt ctactggaag tgaatgcatc gctctctaag agcgcgcact 3840
tcaaatgtta cttccgattt cagcgttgtt tgctaggttc tcattatgcg tttatactcg 3900
cttttgagct cttgaggatg accataccga gctacgggct gcacttgtgc tgtcaagagg 3960
ctcaaaatcg gggtctggtt cacggtaatc gaggtcgtga agaagatagc ggtatagttg 4020
atcgcgcatt gcttgattct tgtagttatt gtctgcaaat tgcatttgca tcgcaaaggt 4080
ccgctctaga ttctgaacag catgttgcgt cattccaggg atgaaaacaa tttcaccttc 4140
tttctgtacg cagtgaagaa caacagaatc atcttcaagc tcttcggtta ctttctttgc 4200
cttaattttg cttgcaaacg cgcctgcgcc aaacttactt tgaagttcgg cgtttttctc 4260
aagcttgggg agtttctctc caggcttcgc tttcgattta aacttcttga tcaagtacgt 4320
ctgctcttca tgagccttac agacagggtc gtgatccaga aatctcgagc agtatgtctc 4380
ctctagactt ggtgcgggct caagaagctc tacctcatct tgggcttcca actcagaata 4440
tccagcaacc acgcggttag ataccttcat ataccagacc ttcttaccct caaagataag 4500
<210> 6
<211> 11100
<212> DNA
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 6
cattgattga ttgcagatga tcttgggcaa cgcgcgtcag cttgagcgag gaatgctttg 60
gacttcaggt tcttcgcttc tgtgtttcat tctttctcga agaaagaaag aatgaaagaa 120
agagagaaag aaagaaagaa agaaagaaag aaagaaagaa agaaagaatg aatgaatgaa 180
agaaagagag aaagaaagaa cgaatgaaag aaagagagaa agaatcaaag agaaagcgca 240
ttcgcagttc ttcttcgtga aagaaaagga aaagagaggc gatggtaggc tctgatctca 300
tcatttctgg tttctctgtt gtacctgtac tctgtgcttg tggccttgcg aaggctgaag 360
acgccatgca gacaaccacg cctccgcaga gactttgcgg gaaagcagag ggcttctcgc 420
cactctcgaa gaaacgagct cgccagtttt cggggttgtt ctcagaattg cgagtgttgg 480
ctttatatgg gatgatggta tggcacttcg tcatcgttac tctcgctcgc ttgcttacga 540
agattttcaa aagggcgaaa gaagtgctca gcttttaaaa taaagtcaca ccaaagacta 600
ggccgcatag cagaaagcta aagtaaaccc aatctgtctg aagagagtgt cgtggttaga 660
tacttacgca agagtttaaa agctgtaaat agtacaggaa caaaaacaaa taaatatata 720
tatattcttt tttattagta aaacatgaaa ccaaaaaact cctttaaaat aaaataaaat 780
aaaataaaat aaaataaaat aaaataaatt tactactata tatacatata tatatacaat 840
aaataaaaac aactttttca gaccagaaaa agactgagaa aaaaggaaac taatgactct 900
cgagcaccga gagcgatata agagtggatt atatttgcta ggcccaccac gagtgagtcc 960
cctaggagga agcgccctct gagacaggag cagaggcgtc gctggtgctc caaaaagcga 1020
cggcgaatgg aaagcaaaac cctttcgagg gaggcttgtg gccgtgacta ttcaaatctc 1080
cagcatctca gctccagcac agcagaagct acctcgcttc tcagctctag ctatcacatc 1140
gatcgcagca tctagctcgt agacagctag cgccgcacct tcccccaaat caacttgggc 1200
aacttaactc ttttttcacc agaactcctc ttttccttta atcttcgaaa agaagacgaa 1260
taaaagagat aatcctctgc cgcagcacat tctaaaagaa aagcggcata ctggcgtagg 1320
caagactttc aagctcttcc tcgcctccac cccgtatttc cctgttcatc tttgtgaaac 1380
gaggaaacaa gaaattttat aggacaagat ggctcaacgt gagaaccgtc tcgaggccaa 1440
catggatacc cgcatcgctg tgatcggcat gtccgccatc ctcccctgcg gtaccaccgt 1500
tcgtgagtct tgggaggcta tccgcgatgg tatcgactgc ctcagtgatc tccccgagga 1560
ccgcgtcgat gtgaccgcct acttcgaccc ggtcaagacc accaaggata agatctactg 1620
caaacgtggt ggattcatcc ctgagtacga cttcgacgcc cgtgagttcg gcctcaacat 1680
gtttcagatg gaggactccg acgcaaacca aaccgtcacc ctcctcaagg tcaaggaggc 1740
cctcgaggac gctggcatcg aagccctcag caaggaaaag aagaacattg gatgtgttct 1800
cggtatcggt ggtggccaga agtccagcca cgagttctac tcccgcttaa actatgttgt 1860
cgttgagaag gtccttcgca agatgggcat gcctgaggag gatgttcaag ctgctgttga 1920
gaagtacaag gccaacttcc ctgagtggcg ccttgactcc ttccccggtt tcctcggcaa 1980
cgttactgcc ggtcgctgta ccaacacctt caacctcgat ggtatgaact gtgtcgtcga 2040
tgctgcctgt gctagttctc tcatcgccgt taaggttgcc attgatgagc ttctccacgg 2100
agactgtgac atgatgatca ctggtgctac ctgcacggat aactccatcg gtatgtacat 2160
ggccttctcc aagaccccgg tgttctctac cgaccctagc gtccgcgcat acgatgagaa 2220
gaccaagggt atgcttattg gcgaaggctc tgccatgctt gtgcttaaac gttacgccga 2280
cgctgttcgt gatggtgacg agattcacgc tgtcattcgc ggctgcgcct cttcctctga 2340
cggtaaggcc tccggtattt acaccccgac catctctggt caagaggagg ctcttcgccg 2400
tgcctacatg cgcgctaacg tcgatcccgc caccgtcact cttgttgagg gccacggtac 2460
cggtaccccc gttggtgacc gtattgagct caccgctctc cgtaacctct tcgacagtgc 2520
ctacggcaac gagaaggaga aggtcgctgt tggcagcatt aagtccaaca tcggtcacct 2580
caaggctgtc gccggtcttg ccggtatgat caaggtcatc atggccctca agcataagac 2640
tcttccggcc accatcaacg ttgatgagcc ccctaagctt tacgacaaca ctcccatcac 2700
cgactcatcg ctgtacatta acacgatgaa ccgtccgtgg ttccctgctc cgggtgtgcc 2760
ccgtcgcgct ggtatctcca gtttcggttt tggtggtgcc aactaccacg ccgttcttga 2820
ggaagccgag cccgagcacc agaaggctta ccgtctcaac aaacgccccc agccggtgct 2880
tctgatggca tcttcaaccc aggctcttgc ttccctctgt gaagcccagc ttaaggaatt 2940
cgagaaggct atcgaggaga acaagaccgt caagaacact gcttacatca agtgcgtcga 3000
cttctgtgag aagttcaagt tccctggatc tatcccgagc tctaacgctc gcctcggttt 3060
tcttgtcaag gaggccgatg atgccaccga gaccctccgt gccatcgttg cccagttcca 3120
aaagtcagct ggcaaggatt cttggcacct tccccgccag ggtgtgagct ttcgtgctca 3180
gggcatcaac accactggtg gtgtcgctgc cctcttctct ggccagggtg ctcagtacac 3240
ccacatgttc agcgaggtcg ccatgaactg gcctcagttc cgtgagagca tctctgacat 3300
ggatcgtgcc caggctaagg ttgctggcgc tgacaaggac tacgagcgtg tctcccaagt 3360
cctctacccg cgtaagcctt ataactctga gcccgagcag gaccacaaga agatctccct 3420
gacctcatac tctcagccct ctaccctcgc ctgcgctctt ggtgcctacg agatcttcaa 3480
gcaggctggt ttcaagcccg acttcgctgc cggtcactct ctcggtgagt ttgcggccct 3540
ctacgctgct gactgcgtca accgtgacga cctctttgag ctcgtgtgcc gtcgtgcccg 3600
catcatgggt ggcaaggatg cacctgctac ccccaaggga tgcatggctg ctgtcattgg 3660
acccaatgcc gagaagatcc agattcgcac tgctgatgtc tggctcggca actgcaactc 3720
cccttcgcag actgtcatca ccggctctgt tgagggtatc aagaaggagt ccgagcttct 3780
ccagagtgag ggcttccgtg ttgtccccct cgcctgcgag agtgccttcc actcaccgca 3840
gatgcaaaac gcctcctctg ccttcaagga tgttctctcc aaggttgcct tccgtcagcc 3900
tagcgcccag accaagctct tcagcaacgt gtctggcgag acctactcca acaatgccca 3960
ggacctcctt aaggagcaca tgaccagcag tgttaagttc atctctcagg ttcgcaacat 4020
gcactctgct ggtgctcgca tctttgtcga gtttggcccc aagcaggtgc tctctaagct 4080
tgtttccgag accctcaagg acgatccttc cattatcact atctctgtca acccttcctc 4140
tggcaaggat gccgatattc agcttcgcga ggctgctgtg cagctcgttg ttgctggagt 4200
caaccttcag ggcttcgaca agtgggacgc acctgacgcc acccgccttc agccgattaa 4260
gaagaagaag actactcttc gtctctcggc tgccacttac gtgtctgaca agaccaagaa 4320
ggctcgcgag gctgccatga acgacggccg catgctcagc tgtgtcagca aggtcatcgc 4380
cccccctgac gccaagccca ttgtggacac caaggctcag gaggaggttg ctcgtctcca 4440
gaagcagctt caggatgccc aggcccagat ccagaaggcc aaggccgatg ctgctgaggc 4500
tgacaagaag cttgccgctg ctaaggatga ggccaagcgt gccgccgctt ctgcacctgt 4560
gcagaagcag gttgacacca ccattgttga taagcaccgt gctatcctca agtctatgct 4620
tgctgagctt gactgctact ccactcctgg tgctgtgtcc agctctttcc aggcacctgt 4680
tgctgctacc cctgctccgg tcgctgcgcc tgttgcagct gctcctgctc cggctgtcaa 4740
caatgctctc cttgccaagg ctgagtctgt tgtcatggag gttcttgccg ccaagactgg 4800
ttacgagact gacatgatcg agcccgacat ggagctcgag actgagctcg gcattgactc 4860
tatcaagcgt gtcgagattc tctctgaggt ccaggcccag ctcaacgttg aggccaagga 4920
tgttgatgct cttagccgca cccgcaccgt tggtgaggtt gtcaacgcca tgaaggctga 4980
gatcgctggc agctctggtg ctgccgctgc tgccccggcc cctgttgctg ctgctcccgc 5040
tgcccctgcc cctgctgtca acagcgctct tcttgccaag gctgagactg ttgtcatgga 5100
ggttcttgcc gccaagactg gttacgagac tgacatgatt gagcccgaca tggagctcga 5160
gactgagctc ggcattgact ccatcaagcg tgtcgagatt ctctctgagg ttcaggccca 5220
gctcaacgtt gaggccaagg atgttgatgc tcttagccgc acccgcaccg ttggtgaggt 5280
tgtcaacgcc atgaaggctg agatcgctgg cagctctggt gctgccgctg ctgccccggc 5340
ccctgttgct gctgctccgg cgcccgtcgc tgccgctgcc cctgctgtca gcagcgctct 5400
ccttgagaag gctgagtctg ttgtcatgga ggttcttgcc gccaagactg gttacgagac 5460
tgacatgatt gaggccgaca tggagctcga gactgagctc ggcattgact ccatcaagcg 5520
tgtcgagatt ctctctgagg tccaggccca gctcaacgtc gaggccaagg atgtcgatgc 5580
tcttagccgc acccgcaccg ttggtgaggt tgtcaacgcc atgaaggctg agatcgctgg 5640
cagctctggt gctgctgccc cggccccggt cgctgcggcc cctgctccgg tcgctgccgc 5700
tgcccctgct gtcaacagcg ctcttcttga gaaggctgag actgttgtca tggaggttct 5760
tgccgccaag actggttacg agactgacat gatcgagccc gacatggagc tcgagactga 5820
gctcggcatt gactctatca agcgtgtcga gattctctct gaggtccagg cccagctcaa 5880
cgttgaggcc aaggatgttg atgctcttag ccgcacccgc accgttggtg aggttgtcaa 5940
cgccatgaag gctgagatcg ctggcagctc tggtgctgcc gctgctgccc cggccccggt 6000
tgctgctgct cccgctcccg tcgctgcccc tgctgtcagc agcgctctcc ttgagaaggc 6060
tgagtctgtc gtcatggagg ttcttgccgc caagactggt tacgagactg acatgattga 6120
ggccgacatg gagctcgaga ctgagctcgg cattgactcc atcaagcgtg tcgagattct 6180
ctctgaggtc caggcccagc tcaacgttga ggccaaggat gtcgatgctc ttagccgcac 6240
ccgcaccgtt ggtgaggttg tcaacgccat gaaggctgag atcgctggca gctctggtgc 6300
tgccgctgct gccccggccc ctgttgctgc ctctcccgct cccgtcgctg ccgctgcccc 6360
tgctgtcagc agcgctctcc ttgagaaggc cgaatctgtt gtcatggagg ttctcgccgc 6420
caagactggt tacgagactg acatgattga ggctgacatg gagctcgaga ctgagctcgg 6480
cattgactct atcaagcgtg tcgagattct ctctgaggtc caggctatgc ttaacgttga 6540
ggccaaggat gttgatgctc ttagccgcac ccgcaccgtt ggtgaggttg tcaacgccat 6600
gaaggctgag atcgctggca gctctggtgc cgccgctgct gccccggccc cggttgctgc 6660
tgctccggcg cccgtcactg ccgctgcccc tgctgtcagc agcgctctcc ttgagaaggc 6720
cgaatctgtt gtcatggagg ttctcgccgc caagactggt tacgagactg acatgattga 6780
ggccgacatg gagctcgaga ctgagcttgg cattgactcc atcaagcgtg tcgagattct 6840
ctctgaggtc caggctatgc ttaacgtcga ggccaaggat gttgatgctc ttagccgcac 6900
ccgcaccgtt ggtgaggttg tcaacgccat gaaggctgag attgctagca gctctggtgc 6960
tgctgcccct gctccggctg ctgccgttgc accggcccct gctgctgccc ctgctgtcag 7020
cagcgctctc cttgagaagg ccgaatctgt tgtcatggag gttctcgccg ccaagactgg 7080
ttacgagact gacatgattg aggccgacat ggagctcgag actgagcttg gcattgactc 7140
catcaagcgt gtcgagattc tctctgaggt ccaggctatg cttaacgtcg aggccaagga 7200
tgttgatgct cttagccgca cccgcaccgt tggtgaggtt gtcaacgcca tgaaggctga 7260
gattgctagc agctctggtg ctgctgcccc tgctcctgct gctgccgctg caccggcccc 7320
tgctgctgcc cctgctgtca gcagcgctct tcttgagaag gctgagtctg ttgtcatgga 7380
ggttctcgcc gccaagactg gttacgagac tgacatgatt gaggccgaca tggagctcga 7440
gactgagctt ggcattgact ccatcaagcg tgtcgagatt ctctctgagg tccaggctat 7500
gcttaacgtt gaggccaagg atgttgatgc tcttagccgc acccgcaccg ttggtgaggt 7560
tgtcaacgcc atgaaggctg agattgctag cagctctggt gctgctgccc ctgctcctgc 7620
tgctgccgct gcaccggccc ctgctgctgc ccctgctgtc agcagcgctc ttcttgagaa 7680
ggctgagtct gttgtcatgg aggttctcgc cgccaagact ggttacgaga ctgacatgat 7740
tgaggccgac atggagctcg agactgagct tggcattgac tccatcaagc gtgtcgagat 7800
tctctctgag gtccaggcta tgcttaacgt tgaggccaag gatgttgatg ctcttagccg 7860
cacccgcacc gttggtgagg ttgtcaacgc catgaaggct gagatcgctg gcagctctgg 7920
tgctgctact gcctctgccc ctgctgctgc agctgccgcc cctgctatca agatctccac 7980
tgttcacggt gctgactgcg atgacctctc tgtgatgtct gctgagcttg tcgacattcg 8040
tcgcgctgat gagctccttc ttgagcgccc tgagaaccgc ccggtcctta ttgtcgatga 8100
tggtaccgag ctcacctctg ctctggttcg tgttcttggt gctggtgctg tagttcttac 8160
ctttgacggt cttcagttgg ctcagcgtgc tggtgctgct gttcgccatg tccaggtgaa 8220
ggacctctcc gctgagagtg ccgagaaggc tatcaaggag gctgagcaac gcttcggcca 8280
gcttggaggc ttcatctctc agcaggctga gcgctttgcc cctgctgaca ttcttggttt 8340
caccctcatg tgcgctaagt ttgccaaggc ttccctctgc acccctgtgc agggtggccg 8400
tgccttcttc attggtgtgg cccgtcttga cggtcgcctt ggtttcacct cccagggatc 8460
tactgactcc ctcacacgtg cccagcgtgg tgctatcttc ggcctctgca agaccattgg 8520
ccttgagtgg tctgctaacg aagtgttcgc ccgcggtatt gatattgctc gtgaggtcca 8580
ccctgaagat gctgccgtcg ccatcactcg cgaaatgtcc tgcgctgaca accgtatccg 8640
cgaggtcggc attggcctca accagaagcg ctgcaccatc cgtgctgtgg acctcaagcc 8700
gggtgccccc aagatccaga tcagccagga tgacgttctc cttgtgtctg gtggtgctcg 8760
tggtattact cctctctgca tccgtgagat cacccgtcag gtccgcggtg gtaagtacat 8820
tctcctcggt cgctccaagg tccctgctgg tgagcctgct tggtgcaacg gtgtttctga 8880
tgacgatctt ggcaaggctg ctatgcagga gctgaagcgt gctttctccg ccggtgaggg 8940
ccccaagccc accccgatga cccacaagaa gctcgttggc actattgctg gtgcccgtga 9000
ggttcgttcc tcaattgcta acattgaggc tctcggtggc aaggcaatct actcctcttg 9060
tgatgtgaac tctgctgctg atgtcgccaa ggctgttcgc gaggctgagg ctcagcttgg 9120
cgcccgtgta actggtgtcg tccacgcttc tggtgtcctt cgtgaccgcc tcattgagca 9180
gaagcgcccc gatgagtttg atgctgtctt cggcaccaag gtgactggtc tcgagaacct 9240
ctttggtgcc attgacatgg ccaaccttaa gcacctcgtc ctcttcagct ctcttgctgg 9300
tttccacggc aacattggtc agtctgacta cgccatggct aacgaggccc tcaacaagat 9360
gggtcttgag ctctctgacc gtgtgtccgt gaagtctatt tgcttcggcc cctgggatgg 9420
tggcatggtt accccccagc tcaagaagca gttccagtct atgggtgttc agatcatccc 9480
ccgtgagggt ggtgccgata ctgtggctcg cattgtcctc ggctcctccc ctgctgagat 9540
ccttgttggc aactggacca ctcccaccaa gaaggttggc agtgagcccg ttgtgatcca 9600
ccgcaagatc agcgctgcat ccaacccttt tcttaaggac cacgtcatcc agggtcgctg 9660
tgtgctcccc atgaccattg ctgtgggctg ccttgctgag acctgcctgg gtcagttccc 9720
tggatactcc ctctgggcta ttgaggatgc tcaactcttc aagggtgtca ccgttgacgg 9780
tgatgtcaac tgtgagatca ctctcaagcc ttcccagggt actgccggcc gcgttatgat 9840
tcaggccacc ctgaagacct tcgctagcgg caagcttgtt ccggcttacc gtgccgtgat 9900
cgttctctcc actcagggaa agccccctgc tgctactact tcccagaccc cctctctcca 9960
ggctgatcct gctgcccgtg gcaaccctta cgacggcaag accctcttcc acggccctgc 10020
cttccagggt cttaaggaga tcatctcttg caacaagtct cagcttgtcg ccgagtgcac 10080
cttcattccg tcttccgaga gcgctggtga gttcgcttct gactacgagt cccacaaccc 10140
tttcgtcaac gacattgctt tccaggccat gctcgtctgg attcgccgca ccctcggcca 10200
ggctgccctc cccaactcta tccagcgcat tgtgcagcac cgtgctcttc cccaggacaa 10260
gcccttctac ttgaccctca agagcaacag cgcgagtggc cactctcagc acaagacctc 10320
cgttcagttt cacaacgagc agggtgacct cttcgtggac atccaggctt ccgtcacctc 10380
ttctgactcc cttgccttct aaagttgtga ggctgtcttg tcttgtcagt cgcgaaagtg 10440
taagcaagaa ctttgtcata caaagaagca accaacttcc gaaccaacac accttgtagg 10500
attacaacca caactttcta taaatagtgc gcaagaataa ccagtaagct atccttcgtg 10560
tacctgttac aacaacgaca tttttacttg atcttcctac ttgtgatggg tagtcccggc 10620
ttgtactgac agtgatgcca cagcagagta gatcactgtg aataagtaaa taagcctact 10680
tattatattc ccaaagtact cgctgggata ttattagtat cacgaaaagt gatatgtttt 10740
ataactcgct tgtcttgcca agatctaacc tttttttttt aaatggccaa aaagtcgcca 10800
gaacacatct tacaataaac aaaaatttag attatatcgt atgtataatg tataatatat 10860
tatattatta tatacatacg atataatcta aagccattcc agacttattc ggtgatgaaa 10920
aatgctttcc cagctttata caaactattc aaaaagttgc atgacccatt ttcagatata 10980
tttaatagta taagattatg tccatttgtt ttcaaagtta ttcaagagtt tacatcttga 11040
agtttcatcc ctttactact acactgtttt tcgtttgggt tttttctcta acggcgaaag 11100
<210> 7
<211> 7767
<212> DNA
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 7
tattgctatt acttgaattt gaatttgaat ttgaattcag gtagacaata aaataagatt 60
agcaaaacat tttgagagga agcagaggat atgcagtgca aaaggaggtc ccgagtttcg 120
atcttctttg cacctgctac gtatctagtg cacgtagagc aagaaagaat gaaagaaaga 180
acgaaagaaa gaaagagaga gagagagaga gagagagaga gaaagcgaag atgatagcgg 240
agagaactct tcttcgcagt cactctgttt ctcagtcagt cccgcaacca ataacaactc 300
gaactcgcag cagtgttctt cggagtgcca gcgctcgctc gcactgcgtc ggcacagcag 360
cagcagcagc aggccccgcg ctcgctgcac tcagcccggg caggagcaac agctgctgag 420
cagctgaggc cagctggctg gcggctcgcc tcgcctcgcc tcgcgtcgcg tcgcgagaga 480
aagcgatcga ccaactgtca atcgattatt cgagtccttc gagcgcttta tagggcactg 540
attgatcact cattgattca ttgactcatt tattctttgc gtggtcagcc aaacggcgtt 600
agcattgggc aaagcgggtc tttgctttgc tctaaaatag atttgctcgc gagagtacgt 660
acttgcagga gtaggtaggc tctgcctagt acctgggcat ttgaatattt gaacttcgaa 720
cttcgttgag tatctgaata tttgaatatc tgaatatttg aatttcgaaa gtttgaatat 780
ttgaatattt gaattttgga atattggaat agctgggttt ggagataaga cttactaagc 840
taagcgccga cgtaagagcg gcgagtaaat ccacacacaa gagagaggca gagagagagg 900
gagggagaca actcgcgcag gcaagctgag cccactggac gcacggggcg cgtcccccct 960
gacgggcgct ctggtggtgg cgtgtttggg agggttttgc atgcttgtga taggggctct 1020
ggcgcgggct ctgtacggtg cttggagatg cacgggcagg gcgagagagg ggacgggttc 1080
ccgggaggcg ctgcttggag gtgctgagag ggagggagaa ggcgtgcttt gcgatgcgcg 1140
gggcgaccta ggcgctgctg cgcggtgcag cagcagggac ctcggacgtg agtcgaagcc 1200
gtctgcagag gagatggtag aagggccgcg gattggtagc agagaagagg aaatagaaga 1260
agaagaagaa atagaagaag aagaaataga agaagaagaa atagaagaag aagaggagga 1320
cgggcaggcg ggaaagatgg agaaaggact cgcggcggga aaacaagaga atgtgaactt 1380
gggcttgaac tttggtttga atttgaatgt ggagaacgag gggttgaatt tgagtttgaa 1440
tttgaaagaa aacttacgga aagaaagttt agttgaaaaa agaaaaagag aaagaaaaag 1500
agaaagaaaa agagaaagaa aaagagaaag aaaaagagaa agaaaaagag aaagaaaaag 1560
agaaagaaaa agagaaagaa aaagaagaag aaaaagaaga agaaaaagag aaagaaaaag 1620
agaaagaaaa agagaaagaa aaagaagaag gagatttaaa aagttgttta gttgaaaaag 1680
gagaaggagg aagaagcagc gacagcggca gaagaagaag tagttgttgt aagaggggaa 1740
cggaggcagt agcagtggag caggcggagg cgacagcaaa cctcgaactc gaccccgtcg 1800
agccgcagca agaacaagag cccgaccagg tggacgagga cgaggtccgc ttgttgtcag 1860
gaacaacaga agttgcagga ctagccgaga gtgctaccac tgcaattctt agatccacag 1920
acgcaagagc agaaaactta caactgctcg ccacaacaca agaaccacct tcagatacaa 1980
ccaggttcga gaactccaca agtctagaag cagcaacagc tctagcagat aatcaaacag 2040
gtccagaaaa agctacgact agaagagaaa ttatcgagtc gcaacttgca accatggcca 2100
ctcgcgtgaa gaccaacaag aaaccatgct gggagatgac caaggaggag ctcaccagcg 2160
gcaagaacgt cgttttcgac tatgacgagc tccttgagtt cgccgagggt gacatcagca 2220
aggtcttcgg ccccgaattc agccagatcg accagtacaa gcgtcgcgtt cgtctccccg 2280
cccgcgagta cctcctcgtc acccgcgtca ccctcatgga cgccgaggtc aacaactacc 2340
gcgtcggtgc ccgcatggtc actgagtacg acctccccgt caacggtgag ctctctgagg 2400
gtggtgactg cccctgggcc gtgctcgtcg agagtggtca gtgtgatctc atgctcatct 2460
cctacatggg tattgacttc cagaacaaga gcgaccgcgt ctaccgtctg ctcaacacca 2520
ccctcacctt ctacggtgtt gcccaggagg gcgagaccct ggagtacgac atccgcgtga 2580
ccggcttcgc caagcgtctc gacggtgaca tctccatgtt cttcttcgag tacgactgct 2640
acgtcaacgg ccgtctcctc atcgagatgc gcgacggctg tgccggtttc ttcaccaacg 2700
aggagctcgc cgccggcaag ggtgtcgtct ttacccgcgc tgatctcctc gcccgcgaga 2760
agaccaagaa gcaggacatc accccgtacg ccattgcccc gcgtcttaac aagaccgttc 2820
tcaacgagac tgagatgcag tccctcgtgg acaagaactg gaccaaggtt ttcggccccg 2880
agaacggcat ggaccagatc aactacaaac tctgcgcccg taagatgctc atgattgacc 2940
gcgtcaccaa gattgactac accggtggcc cctacggcct tggtcttctc gttggtgaga 3000
agatcctcga gcgcgaccac tggtactttc cgtgccactt cgtcggagac caggtcatgg 3060
ctggatccct cgtgtctgac ggctgcagcc agctcctcaa gatgtacatg ctctggctcg 3120
gcctccacct taagaccggt cccttcgact tccgccccgt caacggccac cccaacaagg 3180
tccgctgccg tggccagatc tccccgcaca agggtaagct cgtatacgtc atggagatca 3240
aggagatggg ctacgacgag gctggtgacc cgtacgccat cgccgatgtc aacattctcg 3300
acattgactt cgagaagggc cagactttcg accttgccaa cctccacgag tacggcaagg 3360
gcgacctcaa caagaagatc gtcgtcgact tcaagggtat tgccctcaag ctccagaagc 3420
gctctggccc tgccgttgtc gctcccgaga agcccctcgc tctcaacaag gacctttgcg 3480
ccccggctgt tgaggccatc cctgagcaca tcctcaaggg cgatgctctt gcccctaacc 3540
agatgacctg gcacccgatg tccaagatcg ctggcaaccc cacgccctcg ttctctccct 3600
cggcctaccc tccccgtccc atcaccttca ccccgttccc cggcaacaag aacgacaaca 3660
accacgtgcc cggcgagatg ccgctctcgt ggtacaacat ggctgagttc atggccggca 3720
aggtcagcct ctgcctcggc cctgagttcg ccaagttcga tgactccaac accagccgca 3780
gccctgcatg ggaccttgct cttgtgactc gtgtggtctc cgtttctgac atggagtggg 3840
tccagtggaa gaacgtggac tgcaacccgt ccaagggaac catggttggc gagttcgact 3900
gccccatcga cgcctggttc ttccagggat cttgtaacga cggccacatg ccgtactcca 3960
tcctcatgga gatcgccctc cagacctctg gtgtcctcac ctctgtgctc aaggccccgc 4020
tcaccatgga gaagaaggac attctcttcc gcaaccttga cgccaacgcc gagatggttc 4080
gctctgatat tgacctccgc ggcaagacca tccacaacct caccaagtgt accggctaca 4140
gcatgctcgg agacatgggt gtccaccgct tcagcttcga gctctctgtt gatggtgtag 4200
tcttctacaa gggtaccacc tccttcggct ggttcgtccc tgaggtcttc atctcccaga 4260
ctggtctcga caacggtcgc cgcacccagc cctggcacat tgagtccaag gtgccttccg 4320
cccaggtcct cacctacgac gttaccccca acggtgccgg tcgcacccag ctctacgcca 4380
acgcccccaa gggcgctcag ctcactcgcc gctggaacca gtgccagtac cttgacacca 4440
tcgaccttgt ggtcgccggt ggctccgccg gtcttggcta cggtcatggc cgcaagcagg 4500
tgaaccccaa ggactggttc ttctcgtgcc acttctggtt cgactccgtc atgcccggct 4560
cgctcggtgt ggagtctatg ttccagctcg tcgagtccat cgctgtcaag caggacctcg 4620
ccggcaagta cggcatcacc aacccgacct tcgctcatgc tccgggcaag atctcctgga 4680
agtaccgtgg tcagctcacc cccacctcca agttcatgga ctccgaggcc cacattgtct 4740
ccatcgaggc ccacgacggc gtcgtcgaca tcgttgccaa tggtaacctc tgggctgatg 4800
gcctccgcgt ctacaacgtc agcaacatcc gtgtgcgcat tgttgctggc gccgcccctg 4860
ctgctgctgc tgctgctgct gctgttgctg ctccggctgc cgcccctgct ccggttgctg 4920
catctggccc tgcccagacc atcaccctca agcagctcaa ggctgagctt cttgacgttg 4980
agaagcctct ctacatctcc tccagcaacg gccaggtcaa gaagcacgcc gatgtggctg 5040
gtggccaggc caccattgtg caggcttgca gcctcagtga cctcggtgat gaaggcttca 5100
tgaagaccta cggtgttgtg gctcctctct acaccggtgc catggccaag ggtattgcct 5160
ctgctgacct tgtgattgcc actggtaagc gcaagatcct cggttccttc ggtgctggcg 5220
gtctccccat gcacattgtc cgtgccgctg ttgagaagat ccaggctgag ctcccgaacg 5280
gccccttcgc cgtcaacctc atccactccc ccttcgatag caaccttgag aagggcaacg 5340
ttgacctctt cctcgagaag ggcgttactg tcgtcgaggc ctccgccttc atgaccttga 5400
ccccgcaagt cgtccgctac cgtgctgctg gtctttcccg taacgctgat ggctccatta 5460
acatcaagaa ccgcatcatc ggtaaggtct cccgtaccga gctcgctgag atgttcatcc 5520
gccctgcccc gcagaacctc ctcgacaagc tcatccagtc tggtgagatt accaaggagc 5580
aggctgagct tgccaagctc gtccccgtcg ccgacgacat cgccgtcgag gccgactctg 5640
gtggccacac cgacaaccgc cccatccacg tcatcctccc ccttatcatc aacctccgca 5700
accgcctcca caaggagtgc ggctaccccg ctcacctccg cgtgcgcgtt ggagctggtg 5760
gtggtgttgg atgcccccag gccgctgccg ctgctctcgc tatgggtgct gccttccttg 5820
ttaccggcac tgtcaaccag gtcgccaagc agtccggcac ctgcgacaat gtccgcaagc 5880
agctctgcat ggccacctac tctgacgtct gcatggctcc cgctgctgac atgttcgagg 5940
agggcgtcaa gctccaggtc ctcaagaagg gaaccatgtt cccgtccagg gctaacaagc 6000
tctacgagct cttctgcaag tacgactcct tcgagtccat gcctgccaca gagctcgagc 6060
gtgttgagaa gcgcatcttc cagtgccctc ttgctgatgt ctgggctgag acctccgact 6120
tctacatcaa ccgcctccac aacccggaga agatcacccg tgccgagcgt gaccccaagc 6180
tcaagatgtc tctctgcttc cgctggtacc ttggtcttgc ctctcgctgg gccaacaccg 6240
gtgaggctgg acgcgtcatg gactaccagg tctggtgtgg ccctgccatt ggagccttca 6300
acgacttcat caagggctcc taccttgacc cggccgtctc tggtgagtac ccggacgtcg 6360
tgcagatcaa cttgcagatc cttcgcggtg cctgctacct ccgccgtctc aatgtcatcc 6420
gcaacgaccc gcgtgtcagc attgaggtcg aggatgctga gttcgtctac gagcccacca 6480
acgccctcta agcgagttat atctgtctag aaaacttggc atggctagca atttatgtct 6540
agctattcca tacacacggt aatgccagta gcctgttagt tatagctctt ttggttgttg 6600
tctcacaata cactgacatc agcagaacaa aatgaaaggg gccttggcta ccatgaaatc 6660
aatacttcaa aaggtctctt ggtttcttta ctcgcatgtc gctatttact tacattcctc 6720
gagtacataa catatcatac atcaaagaaa ttaaaaagaa aacaaacatt caaatatgca 6780
ttactttccc tactgtacta gtaagtacgt ttctggtatt aagttgtttt ttctcaaaag 6840
aacaatgtgc ttacttgtaa aatccacagc tgcttacttg taagcctcaa ctagttagtg 6900
atgtgattat cataaaatgt tcgacactgt acctcctttc cagctatctt cctacacctc 6960
ctctgacgca ggttgacgga ggaggcgtgg gggttgattg aagtgcaaca caacgttttg 7020
tttaagatat tccttgcctt ggccgactcc aaatggatag cacagaagcc taatgataat 7080
ttgaattaat tttatttcga gcttatttaa tgctcttatc agagtccgta ggtatctctt 7140
ttcctactaa ttgttgaaaa aggatgtttt ggacatagca ggtcatcata ctatttggtt 7200
ccatcaaatt catatccatt tctttcgttc aagtgcttcc cttcctactt attatatata 7260
ttatatatcc ataaatgtaa aagagacgat tacgaatact ttgcatacat gtatagcgaa 7320
acagagatgg tagcaaaagt tcaccttcac taatctaaga atctctccac gtgggtaaaa 7380
acttcagcag taagattgta aatgatgtcc aagaacaaaa cgtcatgcta gtccaggggt 7440
tactgagcta acgattaata atgtttcgta gtcttcctaa ttgcaccatc aaaacttgtc 7500
tgcacaagtt ttaaagtatt ggagccttta ctgaagaatc agaggacata gatggggcac 7560
gttcgccttg aaaaaaatag tcttctttac ctgcatggtg ttacaaacaa aaacgagttg 7620
aaaatagctg tgcaaggagg caaacatgat tggaaaagaa aaacgagggg acccttatac 7680
aggagggcgc cacatagtag aatgagtaga ttgttagagt agggtacgct ttatgtgatt 7740
gattgaatgg gcgagtgaaa gttgctg 7767
<210> 8
<211> 7800
<212> DNA
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 8
ccacataatt tgaaagaaac attgaccacg cagccagtca tcgtgttgga aatcaccacc 60
gtgtgcccca cgacactact gcgaagcgct cgacacctcg tcgacaccaa gcacgagagt 120
ctgcgtgtaa gaaaaataaa tgaaagagct tttgtgtgat ggtacattcg ctgcgcttct 180
tcgcaacttg aagatggccc agtaataagc tcgggcatgc tgcaccaaac agaagtgggg 240
gtatcatgca gtcaagacct cataacaggg acacaaacgg ctgtctcctc gcgcgcctcg 300
gtacgtatcc aagtcccaaa ccgtgagaaa ttttcatgtt gatactggca tgatacgcct 360
cttgtcggac agatgggcgt tctcaacatt ggttctcatg tctgaatctt agggtttaat 420
ataatagtac tctaggtatg tagctattac agaaggtaag aggactagta gttctagtac 480
atgataggta gtgtcaggta ccagtgtgaa aaaaaaatgg aaggccattt tcgatgtccc 540
aggtcgatcc atataaattg tcgtggataa tgacagcaat ggagtttcgg attggctctt 600
gtcattactg tggaccacca ggtttctcgt gatgtaaact aaccctctag cactttttaa 660
ccttcatcga cctggtttta gatctcagaa ttcaatagga agtggcgttg tcaaagttgt 720
tggttctatc gttttgagta cttaatagca ggtactgcct aagcaagtct cagcttccgg 780
cactgtagct gttctttcgg ggaggggaga ttctgctgtt ctttgaagta gtattcttca 840
cgagagtttg tttgttacct tttctgattc acaaatgaga aagaagagca caggataagt 900
tgtaaaaata tcctggtatt cattcttcac gggaaaaccc aaacgagtaa taatgtccac 960
catcaggcta agccatcatg caaatgcaaa gtatgatgaa ttatccctca atgctttaat 1020
gagggtcttt agcataacat gaatggtaca aatcaaatat aggtgtttag gaagctctca 1080
aaaatgctaa ctcccatgta cccaaacacg cgaaacttcc ggcatcttga agaattcgcc 1140
gttgactcac caaccaatga tggtcagtgg aaacaacaac tgcacgatct aatctcgtcc 1200
tgggcagaca cgactggctt gacatgcatc ttcaccaaca acgcacaact agaactattg 1260
taattgagac tttaaaataa ctaagcttcc taggcgttta agcaacaaca aatccctttt 1320
attcttgcga cattgaaata gcagcgacta caagtaaaag cgccctgtgc caatactagt 1380
gtttgcggaa agctcatgtt gtggtcttca gaaaatgagc cttggcacac ggcaaacttt 1440
gccaaggtca tacaatcaaa tggtgaagag gaaatagcca aagagactca ccttgatctt 1500
gaagacgtgc gagataatgt tgttcggtac gcatcagaat ctccctctca acgtgttatc 1560
atatggcttg atgataaagg aaacgaaagt tctgttctta ctcgtgaaag tctagtcaag 1620
agcgctcagg gtcttgcaga ggcaatgaga acccagtgga agatgaaaac aggcgagaaa 1680
gttctccttg tgtttttgcc aggtacagat tttatcattg ctatgatggc atgtcttttt 1740
ggaggcttcg tcgcggttcc agtctaccca ccagatccaa acagtccaaa ggcaggactt 1800
ttaaaactag gtaaagcggt tgaagttgca caggtgtcta ctgtgatttc tcacaccaaa 1860
tttctccatc tgcgtcggtt agtgattggc gttaagaagt ttccgcgagg actgaaatgg 1920
cataacatga gcaaagtgaa accagctgct tctattggcg tcacaatgcc tgtagccagc 1980
catgaattag ccttcataca attttcgagt ggaagcacag gcgaccccaa gggtgtttgt 2040
gtaacacatg gaaacctcaa cagcaatctt gcaagtatta agacgtctat gggcatgagt 2100
gaagacacag ttggtgtcac atgggtccca ttttatcatg acatgggcct ggtaggtgca 2160
attcttacta ccctgtattc tggcgcaatc atggtagcca tgtctccgat tagcttttta 2220
caaaatccat ttgtgtggtt aaatgctatc tcaaagtatc gtggcacgac cacttgcgcc 2280
cccaactttg cgtatgtgct tgcagtacgt aaagttccag tagccaaaag gaaggagctc 2340
gacctatcat gctgtaagcg ctattcgaat ggcgctgagc cagttcgtgc agaaacctta 2400
tgggcctttg cagaggcata cgagaagcaa ggtgtgaaag ctgagtactt ggatccattt 2460
tatggtatgg cagagaacgt tgttcttatt tccacgcatc gaggtccaca tatgcctctc 2520
atgttgcggc tcaaggctgg gttttccaat aaacctggct ctaaaatagt tcttgtgcat 2580
cccgaagaag atggacaaga tttagtaggc aacggccctc ctggcgtagg tatcgaggtc 2640
tcggttgtac acccagagac aagggtacta ttagaagatg atactatcgg tgaactctgg 2700
gtaacaggtc catccaaagt cagtgaatac cttggcaagc ctgctctgtc ggaagaagaa 2760
ctcaatgcca agatttcaac ccgctctgac gaacgaacct ttctccgcac aggtgacatg 2820
ggtttcgttc ataaaggcga aatttttgtg tgtggacgca tcaaagacat gatgattgtt 2880
cgtggacgta acattttccc ccaagacgtt gaaagcactg tagatcaagc aagtactaag 2940
attcgccctg gctgttgtgc tgttttcacg cttgaaggaa ctgaaaatgt tgttgttgtt 3000
gctgaagtcc gtgatggaaa acttgctaac gaagctggtg gcttggcaga cctgattcgc 3060
gctcgcatca tgactgaaca cagttttcga ccttttgctg tgattctaat caagccacga 3120
acgattccta agaccacaag cggcaagatc caacgccgag ctgctcgaga agcgtatgtt 3180
caaggagagc tatcagttct tgtcgaggct cgtgatgaaa gctgtttacc agaacgccgt 3240
tctgcaatgc agaggcgtgc aagtcttgcc gctttggatg acctccttga tgagttagag 3300
gaaatggact tatggacagg gcctgcacag atgcgagcgc ttgtggaaga gatgaattta 3360
gcaggataca cagtctttga tgagcttgct tgtttgcgca tacctgtcag tttgtctcct 3420
cttgttaaac agcttcgtga gttgttagtt catcgcccaa ttcttcgtaa ctttgctgcc 3480
gacttagcca tcggctgcaa tgaggagcta cgaagtagtc gggtcgtggg tccgttgagc 3540
cttgcatatt tccttcatat ttgcattgat gcactgcaag atcgggagtt gtttgttcag 3600
attcttcctc aagtccttga ttcccttgtt gaaaacttta gcgtccctgc caagcgtacc 3660
tggtttggtc atgtacaagc tgggcttgca gcctgggcag caaagctgca acttcagcaa 3720
ggtgggttac gttgtacaga tgagaaccat gctcagttcc aactaggact gggtgtttta 3780
gcgtcggtgg gggctgaaat gcttcatggt gttaaaaagc ccacgttatc tgctctttgt 3840
ggtgctagct tatatgaggt tataagtcac gagactcacc gtggtcacac acgaagtgcc 3900
attgttgaat cttttgttgc atggaatttt gcatttttag aaaaatacaa gcccttcaag 3960
gatatcaccc gggatctgcc atacgaagtt ctactgttgg tgccaagcct cgtaagtgca 4020
cagtcgctag acgagctgta ccataatcgc atgataggac tcttgctgct tatgggcgca 4080
aaacagtcaa aattatttgc caatacagaa agaagtattc agttccgagc aggtaccatc 4140
gatgatgcaa tttgccaggt catgatttca ttaaatgctc agtgtgcaga gcgcctggcc 4200
aatagtatac ctcattattg tggtcctcgc gaaatgagtg ctgcgcccga atcattgttt 4260
tctaggagta agtatgctct tcgaaacttg cagcgagcct ctgttttgcc agacaatctt 4320
ttcgataaca catggagtga gttggtggaa aatatggaga gtcatggtga ggttcgtgct 4380
ggtgagaacc ctgacgaacg tcttcgctgg cttttgcaat gcgtacgtca aagcattgaa 4440
gctccttcct taggtcttga tgacgatctc ttcgaagcgg gtatgagttc catggcaatg 4500
attgaagtga atgctcatgt cgagaatttg attggtttca acgagacagt cgagccagat 4560
ttcattgcca agtatcgtac agtgcggcgt ctggcggagg ctgttgaaca gaaacgtatg 4620
gctcatgttg agctagagga agtcaaatac tcaaatcaac ctgccctgcc atatcatgtg 4680
gcaaccacaa tccaatttct cggtatttgg gtgctttttt tcatgatgtc cgcagcgatt 4740
ttacccgcct atcactatgg actatgggtt cggtacaaat cgggacttcc atctccttgg 4800
tcacactata gagttaccag cacgctcagc atgtttgggc tattagtgcc ttttgtgata 4860
cctttgtgga ttgcttcatt ttcgctgctg gttcttgttg caaagtggat cgtagtgggg 4920
aaatggcgtc catgcgaagt gaaaatcaac tcgtttccgt atttacgctg gtggttcgta 4980
gaccgtgcta cccatttgtg ggagatagct gtgggtcgat ggtttcttaa cacgccatta 5040
ctgaacatat tttatagggc tatggggggg caagtgtctt tcacagccaa ggttaaagtt 5100
aatcttcggg atcttgacct cgtgcatatt ggcgctgggg cagaggtgcg cggaacattg 5160
gtgtgccgag tctttgatgc caaagaaaga actttgcgtt ttcgacgagt caaacttggc 5220
caaggtagcc ggctgcgtac aggttcagtc gtgatgcctg gatgctgggt aggtaaaggt 5280
gcagaagtgg tacctttaca agtgctcaac gagggtgaga aagttgctga aaacattgag 5340
gctatagaga cttctcattc tagcattaat gctaccgtgc gtgagctatt tgcaaaattg 5400
ttcatcatgt gctctttcct gttgttgtat tttaacactt cagtcatcat tggcttgatc 5460
tgggatgcgg cgggttaccc tgaaaacttt cggtatgtgg aattggtcta ttgggcatca 5520
tcttatctcg tgacagcatg tataatgtcg tttgtagctg tcggtatgaa atggatactg 5580
attggtcgtc tcaaaacagg tgctattaaa ggctctagtt tgcggatttg ggcggctgac 5640
tatttgttca cactagtttg ggtgacttgg attcaatttt tagatgaaac acgttctata 5700
ttgggttatg cacgcggttt aggggcttcc atcgggccag gttcatttgt atctgcaata 5760
aagtggattc agccatcaaa tgcagacatg gtgaagatgg gagcctcgtc catggcaagt 5820
ctaattctca ttgagacaga aagtgaagga attcgagggc gcgtagaaat aggagactac 5880
tgtgaggtga gttacctggc attactaggt cgaggatcca caatgcaatc acgctcgtat 5940
ttgggaagtt tgagtgttct catggaaggc gagaccttgc ctacagggta ccgacaattt 6000
cgcggagcga cctttcctgt ggccactaag gaaggtgagg tagatatgga aatctggagc 6060
acaacagatg agattttagg acttttgatg cgcgtggtgt tgattgttct tgtggtcttc 6120
tcgctcatcc cagcgtatga gtttgcaaat tttgttttgt ttgatgctga tatggataga 6180
aatgctgcca ttcttctttt agctgtaagc ttctggctag cgatggtaag catgatggta 6240
gcacaaaagc taatggcaac tgctgtgttg gggtttggta aagagttgca agagcttcct 6300
tgtcgacttt ctttttactg ctcatatcag ctgtttacat actttttcga aaatcttttg 6360
ctcgtggttc tacatgggac tccattttat aattcatttg cgcgctttat gggtgcatgc 6420
gtgggacgtc gggtgatttt actcacgggt ggtcttcgag agcaccaact tatcacgcta 6480
gagtatggcg cagttgtaga caatgcgcaa ctcactggtc accaggcgtg cgatggagcg 6540
tttgaactag gtccttcact tgttggcgca gagtcagtac ttcagcctgg tgctgtatgt 6600
ctttcgaatg gaattgttca cgctggtact gttattcacg ctcgttcctt tgcaccaaag 6660
cgtacagggg ctgcaatata tggcaagccg tctcctgttt gcattgctcc cgaggttgca 6720
tagtttccta catattgtct actatcattc ccggattgtg gactcatgtt aaacagtgca 6780
tttatttcga ttgaatattt cctgatcatc ctttcgttac ttctcaactc tatgtgaata 6840
catagagata ctttgtttgt gcatccaaca ggctggaaag tatgtacggc ctaagtaaat 6900
tactgattgt aagtaaaaaa tcaatgataa aaatgaaagt cggtctgtgt caattgatca 6960
ccggtgcgct ttcaattttc agatgaatac aaattgcttt caaaattact acgagaacga 7020
aagacacgaa ccccttttta cataaaaaca ccgcaacaat ccataataag tgcactttga 7080
gcaaaatatg aaatctagta aataaatgtg aacatatttg ataaagttgt cactgcagga 7140
tcttactctg attgcttgta tcactccttc tatagtttta aacaatggta tgtcctttat 7200
gttaacataa accctttaca tagcacataa atttgcattg cataaagaag ggtaggttta 7260
cttttattat ttgaaatcag caatcaaaga aacgcgtaaa gctctgatca gctaggaagg 7320
atgaaagcaa gatgcttgag aatcttgaag atgttttaag aaggcactat aaacgtgaac 7380
gtttagtgtt aggaatctct tcgcctttta aaaatgaaat ttgcgagcga ctgatttgta 7440
ttgtatttag taaacttgag caagtttgac ttgtattaaa cacaatataa aaggctagga 7500
tttacccttc caaatcatct tgaaaaatgc aattctcgag tccctttgct tcacatatct 7560
gattatgtac tttttatctt acaccaatct aaatagttca gaacctacaa tggtgtgtca 7620
agcaaggact ctcacaatgt cttgttcgca tgacaacttt aattgtaggt cttaacatgt 7680
agcaagggta cactagacaa ctcaggaata ctatgacagg cttaaaaaac tgcaggttct 7740
aattcatagc aatcaagtct aaaaccgtgt gattttaaaa tatgcataag aacggtgcac 7800
<210> 9
<211> 669
<212> PRT
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 9
Leu Glu Arg Ala Leu Gln Glu Glu Ile Glu Val Leu Gln Gly Asp Thr
1 5 10 15
Leu Ser Ala His Leu Ser Lys Ile Leu Cys Ala Ile Ser Ser Thr Phe
20 25 30
Ala Arg Phe Glu Ser Tyr Cys Glu Asn Thr Val Leu Asn Glu Ala Ser
35 40 45
Lys Cys Thr Pro Gln Glu Leu Ser Glu Leu Tyr Asp Tyr Thr Ser Leu
50 55 60
Gly Leu Lys Glu Pro Ser Val Leu Asp Val Asp Lys Leu Tyr Gln Lys
65 70 75 80
Leu Gly Lys Ser Arg Glu Ala Thr Lys Ser Leu Lys Arg Ala Arg Glu
85 90 95
Glu Leu Glu Ala Glu Asp Leu Glu Glu Glu Glu Arg Glu Tyr Phe Arg
100 105 110
Asn Arg Ile Lys Lys Gln Lys Arg Ile Leu Ser Lys Gly Asn Pro Ile
115 120 125
Glu Leu Ser Lys Val Phe Arg His Lys Leu Ala Glu Thr Leu Gln His
130 135 140
Ala Gln Glu His Tyr Pro Glu Leu Leu Gln Asp Arg Ala Trp Leu Glu
145 150 155 160
Lys Leu His Val Ala Ala Glu Gly Val Phe Glu Val Ala Cys Ser Asp
165 170 175
Leu Trp Leu Thr Asn Val Thr Val Ser Asp Phe Gln Arg Val Gly Glu
180 185 190
Pro Leu Ser Phe Arg Gly Gly Lys Lys Val Gln Lys Val Leu Asp Asn
195 200 205
Val Gly Lys Thr Met Val Leu Lys Glu Phe Gln Leu Gly His Pro Ser
210 215 220
Gln Ser Lys Thr Phe Tyr Gln Gln Val Ala Asn Leu Gly Lys Val Val
225 230 235 240
Ser Gln His Val Ile Arg Ile Thr Gly Ala Phe Val Asp Met Thr His
245 250 255
Gly Glu Ser Arg Gly Cys Ile Val Met Pro Phe Tyr Glu Gln Gly Asp
260 265 270
Leu Ala Lys Trp Ile Glu Ser His Pro Asn Glu Gly Lys Glu Ala Arg
275 280 285
Asp Arg Leu Ala Val Gly Leu Leu Val Gly Val Ala Asp Leu His Ala
290 295 300
His Cys Ile Val His Cys Asp Ile Lys Pro Glu Asn Ile Phe Leu Thr
305 310 315 320
Ser Asn Gly Thr Pro Leu Ile Gly Asp Phe Asp Gly Ile Lys Val Val
325 330 335
Asn Tyr Thr Ala Thr Tyr Thr Ser Leu Gln Ala Thr Pro Arg Tyr Ile
340 345 350
Ala Pro Glu Leu Gln Asn Gly Pro Val His Arg Phe Glu Thr Ala Met
355 360 365
Asp Met Tyr Ser Val Gly Ile Ser Leu Lys Glu Leu Tyr Pro Thr Glu
370 375 380
Arg Thr Ala Ala Met Gln Thr Leu Ile Glu Ala Leu Thr Ala Arg Asp
385 390 395 400
Pro Ser Gln Arg Pro Ser Ala Arg Gln Ala Leu Gln His Gln Ala Phe
405 410 415
Gly Ala Pro Gln Ile Pro Leu Met Glu Cys Leu Val Cys Phe Glu Lys
420 425 430
His Arg Leu Ser Glu Gly Thr Ser Cys Glu Glu Gly Asp Phe Leu Cys
435 440 445
Arg Gly Cys Ile Glu Ser Ala Val Glu Ala Ala Ala Gln Pro Leu Ala
450 455 460
Asn Val Arg Val Asp Ala Asp Gly Thr Met Ala Cys Met Lys Pro Glu
465 470 475 480
Cys Ser Gly Lys Ile Ser Gly Gln Glu Ile Thr Arg Leu Ala Pro Thr
485 490 495
Ala Leu Asn His Leu Leu Leu Ile Ala Lys Met Lys Ala Glu Ser Glu
500 505 510
Ala Ala Val Trp Ala Glu Lys Glu Ile Gln Arg Arg Ile Ala Glu Val
515 520 525
Val Arg Ala Glu Glu Gln Asn Ser Asp Ala Arg Trp His Leu Leu His
530 535 540
Ile Gln Glu Asn Ile Leu Ser Thr Cys Cys Pro Asn Cys Lys Ala Tyr
545 550 555 560
Val His Asp Phe Asp Gly Cys Cys Ala Val Lys Cys Gly Asn Asn Ala
565 570 575
Cys Gly His Leu Phe Cys Ala Trp Cys Leu Gly Tyr Ser Ser Gln Asp
580 585 590
Gly Asp Val Cys His Ala His Val Arg Thr Cys Ser Arg Arg Leu Gly
595 600 605
Gln Asp Leu Tyr Phe Pro Gly Ser Leu Glu Gln Val Cys Glu Ala Trp
610 615 620
Arg Leu Leu Arg Ala Glu Arg Leu Arg Glu Tyr Trp Asn Ala Gln Ile
625 630 635 640
Gln Asp Arg Asn Leu Arg Leu Val Leu Lys Asp Leu Leu Ser Pro Leu
645 650 655
Leu Thr Pro Asp Ile Val Gly Ala Asp Phe Arg Leu Glu
660 665
<210> 10
<211> 1193
<212> PRT
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 10
Asp Arg Ile Asn Glu Gln Glu Leu Ile Leu Ser Gln Gly Asn Pro Ile
1 5 10 15
Glu Leu Ser Lys Ala Phe Arg His Lys Leu Ala Glu Thr Leu Gln His
20 25 30
Ala Gln Glu His Tyr Pro Glu Leu Leu Gln Asp Arg Ala Trp Leu Lys
35 40 45
Arg Leu His Ile Ser Ala Glu Gly Val Phe Glu Val Ala Cys Ser Asp
50 55 60
Leu Trp Leu Ala Asn Val Glu Ile Ser Asp Phe Lys Pro Val Gly Glu
65 70 75 80
Leu Leu Ala Ser Arg Gly Gly Lys Thr Val Gln Lys Val Leu Asp Gly
85 90 95
Asp Gly Arg Thr Leu Val Leu Lys Gln Phe Gln Leu Gly His Thr Ser
100 105 110
Gln Ser Lys Thr Phe Tyr Lys Gln Val Ala Asn Leu Gly Lys Val Val
115 120 125
Ser Gln Asn Val Ile Arg Ile Thr Gly Ala Phe Val Asp Met Thr His
130 135 140
Gly Ala Pro Arg Gly Cys Ile Val Met Pro Phe Tyr Glu Gln Gly Asp
145 150 155 160
Leu Ala Lys Trp Ile Glu Ser His Pro Asn Glu Gly Lys Ala Ala Arg
165 170 175
Asp Arg Leu Ala Met Gly Leu Leu Ile Gly Met Ala Asp Leu His Thr
180 185 190
His Gly Ile Val His Cys Asp Ile Lys Pro Glu Asn Ile Phe Leu Thr
195 200 205
Ser Asn Gly Thr Pro Leu Ile Gly Asp Phe Asp Gly Ile Lys Val Ala
210 215 220
Asp Tyr Thr Ala Thr Tyr Thr Ser Leu Gln Val Thr Pro Lys Tyr Leu
225 230 235 240
Ala Pro Glu Leu Gln Asn Gly Pro Val Tyr Lys Phe Glu Thr Ala Met
245 250 255
Asp Met Tyr Ser Val Gly Val Ser Leu Lys Glu Leu Tyr His Thr Glu
260 265 270
Arg Thr Ala Ala Met Gln Thr Leu Ile Asp Ala Leu Thr Ala Thr Asp
275 280 285
Pro Gly Gln Arg Pro Thr Ala Arg Gln Ala Leu Gln His Glu Ala Phe
290 295 300
Gly Ala Pro Lys Ile Pro Val Lys Ile Cys Leu Val Cys Met Glu Glu
305 310 315 320
Tyr Gln Leu Ser Glu Gly Thr Ser Cys Glu Glu Gly Asp Phe Leu Cys
325 330 335
Arg Asp Cys Ile Glu Ser Ala Val Glu Ala Ala Ala Gln Pro Leu Ala
340 345 350
Asn Val Arg Val Asp Ala Asp Gly Thr Met Glu Cys Met Lys Pro Glu
355 360 365
Cys Val Gly Arg Ile Ser Gly Gln Glu Ile Thr Arg Leu Ala Pro Ser
370 375 380
Ala Leu Asn His Leu Leu Leu Ile Ala Lys Thr Lys Ala Glu Ile Glu
385 390 395 400
Ala Ala Val Trp Ala Glu Gln Glu Ile Gln Arg Arg Ile Ala Glu Ala
405 410 415
Leu Arg Ala Asp Gly Gln Asn Arg Asp Ala Gln Arg His Leu Leu His
420 425 430
Ile Gln Glu Lys Ile Leu Ser Thr Cys Cys Pro Asn Cys Lys Ala Tyr
435 440 445
Val His Asp Phe Asp Gly Cys Cys Ala Val Glu Cys Gly Asn Asp Gly
450 455 460
Cys Gly His Ser Phe Cys Ala Trp Cys Leu Glu Phe Ser Ser Gln Asp
465 470 475 480
Ser Gln Ala Cys His Ala His Val Leu Val Cys Ser Arg Asn Leu Ser
485 490 495
Asn Asn Lys Ser Tyr Phe Ala Glu Ser Phe Glu Gln Val Arg Glu Ala
500 505 510
Trp Gln Leu Leu Arg Ala Glu Arg Leu His Glu Tyr Trp Asn Ala Asn
515 520 525
Ile Gln Asp Glu Asn Leu Gly His Ala Leu Glu Gln Gln Leu Val Pro
530 535 540
Leu Leu Thr Pro Asp Ile Val Gly Pro Glu Phe Lys Leu Ile Glu Asp
545 550 555 560
Val Leu Pro Ser His Tyr Cys Ser Ile Ser Ala Thr Val Pro Thr Thr
565 570 575
Thr Thr Thr Thr Thr Thr Thr Ala Ile Val Arg Gly Val Gly Phe Val
580 585 590
Ala Ala Thr Phe Val Leu Thr Ile Ala Glu Gln Pro Ser Thr Thr Val
595 600 605
Ala Ile Gly Phe Val Leu Leu Gln Pro Leu Ala Tyr Val Leu His Ala
610 615 620
Pro Val Arg Val Phe Gln Tyr Leu Asn Glu Ser Gly Lys Lys Asn Trp
625 630 635 640
Phe Asp Glu Pro Thr Gln Glu Met Ile Glu Phe Leu Leu Ser Glu Asn
645 650 655
Glu Ala Ile Leu Ala Glu Gly Arg Ala Glu Gly Arg Ala Lys Val Leu
660 665 670
Ala Glu Phe Ile Glu Pro Leu Leu Ala Gly Leu Arg Lys Pro Leu Phe
675 680 685
Leu Lys Val Thr Leu Arg Val His Ala Ser Thr Ala Ala Thr Pro Ser
690 695 700
Ala Trp Gly Leu Glu Phe Ile Ser Leu Lys Leu Trp Arg Gly Phe Thr
705 710 715 720
Ser Glu Ile Ile Asn Pro Phe Leu Ser Ala Asn Leu Leu Asn Met Gln
725 730 735
Ile Arg Asn Thr Ser Phe Arg Thr Ser Leu Tyr Pro Leu Asn Ile Ser
740 745 750
Gly Asn Thr Asn Ala Met Ala Ser Leu Phe Asn Asn Trp Cys Cys Arg
755 760 765
Pro Phe Val Gly Leu His Thr Glu Val Ala Asn Phe Pro Lys Val Ile
770 775 780
Val Arg Ile Glu Asp Asp Ile Gly Leu Ser Ala Lys Pro Asp Leu Thr
785 790 795 800
Leu Val Lys Ile Asp Asp Gln Arg Asn Glu Thr Val Phe Ser Ile Val
805 810 815
Glu Val Lys His Pro Asn His Phe Leu Pro Leu Ser Glu Asn Pro Asn
820 825 830
Trp Thr Asp Arg Arg Asn Ala Ala Ala Ala Ala Gly Ile Ala Ile Phe
835 840 845
Thr Ser Arg Gly Gln Pro Arg Gln Ala Leu Glu Gln Leu His Gly Asn
850 855 860
Met Leu Ile His Gly Val Lys Tyr Ala Ile Leu Thr Ser Val Glu Leu
865 870 875 880
Thr Tyr Phe Val Lys Arg Asp Asn Lys Gly Asn Met Arg Ile Thr Arg
885 890 895
Gly Phe Tyr Gly Ala Glu Thr Gly Gly Ala Arg Val Ile Ser Thr Asn
900 905 910
Glu Ala Met Ala Ala Phe Ile Tyr Ile Ala Ser Arg Asp Pro Asp Asn
915 920 925
Gly Lys Phe Arg Pro Arg Ser Asn Ser Thr Ser Thr Glu Ile Arg Ala
930 935 940
Tyr Ser Glu Arg Ile Gln Thr Lys Phe Gly Gly Arg Ser Ile Ser Asp
945 950 955 960
Arg Ala Thr Glu Lys Phe Lys Asp Arg Val Gly Glu Thr Ala Leu Gln
965 970 975
Phe Met Lys Gly Leu Asn Gln Leu Ala Val Asn Ile Glu Glu Leu Arg
980 985 990
Ser Asn Leu Ile Glu Val Leu Pro Phe Lys Asp Glu Ala Tyr Leu Phe
995 1000 1005
Met Pro Leu Pro Trp Ser Lys Asp Tyr Arg Leu Val Thr Ser Tyr
1010 1015 1020
Val Val Arg Ile Pro Trp Val Ser Asn Lys Asp Phe Asn Trp Asp
1025 1030 1035
Ile Phe Val Lys Thr Met Ala Val Ser Lys Asp Trp Ala Arg Glu
1040 1045 1050
Thr Tyr Glu Phe Glu Lys Ser Phe Phe Leu Asn Glu Val Lys Leu
1055 1060 1065
Tyr Leu Gly Pro Leu Arg Leu Leu Gln Gly Lys His Ala Pro Phe
1070 1075 1080
Leu Val Tyr Gly Gly Thr Phe His Lys Arg Ile Ile Ile Ala Thr
1085 1090 1095
Thr Phe Ser Gly Glu Thr Ala Thr Lys Glu Leu Ile Leu Ala Asn
1100 1105 1110
Ser Ser Trp Ala Ile Thr Ala Ile Arg Ala Ser Leu Ser Ala Leu
1115 1120 1125
His Gln Val Gly Val Leu His Gly Asp Ile Ala Leu Arg Asn Ile
1130 1135 1140
Ala Ile Asp Thr Thr Thr Lys Thr Ala His Leu Ile Asp Phe Gly
1145 1150 1155
Arg Ser Ser Gln Asp Lys Thr Thr Lys Lys Asn Arg Asp Thr Glu
1160 1165 1170
Met Lys Glu Leu Asn Thr Leu Leu Gly Phe Ala Ile His Arg Lys
1175 1180 1185
Arg Ile Arg Asp Ser
  1190
<210> 11
<211> 773
<212> PRT
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 11
Leu Trp Pro Ala Glu His Leu His Glu Thr Tyr Glu His Ile Arg
1 5 10 15
Asn Asp Ala Leu Gly Ser Gly Cys Ser Val Val Ile Tyr Val Ala Leu
20 25 30
Asp Cys Asp Ala Leu Cys Ala Val Lys Ile Leu Thr Ser Leu Leu Lys
35 40 45
Ala Asp Asn Val Ala Tyr Lys Leu Arg Pro Val Arg Gly Tyr Ser Asp
50 55 60
Ile Leu Glu Asp Phe Arg Glu Thr Ser Lys Ala Glu Ala Ile Lys Ser
65 70 75 80
Ile Ile Met Ile Asn Cys Gly Gly Asp Val Asn Ala Gln Glu Met Phe
85 90 95
Asn Leu Asp Asp Gly Met Thr Cys Tyr Ile Ile Asp Ser Ala Arg Pro
100 105 110
Tyr Asn His Ala Asn Leu Leu Arg Ser His Met His Thr Ile Val Phe
115 120 125
Ala Asp Asp Phe Met Lys Glu Glu Asp Leu Val Lys Glu Ala Glu Leu
130 135 140
Leu Glu His Leu Asp Glu Asp Asn Val Asp Glu Leu Leu Gly Ser Asn
145 150 155 160
Asp Asn Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Ser Asp Asp
165 170 175
Gly Lys Gly Glu Val Glu Asp Gly Asn Asp Ala Asn Ser Ala Arg Asn
180 185 190
Gly Gln Glu Gly Glu Ile Asp Ser Asp Glu Glu His Glu Phe Asp Gly
195 200 205
Gly Asn Pro Gln Gln Asn Ala Ser Asp Ser Asp Asp Asp Glu Asn Glu
210 215 220
Asp Ala Asn Lys Gln Thr Ser Asn Asn Thr Asn Asn Lys Thr Ser Lys
225 230 235 240
Ala Lys Ser Ala Ser Gln Leu Leu Thr Glu Gln Glu Glu Ala Glu Ile
245 250 255
Glu Arg Glu Leu Ala Ala Glu Asn Gly Thr Arg Lys Lys Arg Arg Arg
260 265 270
Thr Ser Ser Ser Ser Ser Ser Ser Gln Asn Asp Lys Asn Asn Asp Ser
275 280 285
Gly Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Lys Asp Asp Asp
290 295 300
Ser Leu Pro Lys Arg Lys Val Arg Glu Lys Val Asp Ala Glu Glu Pro
305 310 315 320
Met Asp Asp Lys Ala Arg Val Ala Lys Tyr Tyr Ala Gly Ser Phe Arg
325 330 335
Gly Thr Ser Ala Ala His Val Leu Phe Ser Leu Ser Gln Arg Leu Asn
340 345 350
Lys Asp Gln Lys Ile Phe Leu Trp Leu Ala Ile Val Gly Thr Thr His
355 360 365
His Phe Ile Asn Ser Glu Leu Ser Glu Glu Asp Tyr Leu Leu Arg Val
370 375 380
Leu Thr Tyr Gln Asp Leu Val Lys Asp Arg Ser Met Ser Arg Arg Ala
385 390 395 400
Gly Gln His Thr Val Thr Glu Asp Gly Ala Glu Val Pro Leu Met Glu
405 410 415
Gly Gln Ser Met Glu Phe Ile Glu Glu Leu Arg Leu Met Leu His Arg
420 425 430
His Trp Ser Leu His Glu Ala Phe Leu Tyr Ser Asp Tyr Ile Ala Ala
435 440 445
Lys Leu Gly Ile Trp Lys Asn Asp Gly Glu Ala Lys Leu Arg Thr Phe
450 455 460
Phe Ala Lys Met Gly Ile Ser Arg Lys Glu Ala Glu Gln Lys Tyr Ser
465 470 475 480
Phe Met Asn Met Ser Val Lys Arg Ala Leu Lys Asp Lys Ile Gly Ala
485 490 495
His Gly Ala Asp Phe Ser Leu Asp Glu Ser Phe Val Tyr Ala Ser Phe
500 505 510
Gln Phe Arg Ala Gly Phe Gly His Gln Leu Ser Ala Ala Asp Thr Ala
515 520 525
Tyr Cys Met Ala Ala Leu Leu Glu Ser Ala Ala Thr His Pro Thr Val
530 535 540
Phe Ala Asp Asp Ser Gly Ala Asp Ala Thr Glu Asp Ala Thr Glu Ile
545 550 555 560
Pro Glu Val Asp Leu Asp Gly Asp Asp Leu Asp Tyr Ala Gly Glu Asp
565 570 575
Gly Ala Asn Gly Gln Lys Glu Asn Ser Lys Ala Ile Leu Ala Ala Ser
580 585 590
Leu Trp Lys Gln Ser Phe Asn Ala Ala Tyr Asp Ala Leu Ser Phe Ser
595 600 605
Gln Thr Thr Arg Asn Gln His Leu Leu Glu Gln Gly Leu Asn Leu Ala
610 615 620
Lys Ala Leu Gln Lys Ala Ile Ile Gln Glu Gly Gly Asn Ile Ile Ser
625 630 635 640
Gly Thr Lys Ile Ala Ser Ala Gly Ser Phe Arg Tyr Cys Ile Leu Glu
645 650 655
Gly Leu Pro Pro Lys Leu Val Ser Ile Phe Ser Gln Pro Asp Thr Leu
660 665 670
Leu Arg Leu Ala Lys Phe Ile Met Leu Ala Tyr Thr Ser Ala Gly Lys
675 680 685
Trp Ser Gly Leu Gly Ala Lys Pro Leu Val Leu Gly Val Lys Asn Leu
690 695 700
Lys Thr Asn Lys Ala His Phe Val Gly Leu Pro His Pro Thr Phe Gly
705 710 715 720
Asp Asp Ala Ile Ala Lys Asn Pro Phe Gly Arg Tyr Phe Arg Val Ala
725 730 735
Ala Gln Lys Val Gly Thr Ala His Ile His Val Gly Phe Ser Ser Ala
740 745 750
Cys Ile Glu Ile Pro Leu Glu Leu Val Gln Lys Phe Leu Val Ala Leu
755 760 765
His Glu Ile Thr Ala
   770
<210> 12
<211> 2189
<212> PRT
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 12
Ala Gln Arg Glu Asn Arg Leu Glu Ala Asn Met Asp Thr Arg Ile
1 5 10 15
Ala Val Ile Gly Met Ser Ala Ile Leu Pro Cys Gly Thr Thr Val Arg
20 25 30
Glu Ser Trp Glu Ala Ile Arg Asp Gly Ile Asp Cys Leu Ser Asp Leu
35 40 45
Pro Glu Asp Arg Val Asp Val Thr Ala Tyr Phe Asp Pro Val Lys Thr
50 55 60
Thr Lys Asp Lys Ile Tyr Cys Lys Arg Gly Gly Phe Ile Pro Glu Tyr
65 70 75 80
Asp Phe Asp Ala Arg Glu Phe Gly Leu Asn Met Phe Gln Met Glu Asp
85 90 95
Ser Asp Ala Asn Gln Thr Val Thr Leu Leu Lys Val Lys Glu Ala Leu
100 105 110
Glu Asp Ala Gly Ile Glu Ala Leu Ser Lys Glu Lys Lys Asn Ile Gly
115 120 125
Cys Val Leu Gly Ile Gly Gly Gly Gln Lys Ser Ser His Glu Phe Tyr
130 135 140
Ser Arg Leu Asn Tyr Val Val Val Glu Lys Val Leu Arg Lys Met Gly
145 150 155 160
Met Pro Glu Glu Asp Val Gln Ala Ala Val Glu Lys Tyr Lys Ala Asn
165 170 175
Phe Pro Glu Trp Arg Leu Asp Ser Phe Pro Gly Phe Leu Gly Asn Val
180 185 190
Thr Ala Gly Arg Cys Thr Asn Thr Phe Asn Leu Asp Gly Met Asn Cys
195 200 205
Val Val Asp Ala Ala Cys Ala Ser Ser Leu Ile Ala Val Lys Val Ala
210 215 220
Ile Asp Glu Leu Leu His Gly Asp Cys Asp Met Met Ile Thr Gly Ala
225 230 235 240
Thr Cys Thr Asp Asn Ser Ile Gly Met Tyr Met Ala Phe Ser Lys Thr
245 250 255
Pro Val Phe Ser Thr Asp Pro Ser Val Arg Ala Tyr Asp Glu Lys Thr
260 265 270
Lys Gly Met Leu Ile Gly Glu Gly Ser Ala Met Leu Val Leu Lys Arg
275 280 285
Tyr Ala Asp Ala Val Arg Asp Gly Asp Glu Ile His Ala Val Ile Arg
290 295 300
Gly Cys Ala Ser Ser Ser Asp Gly Lys Ala Ser Gly Ile Tyr Thr Pro
305 310 315 320
Thr Ile Ser Gly Gln Glu Glu Ala Leu Arg Arg Ala Tyr Met Arg Ala
325 330 335
Asn Val Asp Pro Ala Thr Val Thr Leu Val Glu Gly His Gly Thr Gly
340 345 350
Thr Pro Val Gly Asp Arg Ile Glu Leu Thr Ala Leu Arg Asn Leu Phe
355 360 365
Asp Ser Ala Tyr Gly Asn Glu Lys Glu Lys Val Ala Val Gly Ser Ile
370 375 380
Lys Ser Asn Ile Gly His Leu Lys Ala Val Ala Gly Leu Ala Gly Met
385 390 395 400
Ile Lys Val Ile Met Ala Leu Lys His Lys Thr Leu Pro Ala Thr Ile
405 410 415
Asn Val Asp Glu Pro Pro Lys Leu Tyr Asp Asn Thr Pro Ile Thr Asp
420 425 430
Ser Ser Leu Tyr Ile Asn Thr Met Asn Arg Pro Trp Phe Pro Ala Pro
435 440 445
Gly Val Pro Arg Arg Ala Gly Ile Ser Ser Phe Gly Phe Gly Gly Ala
450 455 460
Asn Tyr His Ala Val Leu Glu Glu Ala Glu Pro Glu His Gln Lys Ala
465 470 475 480
Tyr Arg Leu Asn Lys Arg Pro Gln Pro Val Leu Leu Met Ala Ser Ser
485 490 495
Thr Gln Ala Leu Ala Ser Leu Cys Glu Ala Gln Leu Lys Glu Phe Glu
500 505 510
Lys Ala Ile Glu Glu Asn Lys Thr Val Lys Asn Thr Ala Tyr Ile Lys
515 520 525
Cys Val Asp Phe Cys Glu Lys Phe Lys Phe Pro Gly Ser Ile Pro Ser
530 535 540
Ser Asn Ala Arg Leu Gly Phe Leu Val Lys Glu Ala Asp Asp Ala Thr
545 550 555 560
Glu Thr Leu Arg Ala Ile Val Ala Gln Phe Gln Lys Ser Ala Gly Lys
565 570 575
Asp Ser Trp His Leu Pro Arg Gln Gly Val Ser Phe Arg Ala Gln Gly
580 585 590
Ile Asn Thr Thr Gly Gly Val Ala Ala Leu Phe Ser Gly Gln Gly Ala
595 600 605
Gln Tyr Thr His Met Phe Ser Glu Val Ala Met Asn Trp Pro Gln Phe
610 615 620
Arg Glu Ser Ile Ser Asp Met Asp Arg Ala Gln Ala Lys Val Ala Gly
625 630 635 640
Ala Asp Lys Asp Tyr Glu Arg Val Ser Gln Val Leu Tyr Pro Arg Lys
645 650 655
Pro Tyr Asn Ser Glu Pro Glu Gln Asp His Lys Lys Ile Ser Leu Thr
660 665 670
Ser Tyr Ser Gln Pro Ser Thr Leu Ala Cys Ala Leu Gly Ala Tyr Glu
675 680 685
Ile Phe Lys Gln Ala Gly Phe Lys Pro Asp Phe Ala Ala Gly His Ser
690 695 700
Leu Gly Glu Phe Ala Ala Leu Tyr Ala Ala Asp Cys Val Asn Arg Asp
705 710 715 720
Asp Leu Phe Glu Leu Val Cys Arg Arg Ala Arg Ile Met Gly Gly Lys
725 730 735
Asp Ala Pro Ala Thr Pro Lys Gly Cys Met Ala Ala Val Ile Gly Pro
740 745 750
Asn Ala Glu Lys Ile Gln Ile Arg Thr Ala Asp Val Trp Leu Gly Asn
755 760 765
Cys Asn Ser Pro Ser Gln Thr Val Ile Thr Gly Ser Val Glu Gly Ile
770 775 780
Lys Lys Glu Ser Glu Leu Leu Gln Ser Glu Gly Phe Arg Val Val Pro
785 790 795 800
Leu Ala Cys Glu Ser Ala Phe His Ser Pro Gln Met Gln Asn Ala Ser
805 810 815
Ser Ala Phe Lys Asp Val Leu Ser Lys Val Ala Phe Arg Gln Pro Ser
820 825 830
Ala Gln Thr Lys Leu Phe Ser Asn Val Ser Gly Glu Thr Tyr Ser Asn
835 840 845
Asn Ala Gln Asp Leu Leu Lys Glu His Met Thr Ser Ser Val Lys Phe
850 855 860
Ile Ser Gln Val Arg Asn Met His Ser Ala Gly Ala Arg Ile Phe Val
865 870 875 880
Glu Phe Gly Pro Lys Gln Val Leu Ser Lys Leu Val Ser Glu Thr Leu
885 890 895
Lys Asp Asp Pro Ser Ile Ile Thr Ile Ser Val Asn Pro Ser Ser Gly
900 905 910
Lys Asp Ala Asp Ile Gln Leu Arg Glu Ala Ala Val Gln Leu Val Val
915 920 925
Ala Gly Val Asn Leu Gln Gly Phe Asp Lys Trp Asp Ala Pro Asp Ala
930 935 940
Thr Arg Leu Gln Pro Ile Lys Lys Lys Lys Thr Thr Leu Arg Leu Ser
945 950 955 960
Ala Ala Thr Tyr Val Ser Asp Lys Thr Lys Lys Ala Arg Glu Ala Ala
965 970 975
Met Asn Asp Gly Arg Met Leu Ser Cys Val Ser Lys Val Ile Ala Pro
980 985 990
Pro Asp Ala Lys Pro Ile Val Asp Thr Lys Ala Gln Glu Glu Val Ala
995 1000 1005
Arg Leu Gln Lys Gln Leu Gln Asp Ala Gln Ala Gln Ile Gln Lys
1010 1015 1020
Ala Lys Ala Asp Ala Ala Glu Ala Asp Lys Lys Leu Ala Ala Ala
1025 1030 1035
Lys Asp Glu Ala Lys Arg Ala Ala Ala Ser Ala Pro Val Gln Lys
1040 1045 1050
Gln Val Asp Thr Thr Ile Val Asp Lys His Arg Ala Ile Leu Lys
1055 1060 1065
Ser Met Leu Ala Glu Leu Asp Cys Tyr Ser Thr Pro Gly Ala Val
1070 1075 1080
Ser Ser Ser Phe Gln Ala Pro Val Ala Ala Thr Pro Ala Pro Val
1085 1090 1095
Ala Ala Pro Val Ala Ala Ala Pro Ala Pro Ala Val Asn Asn Ala
1100 1105 1110
Leu Leu Ala Lys Ala Glu Ser Val Val Met Glu Val Leu Ala Ala
1115 1120 1125
Lys Thr Gly Tyr Glu Thr Asp Met Ile Glu Pro Asp Met Glu Leu
1130 1135 1140
Glu Thr Glu Leu Gly Ile Asp Ser Ile Lys Arg Val Glu Ile Leu
1145 1150 1155
Ser Glu Val Gln Ala Gln Leu Asn Val Glu Ala Lys Asp Val Asp
1160 1165 1170
Ala Leu Ser Arg Thr Arg Thr Val Gly Glu Val Val Asn Ala Met
1175 1180 1185
Lys Ala Glu Ile Ala Gly Ser Ser Gly Ala Ala Ala Ala Ala Pro
1190 1195 1200
Ala Pro Val Ala Ala Ala Pro Ala Ala Ala Ala Pro Ala Val Ser
1205 1210 1215
Ser Ala Leu Leu Glu Lys Ala Glu Ser Val Val Met Glu Val Leu
1220 1225 1230
Ala Ala Lys Thr Gly Tyr Glu Thr Asp Met Ile Glu Ala Asp Met
1235 1240 1245
Glu Leu Glu Thr Glu Leu Gly Ile Asp Ser Ile Lys Arg Val Glu
1250 1255 1260
Ile Leu Ser Glu Val Gln Ala Met Leu Asn Val Glu Ala Lys Asp
1265 1270 1275
Val Asp Ala Leu Ser Arg Thr Arg Thr Val Gly Glu Val Leu Ala
1280 1285 1290
Ala Lys Thr Gly Tyr Glu Thr Asp Met Ile Glu Ala Asp Met Glu
1295 1300 1305
Leu Glu Thr Glu Leu Gly Ile Asp Ser Ile Lys Arg Val Glu Ile
1310 1315 1320
Leu Ser Glu Val Gln Ala Met Leu Asn Val Glu Ala Lys Asp Val
1325 1330 1335
Asp Ala Leu Ser Arg Thr Arg Thr Val Gly Glu Val Val Asn Ala
1340 1345 1350
Met Lys Ala Glu Ile Ala Gly Ser Ser Gly Ala Ala Thr Ala Ser
1355 1360 1365
Ala Pro Ala Ala Ala Ala Ala Ala Pro Ala Ile Lys Ile Ser Thr
1370 1375 1380
Val His Gly Ala Asp Cys Asp Asp Leu Ser Val Met Ser Ala Glu
1385 1390 1395
Leu Val Asp Ile Arg Arg Ala Asp Glu Leu Leu Leu Glu Arg Pro
1400 1405 1410
Glu Asn Arg Pro Val Leu Ile Val Asp Asp Gly Thr Glu Leu Thr
1415 1420 1425
Ser Ala Leu Val Arg Val Leu Gly Ala Gly Ala Val Val Leu Thr
1430 1435 1440
Phe Asp Gly Leu Gln Leu Ala Gln Arg Ala Gly Ala Ala Val Arg
1445 1450 1455
His Val Gln Val Lys Asp Leu Ser Ala Glu Ser Ala Glu Lys Ala
1460 1465 1470
Ile Lys Glu Ala Glu Gln Arg Phe Gly Gln Leu Gly Gly Phe Ile
1475 1480 1485
Ser Gln Gln Ala Glu Arg Phe Ala Pro Ala Asp Ile Leu Gly Phe
1490 1495 1500
Thr Leu Met Cys Ala Lys Phe Ala Lys Ala Ser Leu Cys Thr Pro
1505 1510 1515
Val Gln Gly Gly Arg Ala Phe Phe Ile Gly Val Ala Arg Leu Asp
1520 1525 1530
Gly Arg Leu Gly Phe Thr Ser Gln Gly Ser Thr Asp Ser Leu Thr
1535 1540 1545
Arg Ala Gln Arg Gly Ala Ile Phe Gly Leu Cys Lys Thr Ile Gly
1550 1555 1560
Leu Glu Trp Ser Ala Asn Glu Val Phe Ala Arg Gly Ile Asp Ile
1565 1570 1575
Ala Arg Glu Val His Pro Glu Asp Ala Ala Val Ala Ile Thr Arg
1580 1585 1590
Glu Met Ser Cys Ala Asp Asn Arg Ile Arg Glu Val Gly Ile Gly
1595 1600 1605
Leu Asn Gln Lys Arg Cys Thr Ile Arg Ala Val Asp Leu Lys Pro
1610 1615 1620
Gly Ala Pro Lys Ile Gln Ile Ser Gln Asp Asp Val Leu Leu Val
1625 1630 1635
Ser Gly Gly Ala Arg Gly Ile Thr Pro Leu Cys Ile Arg Glu Ile
1640 1645 1650
Thr Arg Gln Val Arg Gly Gly Lys Tyr Ile Leu Leu Gly Arg Ser
1655 1660 1665
Lys Val Pro Ala Gly Glu Pro Ala Trp Cys Asn Gly Val Ser Asp
1670 1675 1680
Asp Asp Leu Gly Lys Ala Ala Met Gln Glu Leu Lys Arg Ala Phe
1685 1690 1695
Ser Ala Gly Glu Gly Pro Lys Pro Thr Pro Met Thr His Lys Lys
1700 1705 1710
Leu Val Gly Thr Ile Ala Gly Ala Arg Glu Val Arg Ser Ser Ile
1715 1720 1725
Ala Asn Ile Glu Ala Leu Gly Gly Lys Ala Ile Tyr Ser Ser Cys
1730 1735 1740
Asp Val Asn Ser Ala Ala Asp Val Ala Lys Ala Val Arg Glu Ala
1745 1750 1755
Glu Ala Gln Leu Gly Ala Arg Val Thr Gly Val Val His Ala Ser
1760 1765 1770
Gly Val Leu Arg Asp Arg Leu Ile Glu Gln Lys Arg Pro Asp Glu
1775 1780 1785
Phe Asp Ala Val Phe Gly Thr Lys Val Thr Gly Leu Glu Asn Leu
1790 1795 1800
Phe Gly Ala Ile Asp Met Ala Asn Leu Lys His Leu Val Leu Phe
1805 1810 1815
Ser Ser Leu Ala Gly Phe His Gly Asn Ile Gly Gln Ser Asp Tyr
1820 1825 1830
Ala Met Ala Asn Glu Ala Leu Asn Lys Met Gly Leu Glu Leu Ser
1835 1840 1845
Asp Arg Val Ser Val Lys Ser Ile Cys Phe Gly Pro Trp Asp Gly
1850 1855 1860
Gly Met Val Thr Pro Gln Leu Lys Lys Gln Phe Gln Ser Met Gly
1865 1870 1875
Val Gln Ile Ile Pro Arg Glu Gly Gly Ala Asp Thr Val Ala Arg
1880 1885 1890
Ile Val Leu Gly Ser Ser Pro Ala Glu Ile Leu Val Gly Asn Trp
1895 1900 1905
Thr Thr Pro Thr Lys Lys Val Gly Ser Glu Pro Val Val Ile His
1910 1915 1920
Arg Lys Ile Ser Ala Ala Ser Asn Pro Phe Leu Lys Asp His Val
1925 1930 1935
Ile Gln Gly Arg Cys Val Leu Pro Met Thr Ile Ala Val Gly Cys
1940 1945 1950
Leu Ala Glu Thr Cys Leu Gly Gln Phe Pro Gly Tyr Ser Leu Trp
1955 1960 1965
Ala Ile Glu Asp Ala Gln Leu Phe Lys Gly Val Thr Val Asp Gly
1970 1975 1980
Asp Val Asn Cys Glu Ile Thr Leu Lys Pro Ser Gln Gly Thr Ala
1985 1990 1995
Gly Arg Val Met Ile Gln Ala Thr Leu Lys Thr Phe Ala Ser Gly
2000 2005 2010
Lys Leu Val Pro Ala Tyr Arg Ala Val Ile Val Leu Ser Thr Gln
2015 2020 2025
Gly Lys Pro Pro Ala Ala Thr Thr Ser Gln Thr Pro Ser Leu Gln
2030 2035 2040
Ala Asp Pro Ala Ala Arg Gly Asn Pro Tyr Asp Gly Lys Thr Leu
2045 2050 2055
Phe His Gly Pro Ala Phe Gln Gly Leu Lys Glu Ile Ile Ser Cys
2060 2065 2070
Asn Lys Ser Gln Leu Val Ala Glu Cys Thr Phe Ile Pro Ser Ser
2075 2080 2085
Glu Ser Ala Gly Glu Phe Ala Ser Asp Tyr Glu Ser His Asn Pro
2090 2095 2100
Phe Val Asn Asp Ile Ala Phe Gln Ala Met Leu Val Trp Ile Arg
2105 2110 2115
Arg Thr Leu Gly Gln Ala Ala Leu Pro Asn Ser Ile Gln Arg Ile
2120 2125 2130
Val Gln His Arg Ala Leu Pro Gln Asp Lys Pro Phe Tyr Leu Thr
2135 2140 2145
Leu Lys Ser Asn Ser Ala Ser Gly His Ser Gln His Lys Thr Ser
2150 2155 2160
Val Gln Phe His Asn Glu Gln Gly Asp Leu Phe Val Asp Ile Gln
2165 2170 2175
Ala Ser Val Thr Ser Ser Asp Ser Leu Ala Phe
   2180 2185
<210> 13
<211> 1672
<212> PRT
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 13
Leu Lys Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu
1 5 10 15
Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu
20 25 30
Lys Glu Lys Glu Lys Glu Glu Glu Lys Glu Glu Glu Lys Glu Lys Glu
35 40 45
Lys Glu Lys Glu Lys Glu Lys Glu Lys Glu Glu Gly Asp Leu Lys Ser
50 55 60
Cys Leu Val Glu Lys Gly Glu Gly Gly Arg Ser Ser Asp Ser Gly Arg
65 70 75 80
Arg Arg Ser Ser Cys Cys Lys Arg Gly Thr Glu Ala Val Ala Val Glu
85 90 95
Gln Ala Glu Ala Thr Ala Asn Leu Glu Leu Asp Pro Val Glu Pro Gln
100 105 110
Gln Glu Gln Glu Pro Asp Gln Val Asp Glu Asp Glu Val Arg Leu Leu
115 120 125
Ser Gly Thr Thr Glu Val Ala Gly Leu Ala Glu Ser Ala Thr Thr Ala
130 135 140
Ile Leu Arg Ser Thr Asp Ala Arg Ala Glu Asn Leu Gln Leu Leu Ala
145 150 155 160
Thr Thr Gln Glu Pro Pro Ser Asp Thr Thr Arg Phe Glu Asn Ser Thr
165 170 175
Ser Leu Glu Ala Ala Thr Ala Leu Ala Asp Asn Gln Thr Gly Pro Glu
180 185 190
Lys Ala Thr Thr Arg Arg Glu Ile Ile Glu Ser Gln Leu Ala Thr Met
195 200 205
Ala Thr Arg Val Lys Thr Asn Lys Lys Pro Cys Trp Glu Met Thr Lys
210 215 220
Glu Glu Leu Thr Ser Gly Lys Asn Val Val Phe Asp Tyr Asp Glu Leu
225 230 235 240
Leu Glu Phe Ala Glu Gly Asp Ile Ser Lys Val Phe Gly Pro Glu Phe
245 250 255
Ser Gln Ile Asp Gln Tyr Lys Arg Arg Val Arg Leu Pro Ala Arg Glu
260 265 270
Tyr Leu Leu Val Thr Arg Val Thr Leu Met Asp Ala Glu Val Asn Asn
275 280 285
Tyr Arg Val Gly Ala Arg Met Val Thr Glu Tyr Asp Leu Pro Val Asn
290 295 300
Gly Glu Leu Ser Glu Gly Gly Asp Cys Pro Trp Ala Val Leu Val Glu
305 310 315 320
Ser Gly Gln Cys Asp Leu Met Leu Ile Ser Tyr Met Gly Ile Asp Phe
325 330 335
Gln Asn Lys Ser Asp Arg Val Tyr Arg Leu Leu Asn Thr Thr Leu Thr
340 345 350
Phe Tyr Gly Val Ala Gln Glu Gly Glu Thr Leu Glu Tyr Asp Ile Arg
355 360 365
Val Thr Gly Phe Ala Lys Arg Leu Asp Gly Asp Ile Ser Met Phe Phe
370 375 380
Phe Glu Tyr Asp Cys Tyr Val Asn Gly Arg Leu Leu Ile Glu Met Arg
385 390 395 400
Asp Gly Cys Ala Gly Phe Phe Thr Asn Glu Glu Leu Ala Ala Gly Lys
405 410 415
Gly Val Val Phe Thr Arg Ala Asp Leu Leu Ala Arg Glu Lys Thr Lys
420 425 430
Lys Gln Asp Ile Thr Pro Tyr Ala Ile Ala Pro Arg Leu Asn Lys Thr
435 440 445
Val Leu Asn Glu Thr Glu Met Gln Ser Leu Val Asp Lys Asn Trp Thr
450 455 460
Lys Val Phe Gly Pro Glu Asn Gly Met Asp Gln Ile Asn Tyr Lys Leu
465 470 475 480
Cys Ala Arg Lys Met Leu Met Ile Asp Arg Val Thr Lys Ile Asp Tyr
485 490 495
Thr Gly Gly Pro Tyr Gly Leu Gly Leu Leu Val Gly Glu Lys Ile Leu
500 505 510
Glu Arg Asp His Trp Tyr Phe Pro Cys His Phe Val Gly Asp Gln Val
515 520 525
Met Ala Gly Ser Leu Val Ser Asp Gly Cys Ser Gln Leu Leu Lys Met
530 535 540
Tyr Met Leu Trp Leu Gly Leu His Leu Lys Thr Gly Pro Phe Asp Phe
545 550 555 560
Arg Pro Val Asn Gly His Pro Asn Lys Val Arg Cys Arg Gly Gln Ile
565 570 575
Ser Pro His Lys Gly Lys Leu Val Tyr Val Met Glu Ile Lys Glu Met
580 585 590
Gly Tyr Asp Glu Ala Gly Asp Pro Tyr Ala Ile Ala Asp Val Asn Ile
595 600 605
Leu Asp Ile Asp Phe Glu Lys Gly Gln Thr Phe Asp Leu Ala Asn Leu
610 615 620
His Glu Tyr Gly Lys Gly Asp Leu Asn Lys Lys Ile Val Val Asp Phe
625 630 635 640
Lys Gly Ile Ala Leu Lys Leu Gln Lys Arg Ser Gly Pro Ala Val Val
645 650 655
Ala Pro Glu Lys Pro Leu Ala Leu Asn Lys Asp Leu Cys Ala Pro Ala
660 665 670
Val Glu Ala Ile Pro Glu His Ile Leu Lys Gly Asp Ala Leu Ala Pro
675 680 685
Asn Gln Met Thr Trp His Pro Met Ser Lys Ile Ala Gly Asn Pro Thr
690 695 700
Pro Ser Phe Ser Pro Ser Ala Tyr Pro Pro Arg Pro Ile Thr Phe Thr
705 710 715 720
Pro Phe Pro Gly Asn Lys Asn Asp Asn Asn His Val Pro Gly Glu Met
725 730 735
Pro Leu Ser Trp Tyr Asn Met Ala Glu Phe Met Ala Gly Lys Val Ser
740 745 750
Leu Cys Leu Gly Pro Glu Phe Ala Lys Phe Asp Asp Ser Asn Thr Ser
755 760 765
Arg Ser Pro Ala Trp Asp Leu Ala Leu Val Thr Arg Val Val Ser Val
770 775 780
Ser Asp Met Glu Trp Val Gln Trp Lys Asn Val Asp Cys Asn Pro Ser
785 790 795 800
Lys Gly Thr Met Val Gly Glu Phe Asp Cys Pro Ile Asp Ala Trp Phe
805 810 815
Phe Gln Gly Ser Cys Asn Asp Gly His Met Pro Tyr Ser Ile Leu Met
820 825 830
Glu Ile Ala Leu Gln Thr Ser Gly Val Leu Thr Ser Val Leu Lys Ala
835 840 845
Pro Leu Thr Met Glu Lys Lys Asp Ile Leu Phe Arg Asn Leu Asp Ala
850 855 860
Asn Ala Glu Met Val Arg Ser Asp Ile Asp Leu Arg Gly Lys Thr Ile
865 870 875 880
His Asn Leu Thr Lys Cys Thr Gly Tyr Ser Met Leu Gly Asp Met Gly
885 890 895
Val His Arg Phe Ser Phe Glu Leu Ser Val Asp Gly Val Val Phe Tyr
900 905 910
Lys Gly Thr Thr Ser Phe Gly Trp Phe Val Pro Glu Val Phe Ile Ser
915 920 925
Gln Thr Gly Leu Asp Asn Gly Arg Arg Thr Gln Pro Trp His Ile Glu
930 935 940
Ser Lys Val Pro Ser Ala Gln Val Leu Thr Tyr Asp Val Thr Pro Asn
945 950 955 960
Gly Ala Gly Arg Thr Gln Leu Tyr Ala Asn Ala Pro Lys Gly Ala Gln
965 970 975
Leu Thr Arg Arg Trp Asn Gln Cys Gln Tyr Leu Asp Thr Ile Asp Leu
980 985 990
Val Val Ala Gly Gly Ser Ala Gly Leu Gly Tyr Gly His Gly Arg Lys
995 1000 1005
Gln Val Asn Pro Lys Asp Trp Phe Phe Ser Cys His Phe Trp Phe
1010 1015 1020
Asp Ser Val Met Pro Gly Ser Leu Gly Val Glu Ser Met Phe Gln
1025 1030 1035
Leu Val Glu Ser Ile Ala Val Lys Gln Asp Leu Ala Gly Lys Tyr
1040 1045 1050
Gly Ile Thr Asn Pro Thr Phe Ala His Ala Pro Gly Lys Ile Ser
1055 1060 1065
Trp Lys Tyr Arg Gly Gln Leu Thr Pro Thr Ser Lys Phe Met Asp
1070 1075 1080
Ser Glu Ala His Ile Val Ser Ile Glu Ala His Asp Gly Val Val
1085 1090 1095
Asp Ile Val Ala Asn Gly Asn Leu Trp Ala Asp Gly Leu Arg Val
1100 1105 1110
Tyr Asn Val Ser Asn Ile Arg Val Arg Ile Val Ala Gly Ala Ala
1115 1120 1125
Pro Ala Ala Ala Ala Ala Ala Ala Ala Val Ala Ala Pro Ala Ala
1130 1135 1140
Ala Pro Ala Pro Val Ala Ala Ser Gly Pro Ala Gln Thr Ile Thr
1145 1150 1155
Leu Lys Gln Leu Lys Ala Glu Leu Leu Asp Val Glu Lys Pro Leu
1160 1165 1170
Tyr Ile Ser Ser Ser Asn Gly Gln Val Lys Lys His Ala Asp Val
1175 1180 1185
Ala Gly Gly Gln Ala Thr Ile Val Gln Ala Cys Ser Leu Ser Asp
1190 1195 1200
Leu Gly Asp Glu Gly Phe Met Lys Thr Tyr Gly Val Val Ala Pro
1205 1210 1215
Leu Tyr Thr Gly Ala Met Ala Lys Gly Ile Ala Ser Ala Asp Leu
1220 1225 1230
Val Ile Ala Thr Gly Lys Arg Lys Ile Leu Gly Ser Phe Gly Ala
1235 1240 1245
Gly Gly Leu Pro Met His Ile Val Arg Ala Ala Val Glu Lys Ile
1250 1255 1260
Gln Ala Glu Leu Pro Asn Gly Pro Phe Ala Val Asn Leu Ile His
1265 1270 1275
Ser Pro Phe Asp Ser Asn Leu Glu Lys Gly Asn Val Asp Leu Phe
1280 1285 1290
Leu Glu Lys Gly Val Thr Val Val Glu Ala Ser Ala Phe Met Thr
1295 1300 1305
Leu Thr Pro Gln Val Val Arg Tyr Arg Ala Ala Gly Leu Ser Arg
1310 1315 1320
Asn Ala Asp Gly Ser Ile Asn Ile Lys Asn Arg Ile Ile Gly Lys
1325 1330 1335
Val Ser Arg Thr Glu Leu Ala Glu Met Phe Ile Arg Pro Ala Pro
1340 1345 1350
Gln Asn Leu Leu Asp Lys Leu Ile Gln Ser Gly Glu Ile Thr Lys
1355 1360 1365
Glu Gln Ala Glu Leu Ala Lys Leu Val Pro Val Ala Asp Asp Ile
1370 1375 1380
Ala Val Glu Ala Asp Ser Gly Gly His Thr Asp Asn Arg Pro Ile
1385 1390 1395
His Val Ile Leu Pro Leu Ile Ile Asn Leu Arg Asn Arg Leu His
1400 1405 1410
Lys Glu Cys Gly Tyr Pro Ala His Leu Arg Val Arg Val Gly Ala
1415 1420 1425
Gly Gly Gly Val Gly Cys Pro Gln Ala Ala Ala Ala Ala Leu Ala
1430 1435 1440
Met Gly Ala Ala Phe Leu Val Thr Gly Thr Val Asn Gln Val Ala
1445 1450 1455
Lys Gln Ser Gly Thr Cys Asp Asn Val Arg Lys Gln Leu Cys Met
1460 1465 1470
Ala Thr Tyr Ser Asp Val Cys Met Ala Pro Ala Ala Asp Met Phe
1475 1480 1485
Glu Glu Gly Val Lys Leu Gln Val Leu Lys Lys Gly Thr Met Phe
1490 1495 1500
Pro Ser Arg Ala Asn Lys Leu Tyr Glu Leu Phe Cys Lys Tyr Asp
1505 1510 1515
Ser Phe Glu Ser Met Pro Ala Thr Glu Leu Glu Arg Val Glu Lys
1520 1525 1530
Arg Ile Phe Gln Cys Pro Leu Ala Asp Val Trp Ala Glu Thr Ser
1535 1540 1545
Asp Phe Tyr Ile Asn Arg Leu His Asn Pro Glu Lys Ile Thr Arg
1550 1555 1560
Ala Glu Arg Asp Pro Lys Leu Lys Met Ser Leu Cys Phe Arg Trp
1565 1570 1575
Tyr Leu Gly Leu Ala Ser Arg Trp Ala Asn Thr Gly Glu Ala Gly
1580 1585 1590
Arg Val Met Asp Tyr Gln Val Trp Cys Gly Pro Ala Ile Gly Ala
1595 1600 1605
Phe Asn Asp Phe Ile Lys Gly Ser Tyr Leu Asp Pro Ala Val Ser
1610 1615 1620
Gly Glu Tyr Pro Asp Val Val Gln Ile Asn Leu Gln Ile Leu Arg
1625 1630 1635
Gly Ala Cys Tyr Leu Arg Arg Leu Asn Val Ile Arg Asn Asp Pro
1640 1645 1650
Arg Val Ser Ile Glu Val Glu Asp Ala Glu Phe Val Tyr Glu Pro
1655 1660 1665
Thr Asn Ala Leu
  1670
<210> 14
<211> 21
<212> PRT
<213> Schizochytrium limacinum (Schizoochytrium limacinum)
<400> 14
Met Ser Thr Ile Arg Leu Ser His His Ala Asn Ala Lys Cys Leu Gly
1 5 10 15
Ser Ser Gln Lys Cys
      20
<210> 15
<211> 2352
<212> DNA
<213> Artificial sequence
<220>
<223>
<400> 15
cccaccccag cttcaaaagc gctctaccgt tcgtataatg tatgctatac gaagttattc 60
tctctccttg tcaactcaca cccgaaatcg ttaagcattt ccttctgagt ataagaatca 120
ttcaaaggcg cgccacagga ctagtcccac acaccatagc ttcaaaatgt ttctactcct 180
tttttactct tccagatttt ctcggactcc gcgcatcgcc gtaccacttc aaaacaccca 240
agcacagcat actaaatttt ccctctttct tcctctaggg tgtcgttaat tacccgtact 300
aaaggtttgg aaaagaaaaa agagaccgcc tcgtttcttt ttcttcgtcg aaaaaggcaa 360
taaaaatttt tatcacgttt ctttttcttg aaattttttt ttttagtttt tttctctttc 420
agtgacctcc attgatattt aagttaataa acggtcttca atttctcaag tttcagtttc 480
atttttcttg ttctattaca acttttttta cttcttgttc attagaaaga aagcatagca 540
atctaatcta aggggcggtg ttgacaatta atcatcggca tagtatatcg gcatagtata 600
atacgacaag gtgaggaact aaaccatggc caagttgacc agtgccgttc cggtgctcac 660
cgcgcgcgac gtcgccggag cggtcgagtt ctggaccgac cggctcgggt tctcccggga 720
cttcgtggag gacgacttcg ccggtgtggt ccgggacgac gtgaccctgt tcatcagcgc 780
ggtccaggac caggtggtgc cggacaacac cctggcctgg gtgtgggtgc gcggcctgga 840
cgagctgtac gccgagtggt cggaggtcgt gtccacgaac ttccgggacg cctccgggcc 900
ggccatgacc gagatcggcg agcagccgtg ggggcgggag ttcgccctgc gcgacccggc 960
cggcaactgc gtgcacttcg tggccgagga gcaggactga caattgaagc acgctagcct 1020
catgtaatta gttatgtcac gcttacattc acgccctccc tccacatccg ctctaaccga 1080
aaaggaagga gttagacaac ctgaagtcta ggtccctatt tattttttta tagttatgtt 1140
agtattaaga acgttattta tatttcaaat ttttcttttt tttctgtaca gacgcgtgta 1200
cgcatgtaac attatactga aaaccttgct tgagaaggtt ttgggacgct cgaaggcttt 1260
aatttgcaag cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc 1320
tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaat 1380
gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag tcgggaaacc 1440
tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg 1500
ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag 1560
cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag 1620
gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc 1680
tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga cgctcaagtc 1740
agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc 1800
tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctccctt 1860
cgggaagcgt ggcgctttct caatgctcac gctgtaggta tctcagttcg gtgtaggtcg 1920
ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat 1980
ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag 2040
ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt 2100
ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc 2160
cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta 2220
gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag 2280
atcctttgat ctataacttc gtataatgta tgctatacga acggtaagga ggatattctc 2340
gagactagtc tg 2352

Claims (19)

1. A combination of proteins as follows (X1) or (X2):
(X1) includes protein 1, protein 2, protein 3, protein 4, protein 5 and protein 6;
(X2) consisting of protein 1, protein 2, protein 3, protein 4, protein 5 and protein 6;
the protein 1 is a1) or a 2):
a1) the amino acid sequence is protein shown as a sequence 9 in a sequence table;
a2) a fusion protein obtained by connecting labels to the N end or/and the C end of the protein shown in the sequence 9 in the sequence table;
the protein 2 is b1) or b 2):
b1) the amino acid sequence is protein shown as a sequence 10 in a sequence table;
b2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 10 in the sequence table;
the protein 3 is c1) or c 2):
c1) the amino acid sequence is a protein shown as a sequence 11 in a sequence table;
c2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 11 in the sequence table;
the protein 4 is d1) or d 2):
d1) the amino acid sequence is protein shown as a sequence 12 in a sequence table;
d2) a fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 12 in the sequence table;
the protein 5 is e1) or e 2):
e1) the amino acid sequence is protein shown as a sequence 13 in a sequence table;
e2) a fusion protein obtained by connecting labels to the N end or/and the C end of the protein shown in the sequence 13 in the sequence table;
the protein 6 is f1) or f 2):
f1) the amino acid sequence is protein shown as a sequence 14 in a sequence table;
f2) and (b) fusion protein obtained by connecting labels to the N terminal or/and the C terminal of the protein shown in the sequence 14 in the sequence table.
2. Nucleic acid molecules encoding the combination of proteins of claim 1.
3. The nucleic acid molecule of claim 2, wherein:
the nucleic acid molecule for coding the protein 1 is a DNA molecule shown as A1) or A2):
A1) the coding region is a DNA molecule shown in the 1044 th to the 3050 th site from the 5' end of a sequence 3 in a sequence table;
A2) the nucleotide sequence is a DNA molecule shown in a sequence 3 in a sequence table;
the nucleic acid molecule for coding the protein 2 is a DNA molecule shown as the following B1) or B2):
B1) the coding region is a DNA molecule shown in 1068 th to 2737 th and 3254 th to 5162 th from the 5' end of a sequence 4 in the sequence table;
B2) the nucleotide sequence is a DNA molecule shown as a sequence 4 in the sequence table;
the nucleic acid molecule for coding the protein 3 is a DNA molecule shown as the following C1) or C2):
C1) the coding region is a DNA molecule shown in 1094 to 3415 th sites from the 5' end of a sequence 5 in a sequence table;
C2) the nucleotide sequence is a DNA molecule shown as a sequence 5 in a sequence table;
the nucleic acid molecule for coding the protein 4 is a DNA molecule shown in the following D1) or D2):
D1) the coding region is a DNA molecule shown in 1409 th to 5044 th, 7004 th to 7234 th and 7700 th to 10399 th positions of the 5' end of a sequence 6 in the sequence table;
D2) the nucleotide sequence is a DNA molecule shown as a sequence 6 in a sequence table;
the nucleic acid molecule for coding the protein 5 is a DNA molecule shown as the following E1) or E2):
E1) the coding region is a DNA molecule shown in 1473 th to 6488 th positions from the 5' end of a sequence 7 in a sequence table;
E2) the nucleotide sequence is a DNA molecule shown as a sequence 7 in a sequence table;
the nucleic acid molecule for coding the protein 6 is a DNA molecule shown as F1) or F2):
F1) the coding region is a DNA molecule shown in 953 th to 991 th and 1063 th to 1090 th positions from the 5' end of a sequence 8 in a sequence table;
F2) the nucleotide sequence is a DNA molecule shown as a sequence 8 in a sequence table.
4. An expression cassette comprising the nucleic acid molecule of claim 2 or 3.
5. A recombinant vector comprising the nucleic acid molecule of claim 2 or 3.
6. A recombinant microorganism comprising the nucleic acid molecule of claim 2 or 3.
7. A transgenic cell line comprising the nucleic acid molecule of claim 2 or 3.
8. Use of a combination of proteins according to claim 1 for the production of DHA and/or EPA.
9. Use of the nucleic acid molecule according to claim 2 or 3 for the production of DHA and/or EPA.
10. Use of an expression cassette comprising a nucleic acid molecule according to claim 2 or 3 for the production of DHA and/or EPA.
11. Use of a recombinant vector comprising a nucleic acid molecule according to claim 2 or 3 for the production of DHA and/or EPA.
12. Use of a recombinant microorganism comprising a nucleic acid molecule according to claim 2 or 3 for the production of DHA and/or EPA.
13. Use of a transgenic cell line comprising a nucleic acid molecule according to claim 2 or 3 for the production of DHA and/or EPA.
14. The preparation method of the recombinant bacterium B comprises the following steps: introducing nucleic acid molecule combination into the spawn to obtain recombinant spawn B; the combination of nucleic acid molecules consisting of nucleic acid molecules encoding each of the proteins of the combination of proteins of claim 1.
15. The recombinant bacterium b according to claim 14, wherein: the outbreak fungus is schizochytrium limacinum.
16. The recombinant bacterium b according to claim 15, wherein: the Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381 is a strain Schizochytrium limacinum Honda.
17. A process for the production of DHA and/or EPA comprising the following steps in sequence:
(1) introducing a nucleic acid molecule combination into the fermentation bacteria to obtain recombinant bacteria A; the combination of nucleic acid molecules consisting of nucleic acid molecules encoding each of the proteins of the combination of proteins of claim 1; the recombinant bacterium A has an improved ability to produce DHA and/or EPA compared to the starting bacterium;
(2) fermenting and culturing the recombinant bacterium A to obtain DHA and/or EPA.
18. The method of claim 17, wherein: the outbreak fungus is schizochytrium limacinum.
19. The method of claim 18, wherein: the Schizochytrium limacinum Honda et Yokochi ATCC MYA-1381 is a strain Schizochytrium limacinum Honda.
CN201711102734.0A 2017-05-31 2017-11-10 Gene fragments related to DHA and EPA synthesis and application thereof Active CN109776663B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201711102734.0A CN109776663B (en) 2017-11-10 2017-11-10 Gene fragments related to DHA and EPA synthesis and application thereof
EP18810206.5A EP3628679B1 (en) 2017-05-31 2018-05-21 Bacterium producing dha and epa, 6 gene fragments of genome of bacterium and use thereof
JP2019566735A JP7039625B2 (en) 2017-05-31 2018-05-21 Bacteria that produce DHA and EPA, 6 gene fragments of the bacterial genome and their use
PCT/CN2018/087613 WO2018219171A1 (en) 2017-05-31 2018-05-21 Bacterium producing dha and epa, 6 gene fragments of genome of bacterium and use thereof
US16/696,331 US10941185B2 (en) 2017-05-31 2019-11-26 Strain of bacteria producing DHA and EPA, six gene fragments in the bacterial genome and their applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711102734.0A CN109776663B (en) 2017-11-10 2017-11-10 Gene fragments related to DHA and EPA synthesis and application thereof

Publications (2)

Publication Number Publication Date
CN109776663A CN109776663A (en) 2019-05-21
CN109776663B true CN109776663B (en) 2020-11-10

Family

ID=66484283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711102734.0A Active CN109776663B (en) 2017-05-31 2017-11-10 Gene fragments related to DHA and EPA synthesis and application thereof

Country Status (1)

Country Link
CN (1) CN109776663B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987528A (en) * 2017-05-31 2017-07-28 厦门汇盛生物有限公司 One plant production docosahexaenoic acid bacterium and its application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987528A (en) * 2017-05-31 2017-07-28 厦门汇盛生物有限公司 One plant production docosahexaenoic acid bacterium and its application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Transcriptomic Analysis of the Regulation of Lipid Fraction Migration and Fatty Acid Biosynthesis in Schizochytrium sp.;Lujing Ren等;《Scientific Reports》;20170615;第1-10页 *
微生物发酵法生产EPA及DHA的研究进展;刘长海 等;《食品技术》;20041231;第13-16页 *
裂殖壶菌DHA生物合成途径相关基因的克隆与表达;李志平;《中国优秀硕士学位论文全文数据库 基础科学辑》;20081215;A006-83 *

Also Published As

Publication number Publication date
CN109776663A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
JP4803739B2 (en) Production of astaxanthin or its metabolites using carotenoid ketolase and carotenoid hydroxylase genes
CN107630017A (en) It is engineered thraustochytriale microorganism belonging to genus
WO2019196791A1 (en) Recombinant yeast strain for producing nervonic acids and application thereof
BRPI0610988A2 (en) thermophilic microorganisms with inactivated lactate dehydrogenase (ldh) gene for ethanol production
CN107406821A (en) For producing the mutation host cell of 3 hydracrylic acids
JP2017195907A (en) Selective culture method for microorganisms with phosphorous acid dehydrogenase gene as marker
CN115011616A (en) Acetaldehyde dehydrogenase gene RKALDH and application thereof
CN100376677C (en) Alcohol dehydrogenase gene of acetic acid bacterium
CN109776663B (en) Gene fragments related to DHA and EPA synthesis and application thereof
CN110564752B (en) Application of differential agent technology in enrichment of C.T base substitution cells
JP7072809B2 (en) Use in the production of recombinant microorganisms, their production methods and coenzyme Q10
CN108753745A (en) A kind of alcohol dehydrogenase enzyme mutant and its encoding gene and application
CN109402079B (en) Application of polypeptide in improving content of plant ultra-long chain fatty acid
EP4127201A1 (en) Process of engineering an oleaginous microorganism
CN110106095A (en) Aspergillus niger genetically engineered bacterium with calcium ion channel CchA gene inactivated, and construction method and application thereof
US10941185B2 (en) Strain of bacteria producing DHA and EPA, six gene fragments in the bacterial genome and their applications
US11248244B2 (en) Schizochytrium limacinum strain, building method therefor and application thereof
CN101300358A (en) Astaxanthine biosynthesis in eukaryotes
CN114317596B (en) Method for mutating A in plant genome target sequence into G
CN114317589B (en) Application of SpRYn-ABE base editing system in plant genome base substitution
KR102442480B1 (en) Composition for culturing chlamydomonas mutants and culture method thereof
RU2793431C1 (en) New option of spermidine synthase and a method for obtaining l-valine with its use
EP4180513A1 (en) An improved process for production of enriched algal biomass
CN105602982B (en) A kind of construction method of the hidden dinoflagellate mutant strain of Seedling height rate
CN103173445B (en) Novel synthetic gene of omega 3, synthetic gene-containing coliform and construction method of synthetic gene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant