CN109762853B - 一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法 - Google Patents

一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法 Download PDF

Info

Publication number
CN109762853B
CN109762853B CN201811584497.0A CN201811584497A CN109762853B CN 109762853 B CN109762853 B CN 109762853B CN 201811584497 A CN201811584497 A CN 201811584497A CN 109762853 B CN109762853 B CN 109762853B
Authority
CN
China
Prior art keywords
reaction
isopropanol
lipase
channel
epichlorohydrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811584497.0A
Other languages
English (en)
Other versions
CN109762853A (zh
Inventor
杜理华
薛苗
龙瑞杰
周娜妮
罗锡平
郑泽灿
陶佳丽
张文
莫程虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811584497.0A priority Critical patent/CN109762853B/zh
Publication of CN109762853A publication Critical patent/CN109762853A/zh
Application granted granted Critical
Publication of CN109762853B publication Critical patent/CN109762853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种脂肪酶催化在线合成异丙醇类β‑氨基醇衍生物的方法:以甲醇为反应溶剂,以式1所示的化合物和环氧氯丙烷为原料,以脂肪酶Lipozyme RM IM为催化剂,将原料和反应溶剂置于注射器中,将脂肪酶Lipozyme RM IM均匀填充在微流控通道反应器的反应通道中,在注射泵的推动下使原料和反应溶剂连续通入反应通道器中进行开环反应,所述微流控通道反应器的反应通道内径为0.8~2.4mm,反应通道长为0.5~1.0m;控制开环反应温度为30~50℃,开环反应时间为10~30min,通过产物收集器在线收集反应液,反应液经常规后处理得到异丙醇类β‑氨基醇衍生物。本发明具有反应时间短、选择性高及产率高的优点。

Description

一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法
(一)技术领域
本发明涉及一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物 的方法。
(二)背景技术
β-氨基醇是一种用途广泛的有机合成中间体,被广泛应用于合成 具有生物活性的天然物质、非天然的氨基酸、药物化学、手性助剂和 配体等,在医药化学及生物学占有非常重要的地位,许多临床上广泛 应用的药物,如抗高血压药、抗糖尿病药、抗哮喘药和抗疟疾药等临 床药物中都含有β-氨基醇结构单元。有机物分子中有超过75%的药 物或药物中间体都含有氨基官能团。同时具有氨基和羟基官能团的手 性氨基醇在不对称催化领域显示出良好的手性诱导能力。手性氨基醇 中具有良好配位能力的N原子和O原子,可与多种元素(如B、Li、 Zn等)形成配合物而成为性能优良的手性催化剂,具有很高的立体 选择性和催化活性。因此探索合成β-氨基醇类化合物的绿色合成技 术具有重要的意义。
合成β-氨基醇的常用方法是环氧化合物和芳香胺发生亲核开环 反应,这些方法往往需要大量的胺和较高的反应温度,而高温对一些 敏感性的官能团很不利,将伴随着大量副反应的发生。由于环氧化合 物中存在着环张力和极化的碳氧键,所以很容易发生开环反应,但弱 亲核性的胺和空间位阻大的胺,环氧化合物很难与其发生反应。在这 一转化中,存在着区域选择性、非对映选择性和对映选择性等诸多选 择性问题。传统的合成方法中,环氧化合物和过量的胺在高温下反应, 而高温会导致副反应的发生,同时也限制了一些对高温敏感的底物的 使用,所以需要寻找一些高效和具有良好选择性的催化剂来促进环氧 化合物的亲核开环反应。目前国内对环氧化物开环胺解反应的研究还 处于起步阶段,但国外研究已较多,其应用前景相当广泛。金属卤化 物、金属三氟甲磺酸盐、过渡金属等作为催化剂,被用于催化合成β- 氨基醇。但是这类催化剂的催化体系制备过程复杂,造价昂贵,易流 失,且会产生对环境有害的物质。另有报道使用石墨、蒙脱石-K10 粘土或金属有机骨架来进行反应,但是这些反应存在反应时间长,区 域选择性差等缺点。由此,探索β-氨基醇的绿色合成方法在有机合成 中成为一个热点研究的领域。
酶催化反应由于其高效、绿色及专一性强成为绿色化学研究的一 个重点。酶促反应因反应条件温和,选择性高及产物稳定性好而在工 业生物合成、医疗保健和食品工业等领域得到了广泛的应用。但是酶 促反应存在着溶剂对底物溶解以及溶剂极性对酶活抑制等的制约,反 应时间往往很长(24h~96h),对特定底物转化率不是很高,因而在传 统酶促反应基础上发展一种基于微流控技术的酶促β-氨基醇类化合 物的合成新技术成为我们的研究目标。
同常规化学反应器相比,微流控反应器具有混合效率高、传质传 热快、参数控制精确、反应选择性高以及安全性好等特点而被广泛应 用于有机合成反应。在连续流动微反应器中,许多反应可以实现微量 反应的条件快速筛选,即使在苛刻的实验条件下也可以进行安全反应, 大幅度节约了反应原料、提高了筛选效率,使之更加贴合绿色化学的 概念。
到目前为止,酶催化环氧化合物开环合成β-氨基醇类化合物的研 究还相对较少。皱褶假丝酵母脂肪酶CRL(Candida rugosa lipase from Candida rugosa)能有效的催化反应的进行,但该方法需要较长的反 应时间(8h~12h),且对于特定底物反应的转化率不高。为了开发一 种高效绿色、区域选择性高的β-氨基醇类化合物合成的新技术,我们 研究了微流控通道反应器中脂肪酶催化在线合成1-氯-3-(2-甲基苯氨 基)异丙醇的方法,旨在寻找一种高效环保的1-氯-3-(2-甲基苯氨基) 异丙醇的高区域选择性在线合成的新技术。
(三)发明内容
本发明要解决的技术问题是提供一种微流控通道反应器中脂肪 酶催化在线合成异丙醇类β-氨基醇衍生物的新工艺,具有反应时间短、 产率高、选择性好的优点。
为解决上述技术问题,本发明采用如下技术方案:
一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特 征在于:所述方法采用微流控通道反应器,所述的微流控通道反应器 包括依次连接的注射器、反应通道和产物收集器,所述注射器安装于 注射泵中,所述的注射器通过第一连接管道与所述反应通道入口连接, 所述产物收集器通过第二连接管道与所述反应通道出口连接,所述反 应通道内径为0.8~2.4mm,反应通道长为0.5~1.0m;所述方法包括: 以甲醇为反应溶剂,以式1所示的化合物和环氧氯丙烷为原料,以脂 肪酶Lipozyme RM IM为催化剂,将所述的原料和所述的反应溶剂置 于注射器中,将所述的脂肪酶Lipozyme RM IM均匀填充在所述的反 应通道中,在所述的注射泵的推动下使用所述的原料和所述的反应溶 剂连续通入反应通道中进行开环反应,控制反应温度为30~50℃, 反应时间为10~30min,通过产物收集器在线收集反应液,所述的反 应液经后处理得到式2所示的异丙醇类β-氨基醇衍生物;所述的式1所示的化合物与环氧氯丙烷的物质的量之比为1:0.6~1.4;在所述反应 通道可容纳所填充催化剂的最大限度内,所述的催化剂的加入量以所 述反应介质的体积计为0.025~0.05g/mL;反应体系中,所述环氧氯 丙烷的浓度为0.12~0.28mmol/mL,
Figure BDA0001918747720000041
式1或式2中,所述的R1为H或CH3
当所述的R1为H时,所述的R2各自独立为H或CH3
当所述的R1为CH3时,所述的R2为H。
进一步,本发明采用的微流控通道反应器中,所述注射器数目可 以是一个或多个,视具体反应需求而定。本发明反应原料为两种,优 选使用两个注射器,具体的,所述的注射器分别是第一注射器与第二 注射器,所述的第一连接管道为Y型或T型管道,所述的第一注射器 与第二注注射器分别连接在所述的Y型或T型管道的两个接口并通 过所述的Y型或T型管道与所述的反应通道串联,通过微通道的反应 物分子接触与碰撞几率增大,使两股反应液流在公共的反应通道中混 合并进行反应。
再进一步,更为具体的,本发明所述的方法包括下列步骤:以物 质的量之比为1:0.6~1.4的式1所示的化合物与环氧氯丙烷为原料, 以脂肪酶Lipozyme RM IM为催化剂,以甲醇为反应溶剂,将所述的 脂肪酶Lipozyme RM IM均匀填充在反应通道中,先用甲醇溶解式1 所示的化合物装于第一注射器中,用甲醇溶解环氧氯丙烷装于第二注 射器中;再将所述的第一注射器、第二注射器装于同一注射泵中,然 后在所述的注射泵的同步推动下使原料和反应溶剂通过所述的Y型 或T型管道汇总后进入所述的反应通道中进行反应,控制反应温度为 30~50℃,反应时间为10~30min,通过产物收集器在线收集反应液, 所述的反应液经后处理制得异丙醇类β-氨基醇衍生物;所述的催化剂 的加入量为0.5~1g;反应体系中,所述环氧氯丙烷的浓度为0.12~0.28 mmol/mL。
本发明中所述第一注射器与第二注射器的规格一致,所述第一注 射器中所述式1所示的化合物的浓度通常为0.2mmol/mL。
进一步,所述的微流控通道反应器还包括恒温箱,所述的反应通 道置于恒温箱中,以此可以有效控制反应温度。所述的恒温箱可以根 据反应温度要求自行选择,比如水浴恒温箱等。
本发明对于反应通道的材质不限,推荐使用绿色、环保的材质, 例如硅胶管;对于反应通道的形状最好为曲线形,可以保证反应液匀 速稳定的通过。
本发明中,所述的脂肪酶Lipozyme RM IM使用诺维信 (novozymes)公司生产的商品,其是一种由微生物制备的、1,3位 置专用、食品级脂肪酶(EC 3.1.1.3)在颗粒硅胶上的制剂。它是从 Rhizomucor miehei得到的、用一种基因改性米曲霉(Aspergillus oryzae)微生物经过深层发酵生产的。
本发明方法将脂肪酶Lipozyme RM IM均匀填充在反应通道,可 通过物理法直接将颗粒状的催化剂均匀固定于反应通道内即可。
进一步,所述式1所示的化合物与环氧氯丙烷的物质的量之比为 1:0.8~1.2,最优选为1:1。
进一步,所述开环反应温度优选为30~40℃,最优选为35℃。
进一步,所述开环反应时间优选为15~25min,最优选为20min。
本发明的反应产物可以在线收集,所得反应液可以通过常规后处 理方法即可获得异丙醇类β-氨基醇衍生物。所述常规后处理方法可以 是:所得反应液减压蒸馏除去溶剂,用200-300目硅胶湿法装柱,洗 脱试剂为石油醚:乙酸乙酯体积比=9:1,得到的样品用少量洗脱试剂溶 解后湿法上柱,收集洗脱液,同时TLC跟踪洗脱进程,将得到的含 有单一产物的洗脱液合并蒸干,即为异丙醇类β-氨基醇衍生物。
与现有技术相比,本发明的有益效果为:
本发明在微流控通道反应器中利用脂肪酶催化在线合成异丙醇 类β-氨基醇衍生物,该法不仅大大地缩短了反应时间,而且具有高的 转化率和选择性;同时首次利用经济的脂肪酶Lipozyme RM IM催化 环氧化合物与胺的开环反应,降低了反应成本,具有经济高效的优势。
(四)附图说明
图1为本发明实施例采用的微流控通道反应器的结构示意图。
图中,1、2-注射器,3-反应通道,4-产物收集器,5-水浴恒温箱。
(五)具体实施方式
下面以具体实施例对本发明的保护范围作进一步说明,但本发明 的保护范围不限于此:
本发明实施例使用的微流控通道反应器的结构参考图1,包括一 个注射泵(未显示)、两个注射器1和2、反应通道3、水浴恒温箱(5, 仅显示其平面示意图)和产物收集器4;两个注射器1和2安装于注 射泵中,通过一个Y型接口与反应通道3入口连接,所述反应通道3 置于水浴恒温箱5中,通过水浴恒温箱5控制反应温度,所述的反应 通道3的内径2.0mm,管长1.0m,所述反应通道3出口通过一接口 与产物收集器4连接。
实施例1:1-氯-3-(2-甲基苯氨基)异丙醇的合成
Figure BDA0001918747720000071
装置参考图1:将邻甲苯胺(2.0mmol)溶解在10mL MeOH中, 环氧氯丙烷(2.0mmol)溶解在10mL MeOH中,然后分别装于10mL 注射器中备用。0.87g脂肪酶Lipozyme RM IM均匀填充在反应通道中, 在PHD 2000注射泵推动下,两路反应液分别以15.6μL·min-1的流速通过“Y”接头进入反应通道中进行反应,通过水浴恒温箱控制反应器温 度在35℃,反应液在反应通道内连续流动反应20min,反应结果通 过薄层色谱TLC跟踪检测。
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300 目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35cm,柱 直径4.5cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速 2mL·min-1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱 液合并蒸干,得到淡黄色油状物,获得1-氯-3-(2-甲基苯氨基)异丙醇, HPLC检测1-氯-3-(2-甲基苯氨基)异丙醇转化率85%,选择性100%。
核磁表征结果如下:
1H NMR(500MHz,CDCl3):δ=7.20-7.07(m,2H),6.78-6.68(m, 2H),4.20-4.13(m,1H),3.77-3.64(m,2H),3.46(dd,J=13.1,4.4Hz, 1H),3.30(dd,J=13.1,7.3Hz,1H),2.20(s,3H).13C NMR(125MHz, CDCl3):δ=145.3,130.4,127.2,123.0,118.3,110.6,69.7,47.8,47.4, 17.5.
实施例2-5
改变微流控微通道反应器中的溶剂,控制温度35℃,其他同实 施例1,结果如表1所示:
表1:溶剂对反应的影响
Figure BDA0001918747720000081
Figure BDA0001918747720000091
表1的结果表明,当邻甲苯胺和环氧氯丙烷底物物质的量之比为 1:1,流速为15.6μL·min-1,反应时间均为20min,反应温度均为35℃, 反应器以MeOH为有机溶剂时反应的转化率与选择性最优,所以本 发明中微流控微通道反应器中最佳溶剂为甲醇。
实施例6-9
以邻甲苯胺的用量为基准,改变微流控微通道反应器中邻甲苯胺 和环氧氯丙烷的底物物质的量之比,控制温度35℃,其他同实施例 1,结果如表2所示:
表2:邻甲苯胺和环氧氯丙烷底物物质的量之比对反应的影响
实施例 邻甲苯胺和环氧氯丙烷 转化率[%] 选择性[%]
6 1:0.6 53 89
7 1:0.8 76 97
1 1:1 85 100
8 1:1.2 79 92
9 1:1.4 72 86
表2的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物环氧 氯丙烷的增加,反应的转化率也随着增加,当底物比邻甲苯胺和环氧 氯丙烷为1:1时,反应的转化率最优,所以本发明中微流控微通道反 应器中最佳底物物质的量之比为1:1。
实施例10-13
改变微流控通道反应器的温度,其他同实施例1,反应结果如表 3所示:
表3:温度对反应的影响
实施例 温度[℃] 转化率[%] 选择性[%]
10 30 73 96
1 35 85 98
11 40 80 98
12 45 76 97
13 50 61 94
表3的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应器以MeOH为有机溶剂,反应物邻甲苯胺和环氧氯丙烷物质的 量之比均为1:1,当反应温度处于35℃时,反应的转化率与选择性 最佳,温度或太高或太低都将影响酶的活性。所以本发明中微流控微 通道反应器中最佳温度为35℃。
实施例14-17
改变微流控通道反应器的反应时间,其他同实施例1,反应结果 如表4所示:
表4:反应时间对反应的影响
实施例 时间[min] 转化率[%] 选择性[%]
14 10 27 100
15 15 65 100
1 20 85 100
16 25 81 98
17 30 75 97
表4的结果表明,当反应器以MeOH为有机溶剂,反应物邻甲 苯胺和环氧氯丙烷物质的量之比均为1:1,反应温度均为35℃,当 反应时间为20min的时候,反应转化率为85%。所以本发明中微流 控微通道反应器中最佳反应时间20min。
对比例1-4
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL (对比例1)、脂肪酶Novozym 435(对比例2)、枯草杆菌碱性蛋白 酶(对比例3)、脂肪酶TM IM(对比例4),其他同实施例1,结果 如表5所示。
表5:不同酶对反应转化率及选择性的影响
Figure BDA0001918747720000111
Figure BDA0001918747720000121
表5的结果表明,对于微流控通道反应器中酶促环氧化合物的开 环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶TM IM催化该反应,1-氯-3-(2-甲基苯氨基)异丙醇的转化率为51%。而利 用Novozym 435催化反应,1-氯-3-(2-甲基苯氨基)异丙醇的转化率仅 为16%。从表5的结果看,对于微流控通道反应器中酶促环氧化合物 的开环反应而言,最有效的催化剂为脂肪酶Lipozyme RM IM,邻甲 苯胺的转化率为85%,选择性为100%。
实施例18:1-氯-3-(3-甲基苯氨基)异丙醇的合成
Figure BDA0001918747720000122
将间甲苯胺(2.0mmol)溶解在10mL MeOH中,环氧氯丙烷(2.0 mmol)溶解在10mLMeOH中,然后分别装于10mL注射器中备用。 0.87g脂肪酶Lipozyme RM IM均匀填充在反应通道中,在PHD 2000 注射泵推动下,两路反应液分别以15.6μL·min-1的流速通过“Y”接头进入反应通道中进行反应,通过水浴恒温箱控制反应器温度在35℃, 反应液在反应通道内连续流动反应20min,反应结果通过薄层色谱 RMC跟踪检测。
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300 目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35cm,柱 直径4.5cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速 2mL·min-1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱 液合并蒸干,得到淡黄色油状物,获得1-氯-3-(3-甲基苯氨基)异丙醇, HPLC检测1-氯-3-(3-甲基苯氨基)异丙醇转化率94%,选择性100%。
核磁表征结果如下:
1H NMR(500MHz,CDCl3):δ=7.14(d,J=7.5Hz,1H),6.68(m, 3H),4.21-4.15(m,1H),3.68(m,2H),3.41(dd,J=13.2,4.1Hz,1H), 3.29(dd,J=13.2,7.7Hz,1H),2.31(s,3H).13C NMR(125MHz, CDCl3):δ=145.7,139.5,129.4,121.2,115.7,112.1,69.3,48.8,47.4, 21.6.
实施例19-22
改变微流控微通道反应器中的溶剂,控制温度35℃,其他同实 施例18,结果如表6所示:
表6:溶剂对反应的影响
实施例 溶剂 转化率[%] 选择性[%]
19 乙醇 87 98
18 甲醇 94 100
20 正辛烷 84 98
21 正己烷 73 96
22 石油醚 69 95
表6的结果表明,当间甲苯胺和环氧氯丙烷底物物质的量之比为 1:1,流速为15.6μL·min-1,反应时间均为20min,反应温度均为35℃, 反应器以MeOH为有机溶剂时反应的转化率与选择性最优,所以本 发明中微流控微通道反应器中最佳溶剂为甲醇。
实施例23-9
以间甲苯胺的用量为基准,改变微流控微通道反应器中间甲苯胺 和环氧氯丙烷的底物物质的量之比,控制温度35℃,其他同实施例 18,结果如表7所示:
表7间甲苯胺和环氧氯丙烷底物物质的量之比对反应的影响
实施例 间甲苯胺和环氧氯丙烷 转化率[%] 选择性[%]
23 1:0.6 55 89
24 1:0.8 78 98
18 1:1 94 100
25 1:1.2 91 95
26 1:1.4 83 90
表7的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物环氧 氯丙烷的增加,反应的转化率也随着增加,当底物比间甲苯胺和环氧 氯丙烷为1:1时,反应的转化率与选择性最优,所以本发明中微流控 微通道反应器中最佳底物物质的量之比为1:1。
实施例27-30
改变微流控通道反应器的温度,其他同实施例18,反应结果如 表8所示:
表8:温度对反应的影响
Figure BDA0001918747720000141
Figure BDA0001918747720000151
表8的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应器以MeOH为有机溶剂,反应物间甲苯胺和环氧氯丙烷物质的 量之比均为1:1,当反应温度处于35℃时,反应的转化率最佳,温 度或太高或太低都将影响酶的活性。所以本发明中微流控微通道反应 器中最佳温度为35℃。
实施例31-34
改变微流控通道反应器的反应时间,其他同实施例18,反应结 果如表9所示:
表9:反应时间对反应的影响
实施例 时间[min] 转化率[%] 选择性[%]
31 10 33 95
32 15 72 98
18 20 94 99
33 25 89 99
34 30 84 97
表9的结果表明,当反应器以MeOH为有机溶剂,反应物间甲 苯胺和环氧氯丙烷物质的量之比均为1:1,反应温度均为35℃,当 反应时间为20min的时候,反应转化率为94%。所以本发明中微流 控微通道反应器中最佳反应时间20min。
对比例5-8
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL (对比例1)、脂肪酶Novozym 435(对比例2)、枯草杆菌碱性蛋白 酶(对比例3)、脂肪酶TM IM(对比例4),其他同实施例18,结果 如表10所示。
表10:不同酶对反应转化率及选择性的影响
对比例 酶源 转化率[%] 选择性[%]
5 PPL 22 75
6 Novozym 435 19 88
7 枯草杆菌碱性蛋白酶 34 85
8 Lipozyme TM IM 53 87
实施例18 Lipozyme RM IM 94 100
表10的结果表明,对于微流控通道反应器中酶促环氧化合物的 开环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶 TM IM催化该反应,1-氯-3-(3-甲基苯氨基)异丙醇的转化率为53%。 而利用Novozym 435催化反应,1-氯-3-(3-甲基苯氨基)异丙醇的转化 率仅为19%。从表5的结果看,对于微流控通道反应器中酶促环氧化 合物的开环反应而言,最有效的催化剂为脂肪酶Lipozyme RM IM, 间甲苯胺的转化率为94%,选择性为100%。
实施例35:1-氯-3-(4-甲基苯氨基)异丙醇的合成
Figure BDA0001918747720000171
将对甲苯胺(2.0mmol)溶解在10Ml MeOH中,环氧氯丙烷(2.0 mmol)溶解在10mLMeOH中,然后分别装于10mL注射器中备用。 0.87g脂肪酶Lipozyme RM IM均匀填充在反应通道中,在PHD 2000 注射泵推动下,两路反应液分别以15.6μL·min-1的流速通过“Y”接头进入反应通道中进行反应,通过水浴恒温箱控制反应器温度在35℃, 反应液在反应通道内连续流动反应20min,反应结果通过薄层色谱 TLC跟踪检测。
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300 目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35cm,柱 直径4.5cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速 2mL·min-1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱 液合并蒸干,得到白色固体,获得1-氯-3-(4-甲基苯氨基)异丙醇,HPLC 检测1-氯-3-(4-甲基苯氨基)异丙醇转化率92%,选择性100%。
核磁表征结果如下:
1H NMR(500MHz,CDCl3):δ=7.04(d,J=8.1Hz,2H),6.65(d,J =8.4Hz,2H),4.24-3.98(m,1H),3.67(ddd,J=15.8,11.3,4.6Hz,2H), 3.38(dd,J=13.2,4.3Hz,1H),3.24(dd,J=13.2,7.3Hz,1H),2.27(s, 3H).13C NMR(125MHz,CDCl3):δ=144.9,129.9,128.2,114.0,69.7, 48.0,47.7,20.4.
实施例36-5
改变微流控微通道反应器中的溶剂,控制温度35℃,其他同实 施例35,结果如表11所示:
表11:溶剂对反应的影响
实施例 溶剂 转化率[%] 选择性[%]
36 乙醇 85 98
35 甲醇 92 100
37 正辛烷 81 93
38 正己烷 76 91
39 石油醚 65 95
表11的结果表明,当对甲苯胺和环氧氯丙烷底物物质的量之比 为1:1,流速为15.6μL·min-1,反应时间均为20min,反应温度均为 35℃,反应器以MeOH为有机溶剂时反应的转化率与选择性最优, 所以本发明中微流控微通道反应器中最佳溶剂为甲醇。
实施例40-43
以对甲苯胺的用量为基准,改变微流控微通道反应器中对甲苯胺 和环氧氯丙烷的底物物质的量之比,控制温度35℃,其他同实施例 35,结果如表12所示:
表12:对甲苯胺和环氧氯丙烷底物物质的量之比对反应的影 响
Figure BDA0001918747720000181
Figure BDA0001918747720000191
表12的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物环氧 氯丙烷的增加,反应的转化率也随着增加,当底物比对甲苯胺和环氧 氯丙烷为1:1时,反应的转化率与选择性最优,所以本发明中微流控 微通道反应器中最佳底物物质的量之比为1:1。
实施例44-47
改变微流控通道反应器的温度,其他同实施例35,反应结果如 表13所示:
表13:温度对反应的影响
实施例 温度[℃] 转化率[%] 选择性[%]
44 30 81 97
35 35 92 99
45 40 89 98
46 45 84 96
47 50 69 95
表13的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应器以MeOH为有机溶剂,反应物对甲苯胺和环氧氯丙烷物质的 量之比均为1:1,当反应温度处于35℃时,反应的转化率最佳,温 度或太高或太低都将影响酶的活性。所以本发明中微流控微通道反应 器中最佳温度为35℃。
实施例48-17
改变微流控通道反应器的反应时间,其他同实施例35,反应结 果如表14所示:
表14:反应时间对反应的影响
实施例 时间[min] 转化率[%] 选择性[%]
48 10 31 100
49 15 70 100
35 20 92 100
50 25 87 98
51 30 80 97
表14的结果表明,当反应器以MeOH为有机溶剂,反应物对甲 苯胺和环氧氯丙烷物质的量之比均为1:1,反应温度均为35℃,当 反应时间为20min的时候,反应转化率为92%,选择性为100%。所 以本发明中微流控微通道反应器中最佳反应时间20min。
对比例9-12
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL (对比例9)、脂肪酶Novozym 435(对比例10)、枯草杆菌碱性蛋白 酶(对比例11)、脂肪酶TM IM(对比例12),其他同实施例35,结 果如表15所示。
表15:不同酶对反应转化率及选择性的影响
对比例 酶源 转化率[%] 选择性[%]
9 PPL 23 75
10 Novozym 435 18 90
11 枯草杆菌碱性蛋白酶 31 82
12 Lipozyme TM IM 52 84
实施例35 Lipozyme RM IM 92 100
表15的结果表明,对于微流控通道反应器中酶促环氧化合物的 开环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶 TM IM催化该反应,1-氯-3-(4-甲基苯氨基)异丙醇的转化率为52%。 而利用Novozym 435催化反应,1-氯-3-(4-甲基苯氨基)异丙醇的转化 率仅为18%。从表15的结果看,对于微流控通道反应器中酶促环氧 化合物的开环反应而言,最有效的催化剂为脂肪酶Lipozyme RM IM, 对甲苯胺的转化率为92%,选择性为100%。
实施例52:1-氯-3-(N-甲基苯氨基)异丙醇的合成
Figure BDA0001918747720000211
将N-甲基苯胺(2.0mmol)溶解在10mL MeOH中,环氧氯丙烷 (2.0mmol)溶解在10mLMeOH中,然后分别装于10mL注射器中备 用。0.87g脂肪酶Lipozyme RM IM均匀填充在反应通道中,在PHD 2000注射泵推动下,两路反应液分别以15.6μL·min-1的流速通过“Y” 接头进入反应通道中进行反应,通过水浴恒温箱控制反应器温度在 35℃,反应液在反应通道内连续流动反应20min,反应结果通过薄 层色谱TLC跟踪检测。
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300 目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35cm,柱 直径4.5cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速 2mL·min-1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱 液合并蒸干,得到淡黄色油状物,获得1-氯-3-(N-甲基苯氨基)异丙醇, HPLC检测1-氯-3-(N-甲基苯氨基)异丙醇转化率81%,选择性100%。
核磁表征结果如下:
1H NMR(500MHz,CDCl3):δ=7.32-7.25(m,2H),6.82(dd,J= 18.4,7.7Hz,3H),4.31-4.04(m,1H),3.74-3.68(m,1H),3.65(dd,J= 11.3,5.6Hz,1H),3.48(d,J=6.4Hz,2H),3.02(s,3H).13C NMR(125 MHz,CDCl3):δ=149.4,129.4,117.9,113.2,69.0,56.8,47.7,39.8.
实施例53-56
改变微流控微通道反应器中的溶剂,控制温度35℃,其他同实 施例52,结果如表16所示:
表16:溶剂对反应的影响
Figure BDA0001918747720000221
Figure BDA0001918747720000231
表16的结果表明,当N-甲基苯胺和环氧氯丙烷底物物质的量之 比为1:1,流速为15.6μL·min-1,反应时间均为20min,反应温度均 为35℃,反应器以MeOH为有机溶剂时反应的转化率与选择性最优, 所以本发明中微流控微通道反应器中最佳溶剂为甲醇。
实施例57-60
以N-甲基苯胺的用量为基准,改变微流控微通道反应器中N-甲 基苯胺和环氧氯丙烷的底物物质的量之比,控制温度35℃,其他同 实施例52,结果如表17所示:
表17:N-甲基苯胺和环氧氯丙烷底物物质的量之比对反应的影响
实施例 N-甲基苯胺和环氧氯丙烷 转化率[%] 选择性[%]
57 1:0.6 51 89
58 1:0.8 76 97
52 1:1 81 100
59 1:1.2 77 92
60 1:1.4 70 84
表17的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物环氧 氯丙烷的增加,反应的转化率也随着增加,当N-甲基苯胺和环氧氯 丙烷的底物比为1:1时,反应的转化率最优,所以本发明中微流控微 通道反应器中最佳底物物质的量之比为1:1。
实施例61-64
改变微流控通道反应器的温度,其他同实施例52,反应结果如 表18所示:
表18:温度对反应的影响
实施例 温度[℃] 转化率[%] 选择性[%]
61 30 69 100
52 35 81 100
62 40 77 100
63 45 71 96
64 50 56 90
表18的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应器以MeOH为有机溶剂,反应物N-甲基苯胺和环氧氯丙烷物质 的量之比均为1:1,当反应温度处于35℃时,反应的转化率与选择 性最佳,温度或太高或太低都将影响酶的活性。所以本发明中微流控 微通道反应器中最佳温度为35℃。
实施例65-68
改变微流控通道反应器的反应时间,其他同实施例52,反应结 果如表19所示:
表19:反应时间对反应的影响
Figure BDA0001918747720000241
Figure BDA0001918747720000251
表19的结果表明,当反应器以MeOH为有机溶剂,反应物N- 甲基苯胺和环氧氯丙烷物质的量之比均为1:1,反应温度均为35℃, 当反应时间为20min的时候,反应转化率为81%,选择性为100%。 所以本发明中微流控微通道反应器中最佳反应时间20min。
对比例13-16
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL (对比例13)、脂肪酶Novozym 435(对比例14)、枯草杆菌碱性蛋 白酶(对比例15)、脂肪酶TM IM(对比例16),其他同实施例52, 结果如表20所示。
表20:不同酶对反应转化率及选择性的影响
对比例 酶源 转化率[%] 选择性[%]
13 PPL 17 76
14 Novozym 435 15 87
15 枯草杆菌碱性蛋白酶 27 79
16 Lipozyme TM IM 48 85
实施例52 Lipozyme RM IM 81 100
表20的结果表明,对于微流控通道反应器中酶促环氧化合物的 开环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶 TM IM催化该反应,1-氯-3-(N-甲基苯氨基)异丙醇的转化率为48%。 而利用Novozym 435催化反应,1-氯-3-(N-甲基苯氨基)异丙醇的转化 率仅为15%。从表20的结果看,对于微流控通道反应器中酶促环氧 化合物的开环反应而言,最有效的催化剂为脂肪酶Lipozyme RM IM, N-甲基苯胺的转化率为81%,选择性为100%。
实施例69:1-氯-3-苯氨基异丙醇的合成
Figure BDA0001918747720000261
将苯胺(2.0mmol)溶解在10mL MeOH中,环氧氯丙烷(2.0mmol) 溶解在10mL MeOH中,然后分别装于10mL注射器中备用。0.87g脂 肪酶Lipozyme RM IM均匀填充在反应通道中,在PHD 2000注射泵推 动下,两路反应液分别以15.6μL·min-1的流速通过“Y”接头进入反应 通道中进行反应,通过水浴恒温箱控制反应器温度在35℃,反应液 在反应通道内连续流动反应20min,反应结果通过薄层色谱TLC跟踪 检测。
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300 目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35cm,柱 直径4.5cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速 2mL·min-1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱 液合并蒸干,得到淡黄色油状物,获得1-氯-3-苯氨基异丙醇,HPLC 检测1-氯-3-苯氨基异丙醇转化率91%,选择性100%。
核磁表征结果如下:
1H NMR(500MHz,CDCl3):δ=7.10(t,J=8.1Hz,2H),6.76- 6.56(m,3H),4.00-3.72(m,1H),3.72-3.54(m,3H),3.19(dd,J=13.2, 5.6Hz,1H),3.05(dd,J=13.1,6.4Hz,1H).13C NMR(125MHz, CDCl3):δ=147.3,129.4,118.6,113.7,69.7,47.6,47.4.
实施例70-73
改变微流控微通道反应器中的溶剂,控制温度35℃,其他同实 施例69,结果如表21所示:
表21:溶剂对反应的影响
实施例 溶剂 转化率[%] 选择性[%]
70 乙醇 85 98
69 甲醇 91 100
71 正辛烷 80 92
72 正己烷 75 90
73 石油醚 65 95
表21的结果表明,当苯胺和环氧氯丙烷底物物质的量之比为1:1, 流速为15.6μL·min-1,反应时间均为20min,反应温度均为35℃, 反应器以MeOH为有机溶剂时反应的转化率与选择性最优,所以本 发明中微流控微通道反应器中最佳溶剂为甲醇。
实施例74-77
以苯胺的用量为基准,改变微流控微通道反应器中苯胺和环氧氯 丙烷的底物物质的量之比,控制温度35℃,其他同实施例69,结果 如表22所示:
表22:苯胺和环氧氯丙烷底物物质的量之比对反应的影响
实施例 苯胺和环氧氯丙烷 转化率[%] 选择性[%]
74 1:0.6 52 89
75 1:0.8 77 97
69 1:1 91 100
76 1:1.2 86 91
77 1:1.4 80 85
表22的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物环氧 氯丙烷的增加,反应的转化率也随着增加,当底物比苯胺和环氧氯丙 烷为1:1时,反应的转化率与选择性最优,所以本发明中微流控微通 道反应器中最佳底物物质的量之比为1:1。
实施例78-81
改变微流控通道反应器的温度,其他同实施例69,反应结果如 表23所示:
表23:温度对反应的影响
Figure BDA0001918747720000281
Figure BDA0001918747720000291
表23的结果表明,当流速为15.6μL·min-1,反应时间均为20min, 反应器以MeOH为有机溶剂,反应物苯胺和环氧氯丙烷物质的量之 比均为1:1,当反应温度处于35℃时,反应的转化率与选择性最佳, 温度或太高或太低都将影响酶的活性。所以本发明中微流控微通道反 应器中最佳温度为35℃。
实施例82-17
改变微流控通道反应器的反应时间,其他同实施例69,反应结 果如表24所示:
表24:反应时间对反应的影响
实施例 时间[min] 转化率[%] 选择性[%]
82 10 30 100
83 15 70 100
69 20 91 100
84 25 86 99
85 30 80 96
表24的结果表明,当反应器以MeOH为有机溶剂,反应物苯胺 和环氧氯丙烷物质的量之比均为1:1,反应温度均为35℃,当反应 时间为20min的时候,反应转化率为91%,选择性为100%。所以本 发明中微流控微通道反应器中最佳反应时间20min。
对比例17-20
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL (对比例17)、脂肪酶Novozym 435(对比例18)、枯草杆菌碱性蛋 白酶(对比例19)、脂肪酶TM IM(对比例20),其他同实施例69, 结果如表25所示。
表25:不同酶对反应转化率及选择性的影响
对比例 酶源 转化率[%] 选择性[%]
17 PPL 20 75
18 Novozym 435 16 88
19 枯草杆菌碱性蛋白酶 30 81
20 Lipozyme TM IM 52 86
实施例69 Lipozyme RM IM 91 100
表25的结果表明,对于微流控通道反应器中酶促环氧化合物的 开环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶 TM IM催化该反应,1-氯-3-苯氨基异丙醇的转化率为52%。而利用 Novozym 435催化反应,1-氯-3-苯氨基异丙醇的转化率仅为16%。从 表5的结果看,对于微流控通道反应器中酶促环氧化合物的开环反应 而言,最有效的催化剂为脂肪酶Lipozyme RM IM,苯胺的转化率为 91%,选择性为100%。

Claims (8)

1.一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述方法采用微流控通道反应器,所述的微流控通道反应器包括依次连接的注射器、反应通道和产物收集器,所述注射器安装于注射泵中,所述的注射器通过第一连接管道与所述反应通道入口连接,所述产物收集器通过第二连接管道与所述反应通道出口连接,所述反应通道内径为0.8~2.4mm,反应通道长为0.5~1.0m;所述方法包括:以甲醇为反应溶剂,以式1所示的化合物和环氧氯丙烷为原料,以脂肪酶Lipozyme RM IM为催化剂,将所述的原料和所述的反应溶剂置于注射器中,将所述的脂肪酶Lipozyme RM IM均匀填充在所述的反应通道中,在所述的注射泵的推动下使用所述的原料和所述的反应溶剂连续通入反应通道中进行开环反应,控制反应温度为30~50℃,反应时间为10~30min,通过产物收集器在线收集反应液,所述的反应液经后处理得到式2所示的异丙醇类β-氨基醇衍生物;所述的式1所示的化合物与环氧氯丙烷的物质的量之比为1:0.6~1.4;在所述反应通道可容纳所填充催化剂的最大限度内,所述的催化剂的加入量以所述反应介质的体积计为0.025~0.05g/mL;反应体系中,所述环氧氯丙烷的浓度为0.12~0.28mmol/mL,
Figure FDA0002950109250000011
式1或式2中,所述的R1为H或CH3
当所述的R1为H时,所述的R2为H或CH3
当所述的R1为CH3时,所述的R2为H。
2.如权利要求1所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述的注射器有两个,分别是第一注射器与第二注射器,所述的第一连接管道为Y型或T型管道,所述的第一注射器与第二注射器分别连接在所述的Y型或T型管道的两个接口并通过所述的Y型或T型管道并联再与所述的反应通道串联。
3.如权利要求2所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述的方法包括下列步骤:以物质的量之比为1:0.6~1.4的式1所示的化合物与环氧氯丙烷为原料,以脂肪酶Lipozyme RM IM为催化剂,以甲醇为反应溶剂,将所述的脂肪酶Lipozyme RM IM均匀填充在反应通道中,先用甲醇溶解式1所示的化合物装于第一注射器中,用甲醇溶解环氧氯丙烷装于第二注射器中;再将所述的第一注射器、第二注射器装于同一注射泵中,然后在所述的注射泵的同步推动下使原料和反应溶剂通过所述的Y型或T型管道汇总后进入所述的反应通道中进行反应,控制反应温度为30~50℃,反应时间为10~30min,通过产物收集器在线收集反应液,所述的反应液经后处理制得异丙醇类β-氨基醇衍生物;所述的催化剂的加入量为0.5~1g;反应体系中,所述环氧氯丙烷的浓度为0.12~0.28mmol/mL。
4.如权利要求1所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述微流控通道反应器包括恒温箱,所述反应通道置于恒温箱中。
5.如权利要求1~4之一所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述式1所示的化合物与环氧氯丙烷的物质的量之比为1:0.8~1.2。
6.如权利要求1~4之一所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述开环反应温度为30~40℃,所述开环反应时间为15~25min。
7.如权利要求1~4之一所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述式1所示的化合物与环氧氯丙烷的物质的量之比为1:1。
8.如权利要求1~4之一所述的脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法,其特征在于:所述后处理为:所得反应液减压蒸馏除去溶剂,所得粗产物经硅胶柱层析分离,用200-300目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯体积比9:1的混合溶剂,得到的粗产物用少量洗脱试剂溶解后湿法上柱,收集洗脱液,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱液合并蒸干,即为式2所示的异丙醇类β-氨基醇衍生物。
CN201811584497.0A 2018-12-24 2018-12-24 一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法 Active CN109762853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811584497.0A CN109762853B (zh) 2018-12-24 2018-12-24 一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811584497.0A CN109762853B (zh) 2018-12-24 2018-12-24 一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法

Publications (2)

Publication Number Publication Date
CN109762853A CN109762853A (zh) 2019-05-17
CN109762853B true CN109762853B (zh) 2021-07-27

Family

ID=66450996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811584497.0A Active CN109762853B (zh) 2018-12-24 2018-12-24 一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法

Country Status (1)

Country Link
CN (1) CN109762853B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560408B (zh) * 2020-02-29 2022-11-25 浙江工业大学 一种基于流动化学酶促在线合成香豆素-3-羧酸糖酯衍生物的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE616341A (zh) * 1961-04-13
CN102161683B (zh) * 2011-02-24 2013-11-13 浙江工业大学 一种脂肪酶催化选择性合成蔗糖-6-棕榈酸酯的方法
CN103184253B (zh) * 2011-12-31 2014-11-12 浙江工业大学 一种脂肪酶催化在线合成甘露糖-6-月桂酸酯的方法
CN107988278B (zh) * 2017-12-21 2021-06-04 浙江农林大学 一种脂肪酶催化在线合成s-苄基月桂酸硫酯的方法
CN107988277B (zh) * 2017-12-21 2021-06-08 浙江农林大学 一种脂肪酶催化在线合成s-苄基棕榈酸硫酯的方法

Also Published As

Publication number Publication date
CN109762853A (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
CN109735582B (zh) 一种脂肪酶催化在线合成环己醇类β-氨基醇衍生物的方法
CN109988794B (zh) 一种在连续流动反应器中酶催化合成硝基苯并咪唑类衍生物的方法
CN107384991B (zh) 一种脂肪酶催化在线合成5′-o-乙烯己二酰尿苷的方法
CN109593804B (zh) 一种酶催化快速合成硝基苯并咪唑类衍生物的方法
CN107488683A (zh) 一种脂肪酶催化在线合成n‑(5‑乙烯酯戊酰基)美西律的方法
CN105838600B (zh) 一种脂肪酶催化在线合成5’‑o‑棕榈酰尿苷的方法
CN107988277B (zh) 一种脂肪酶催化在线合成s-苄基棕榈酸硫酯的方法
CN107475330A (zh) 一种脂肪酶催化在线合成n‑(5‑葡萄糖酯戊酰基)美托洛尔的方法
CN109706198A (zh) 一种在线酶法合硝基咪唑类衍生物的方法
CN109706194B (zh) 一种基于流动化学酶促胺解反应在线合成苯乙醇类β-氨基醇衍生物的方法
CN109988787B (zh) 一种脂肪酶催化在线合成2-苯氨基环己醇的方法
CN107384782A (zh) 一种脂肪酶催化在线合成5’-o-乙烯己二酰-5-氟尿苷的方法
CN107488690A (zh) 一种脂肪酶催化在线合成n‑(5‑葡萄糖酯戊酰基)美西律的方法
CN109762853B (zh) 一种脂肪酶催化在线合成异丙醇类β-氨基醇衍生物的方法
CN107475329A (zh) 一种脂肪酶催化在线合成n‑(5‑蔗糖酯戊酰基)美西律的方法
CN111690698A (zh) 两步串联流动合成3-(苯并[d][1,3]二氧-5-氨基)丙羟肟酸的方法
CN104561170B (zh) 一种脂肪酶催化在线合成乙酸1‑(6‑硝基苯并咪唑基)乙酯的方法
CN107988278B (zh) 一种脂肪酶催化在线合成s-苄基月桂酸硫酯的方法
CN111676255A (zh) 一种脂肪酶催化在线合成3-苯氨基丙羟肟酸的方法
CN111690695A (zh) 3-苯氨基丙羟肟酸的酶促微流控在线合成方法
CN111455004B (zh) 一种脂肪酶催化在线合成香豆素-3-羧酸-6’-o-d-甘露糖酯的方法
CN104561174B (zh) 一种脂肪酶催化在线合成棕榈酸1‑(4‑硝基咪唑基)乙酯的方法
CN115478086A (zh) 一种酶促在线合成腺嘌呤迈克尔加成衍生物的方法
CN115558686A (zh) 基于连续流生物反应器在线合成肉桂酰胺衍生物的方法
CN104611388B (zh) 一种脂肪酶催化在线合成己二酸乙烯基单1-(4-硝基咪唑基)乙酯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant