CN109758588A - 一种核酸球形纳米颗粒药物的制备方法及应用 - Google Patents
一种核酸球形纳米颗粒药物的制备方法及应用 Download PDFInfo
- Publication number
- CN109758588A CN109758588A CN201910176094.0A CN201910176094A CN109758588A CN 109758588 A CN109758588 A CN 109758588A CN 201910176094 A CN201910176094 A CN 201910176094A CN 109758588 A CN109758588 A CN 109758588A
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- spherical nanoparticle
- nanoparticle drug
- dna
- sulphur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nanotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明提供了一种核酸球形纳米颗粒药物的制备方法及其应用,所述核酸球形纳米颗粒药物为二硫单体化合物和与检测目标正义核酸序列互补的核酸序列自组装而成。所述的核酸球形纳米颗粒药物可以通过非内吞途径进入细胞质,进而被细胞内源性谷胱甘肽(GSH)快速解聚,促使纳米颗粒的分解和核酸的释放以用于基因治疗,进而抑制肿瘤相关基因的表达。
Description
技术领域
本发明属于生物基因治疗领域,特别涉及一种核酸球形纳米颗粒药物的制备方法及应用。
背景技术
基因治疗对于治疗癌症、遗传性疾病及病毒感染等多种疾病具有广阔的应用前景。目前,许多核酸药物正处于临床试验阶段,并且一些药物已在美国和欧洲获得批准。尽管取得了很大的进步,核酸药物的商业开发仍然面临一些挑战,比如酶促降解、低效的细胞质递送、肝脏的快速清除及非特异性副作用。
成功的基因治疗在很大程度上取决于发展高转染效率、低细胞毒性的递送载体。病毒和非病毒载体均可用于包装核酸,并促进细胞的摄取。病毒载体被广泛地用于有效的基因递送;然而,安全问题和低产量限制了它们的应用。同时,各种非病毒纳米材料在基因递送方面显示出巨大的潜力。近年来,人们设计了核酸组装纳米结构用于基因递送,例如:球形核酸(SNA)、DNA纳米结构和DNA水凝胶。尽管具有良好的生物相容性、细胞内化率,但细胞通过内吞途径摄取核酸组装纳米结构,从而导致内涵体/溶酶体捕获和降解,是该技术目前的主要瓶颈。例如,SNA通过内吞途径进入晚期内涵体,并在孵育后停留在晚期内涵体长达24小时。这些颗粒中只有一小部分能够从内涵体中逃逸到细胞质,极大地限制了它们的治疗效率。因此,急需开发出新的非病毒载体以促进内涵体/溶酶体逃逸并提高治疗效率。
膜融合和硫醇交换介导等不依赖内吞作用的细胞摄取途径,在生物分子的递送方面显示出很大的潜力,尤其是硫醇交换途径引起了极大关注。目前报道的硫醇交换途径主要是通过细胞穿透的二硫聚合物 (Cell-Penetrating Poly(disulfide)s,CPD)。CPD是聚精氨酸细胞穿透肽的合成模拟物,其中多肽骨架被二硫聚合物取代。CPD修饰的货物,如量子点、蛋白质、纳米粒子等,可以通过硫醇交换途径直接进入细胞质。然而,基于CPD的递送方法需要耗时的合成及共价修饰,这可能会影响生物分子的生物活性。
发明内容
本发明目的在于提供了核酸球形纳米颗粒药物用于高效的细胞质基因递送,解决现有递送方法存在的递送效率低的问题。所述核酸至少包含一个与检测目标正义核酸序列互补的核酸序列,所述核酸球形纳米颗粒为二硫单体化合物和与检测目标正义核酸序列互补的核酸以自组装的形式合成。所述的核酸球形纳米颗粒药物以非内吞途径进入细胞质,进而被细胞内源性谷胱甘肽(GSH)快速解聚,导致纳米球的分解和核酸的释放以用于反义基因治疗,从而抑制肿瘤相关基因的表达。
本发明的技术方案如下:
一种核酸球形纳米颗粒药物,所述的核酸球形纳米颗粒药物包括核酸、二硫单体化合物,其中二硫单体化合物结构通式如下:
,
其中,A含有一个或多个二硫键S-S基团;
R为碳链骨架;
M为一带正电基团。
所述的核酸包含一个或多个与目标正义核酸互补的序列。
所述的核酸包括DNA,siRAN,miRNA中的一种或多种。
所述的二硫单体化合物的A基团为疏水区域。
所述的核酸球形纳米颗粒药物的形成作用力是通过核酸分子的磷酸基团PO4 -和正电基团M之间形成的多个盐桥牢固地粘附到核酸模板,形成核酸/寡聚体复合物,进一步形成纳米颗粒。
核酸球形纳米颗粒药物的制备方法,包括以下步骤:(1)将核酸与二硫单体化合物在Tris-HCl缓冲液中混合搅拌;(2)透析,除去未反应的核酸和二硫单体化合物,得到核酸球形纳米颗粒。
所述二硫单体化合物中的M基团电荷数与核酸中的磷酸基团的摩尔比为1~15。
进一步地,将核酸球形纳米颗粒药物应用于制备抑制肿瘤药物中。
所述核酸球形纳米颗粒通过非内吞途径,即硫醇交换途径直接进入细胞;核酸球形纳米颗粒药物进入细胞后,在内源性谷胱甘肽的作用下,核酸球形纳米颗粒解聚并释放核酸,进而与目标正义核酸互补配对,抑制所述目标正义核酸表达。
所述的目标正义核酸包括mRNA、siRNA、microRNA中的一种或多种。
本发明的技术方案相比于现有技术至少达到如下有益效果:
(1)本发明的一种核酸球形纳米颗粒药物,是二硫单体化合物通过M正电基团与核酸的磷酸基团(PO4 -)之间形成的多个盐桥牢固地粘附到核酸模板,使二硫单体化合物紧密接近,从而大大增加了它们的局部有效浓度。
(2)本发明的一种核酸球形纳米颗粒药物,是由二硫聚合物与肿瘤相关的基因互补的核酸组装而成,与单纯的核酸的基因治疗相比,所述的核酸球形纳米颗粒药物具有更好的稳定性。
(3)本发明的一种核酸球形纳米颗粒药物,是在Tris-HCl缓冲液中由二硫单体化合物与肿瘤相关的基因互补的核酸序列自组装而成,可以通过非内吞途径,即硫醇交换途径直接有效地进入细胞质,与现有的脂质体包裹核酸的基因递送方法相比,具有合成方法简单、不易被内涵体/溶酶体降解等优点。
(4)本发明的一种核酸球形纳米颗粒药物,其中核酸的长度可根据肿瘤相关基因的正义核酸的链长自由调整,形成的纳米颗粒,能够更有效地进入细胞,抑制正义核酸的翻译,从而更有效地抑制靶标蛋白的表达进而抑制细胞的增殖。
因此,本发明的核酸球形纳米颗粒药物能够更有效地用于基因治疗。
附图说明
图1为DNA球形纳米颗粒的形成过程及在基因治疗方面应用的示意图。
图2分别为实施例1中的DNA-18 nt形成DNA球形纳米颗粒的表征图。(a)扫描电镜图;(b)透射电镜图;(c)粒径大小图;(d)合成的DNA球形纳米颗粒的Zeta电位。标尺:100nm。
图3为DNA 球形纳米颗粒合成及解聚的聚丙烯酰胺电泳图。(a)优化DNA和二硫单体化合物比例,形成纳米颗粒的聚丙烯酰胺凝胶电泳图。(b)加GSH或细胞裂解液,DNA球形纳米颗粒解聚的聚丙烯酰胺凝胶电泳图。
图4为实施例1中DNA NPs-18 nt与细胞共孵育不同的时间进细胞的共聚焦图。(a)DNA NPs-18 nt进细胞情况的共聚焦图;(b)DNA NPs-18 nt在HeLa细胞内的亚细胞定位共聚焦图像。
图5为实施例1中HeLa细胞与不同浓度DNA NPs-18 nt或DNA NPs-Random或Lipo3000共孵育24 h后的细胞存活率。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
以下实施例与对比例中,所述的核酸球形纳米颗粒药物中的核酸采用的是单链DNA,二硫单体化合物采取以下这种化合物,其结构式如下:
具体的,本发明中所述的二硫单体化合物的合成步骤如下:(1)将硫辛酸和N,N'-羰基二咪唑溶解在二氯甲烷中,得溶液一。在0℃条件下,将溶液一滴加到含有乙二胺的二氯甲烷中,搅拌40 min,再放置室温搅拌30 min,得到溶液二。用盐水洗涤溶液二,再用无水硫酸钠除水干燥,得到溶液三。对溶液三进行减压浓缩,得到黄色油状物,记为化合物1。(2)将化合物1溶于二氯甲烷,加入1H-吡唑-1-甲脒盐酸盐,室温搅拌4 h,得到溶液四。溶液四减压蒸馏除去溶剂,并将残余物溶于甲醇,再加入乙醚诱导沉淀,收集固体,并用乙醚洗涤,得到浅黄色固体,即为本实验中所述的二硫单体化合物,其结构式如下:
所述的核酸球形纳米颗粒药物是由不同长度的与肿瘤相关基因正义RNA序列互补的单链DNA与二硫单体化合物在20 mM Tris-HCl缓冲液(pH = 7.5)中自组装形成。在该方法中,所述的核酸球形纳米颗粒药物是由含有正电基团——胍(Gu+)的二硫单体化合物通过DNA的磷酸基团(PO4 -)和Gu+单元之间形成的多个盐桥牢固地粘附到DNA模板,DNA模板上的结构使二硫单体化合物紧密接近,从而大大增加了它们的局部有效浓度。因此,加速开环硫醇交换聚合生成DNA /寡聚体复合物,其进一步自组装成DNA纳米颗粒(DNA NPs)。
进一步的,所述的DNA NPs的粒径较小, DNA NPs-18 nt粒径约为50 nm。
进一步的,为了提高所述的DNA NPs的合成效率,将N/P的比值(N/P=[Gu+]/[PO4 -])提高至15。
为直观的表现本发明实施例与对比例的技术内容,参见图1做如下解释:
如图1所示,本发明实施例中DNA含有与目标正义RNA互补的序列, DNA与二硫单体化合物自组装形成纳米颗粒后,通过硫醇交换途径直接进入细胞质,在内源性谷胱甘肽(GSH)的作用下,导致纳米颗粒的分解和DNA的释放以用于反义基因调节,控制肿瘤相关基因的表达。本发明不仅探讨了DNA球形纳米颗粒在细胞内的命运,同时在基因治疗方面的效率也进行了研究。
本具体实施方式中涉及的实验用品及相关验证方法如下:
(1)化学试剂:合成所有寡核苷酸(序列见表1)由生工生物工程(上海)股份有限公司合成并经HPLC纯化。Cell Mask、LysoTracker、Hoechst 33342和LipofectaminTM 3000购于美国赛默飞世尔科技公司。抗存活蛋白单克隆抗体(EP2880Y)购自艾博抗(上海)贸易有限公司,第二抗体(抗兔免疫球蛋白/ HRP,P0488)购自Cell Signaling Technology(USA)。超纯水由Milli-Q水净化系统制备(18.2 MΩ)。
(2)细胞系和细胞培养:人宫颈上皮癌细胞 HeLa 购于美国模式培养物保藏所(ATCC)。HeLa细胞培养于DMEM培养基(HyClone)添加终浓度10%胎牛血清(Gibco)和终浓度100 IU/mL青霉素-链霉素,在37℃含5% CO2的气氛中进行培养。
实施例1
DNA NPs-18 nt的制备方法:将500 nM的DNA-18 nt与45 μM的二硫单体化合物在20 mMTris-HCl缓冲液(pH = 7.5)中37℃混合搅拌15 min。随后,通过在水中透析48 h除去未反应的DNA和二硫单体化合物,最终得到DNA NPs-18 nt。本实施例合成的DNA NPs-18nt的粒径大小为50 nm左右。为优化组装条件,将不同浓度的二硫单体化合物添加到含有5 μMDNA-18 nt的Tris-HCl缓冲液(pH = 7.5)中(N / P = 1~15)。
本实施例1中以survivin mRNA作为目标正义RNA, 其中Random DNA、DNA-18 nt及其正义RNA——survivin mRNA的序列参见表1。
表1 实施例和对比例中采用的DNA及正义RNA的序列表
注: survivin探针的目标序列是总长度为2655-bp的survivin mRNA的NO.305-NO.321碱基区间(GenBank中编号为NM001168)。
对比例1
将实施例1中的DNA-18nt替换为DNA-Random序列,其余实验条件均相同。本对比例合成的DNA NPs-Random的粒径大小为50 nm左右。
对比例2
Lipo 3000的制备方法:Lipo 3000参照购自美国赛默飞世尔科技公司的LipofectaminTM 3000试剂说明书方法进行制备,其中所用DNA为序列表1中的DNA-18 nt。
(一)相关实验过程
将实施例1、对比例1、对比例2中的DNA NPs(DNA NPs-18 nt / DNA NPs-Random/Lipo3000)进行以下相关实验:
A. DNA NPs合成表征分析:
DNA NPs制备完成后,测其粒径、Zeta电位,拍摄扫描电子显微镜、透射电子显微镜,以表征DNA NPs合成成功。
B.聚丙烯酰胺凝胶电泳(PAGE)分析:
进行PAGE以评估DNA NPs的组装和解聚。将5 μL样品加载到含有1 μL 6×上样缓冲液的6%聚丙烯酰胺凝胶上。在100 V电泳45 min后,通过GelRed染色凝胶并用Bio-RadChemiDoc™ Touch成像系统分析。
C.荧光共聚焦显微镜分析:
将细胞接种到35 mm共聚焦皿里培养24 h后,在37℃将HeLa细胞与100 nM DNA NPs-18nt一起孵育不同的时间点(0.25,0.5,1,2,4 h)。用Cell Mask和Hoechst 33342进行染色,清洗后进行共聚焦成像,观察DNA NPs-18 nt的细胞摄取情况。
同时,将细胞接种到35 mm共聚焦皿里培养24 h后,在37℃将HeLa细胞与100 nMDNA NPs-18 nt一起孵育不同的时间点(0.25,0.5,1,2,4 h)。用LysoTracker 和Hoechst33342进行染色,清洗后进行荧光共聚焦成像,观察DNA NPs-18 nt的亚细胞定位。
D.细胞毒性分析:
将HeLa细胞接种在96孔板中并生长至30-40%,然后将具有不同浓度的DNA NPs/Lipo3000与细胞再孵育24 h。再用新鲜细胞培养基和Cell Counting Kit-8(CCK-8)溶液孵育45 min。最后,通过使用酶标仪测量450 nm处的吸光度以评估细胞活力。
(二)相关实验结果
A.DNA NPs合成表征:
DNA与二硫单体化合物在20 mM Tris-HCl(pH=7.5)缓冲液中可以形成球形纳米颗粒,DNA-NPs-18 nt粒径约为50 nm(如图2c所示)。为进一步证实这一结果,图2a和图2b分别用扫描电子显微镜、透射电子显微镜对纳米颗粒的形貌及大小进行了表征,其结果与上述结果一致。图2d显示,DNA NPs-18 nt的Zeta电位为-12 mV,比DNA模板(~-44 mV)更正,比单体(~49 mV)的Zeta电位更负,Zeta电位的中和也证实了二硫单体与DNA的结合。
B.聚丙烯酰胺凝胶电泳(PAGE)分析:
为提高DNA NPs的合成效率,优化DNA与二硫单体化合物的比例,其中按照二硫单体中Gu+(N)与DNA的PO4 -(P)的摩尔比值(N/P)进行优化,图3a显示,当N/P=15时,几乎没有游离的DNA,并且凝胶的样品孔处条带较深,说明此时DNA都已参与DNA NPs的形成,合成效率较高,因此,后期实验均采用此条件。图3b为当不同条件下DNA NPs的聚丙烯酰胺凝胶电泳图像(I:DNA-18 nt;II:DNA NPs-18 nt在Tris-HCl中;III:DNA NPs-18 nt在5 mM GSH中;IV:DNA NPs-18 nt在2 mg/mL细胞裂解液中)。当DNA NPs-18 nt与GSH或新制备的细胞裂解液共同孵育时,凝胶中的DNA条带与DNA-18 nt条带相同,表明DNA NPs-18 nt有明显的解聚作用,因此,DNA NPs-18 nt中的DNA-18 nt可以在胞浆环境中释放。
C.DNA NPs-18 nt与细胞共孵育不同时间后的共聚焦及亚细胞定位分析:
将DNA NPs-18 nt-FAM与HeLa细胞孵育不同的时间(0.5 h,1 h,2 h,4 h)后,随着孵育时间的延长,细胞内荧光强度逐渐增强。图4a显示DNA NPs-18 nt-FAM随着时间的延长,进入细胞的数量越多,证明DNA NPs能够进入细胞。
为了研究自组装DNA NPs是否能通过硫醇交换途径进入细胞,利用共聚焦显微镜跟踪了它们的亚细胞器分布。在与DNA NPs-18 nt-FAM孵育不同时间后,HeLa细胞的晚期内涵体和溶酶体被溶酶体染料(Lysotracker)染色,细胞核被核染料(H33342)染色。如图4b所示,DNA NPs-18 nt-FAM的大部分荧光与溶酶体荧光不重叠,这意味着DNA NPs不是由内吞途径进入细胞的。计算皮尔逊相关系数(Pearson's correlation coefficients),分析DNANPs与内涵体/溶酶体的相关性,DNA NPs的皮尔逊相关系数范围为0.25~0.37,远远低于相关>0.5的阈值。因此表明,DNA NPs可以通过不依赖细胞内吞的途径直接进入细胞质。
D.细胞毒性分析:
为了考察该DNA NPs是否可以作为基因治疗的药物,我们进一步进行了细胞毒性试验,以评估所传递的反义DNA对细胞的抗增殖作用。图5显示随着DNA NPs-18 nt浓度的增加,DNA NPs-18 nt对细胞增殖有明显的抑制作用,其抑制作用明显优于Lipo 3000,而DNANPs-Random对细胞的毒性几乎可以忽略。
因此,核酸球形纳米颗粒药物具有优异的基因治疗效果,在基因治疗方面具有良好的应用前景。
SEQUENCE LISTING
<110> 福州大学
<120> 一种核酸球形纳米颗粒药物的制备方法及应用
<130> 3
<160> 3
<170> PatentIn version 3.3
<210> 1
<211> 18
<212> DNA
<213> 人工序列
<400> 1
aaggagcugg aaggcugg 18
<210> 2
<211> 18
<212> DNA
<213> 人工序列
<400> 2
aatgcatgtc acaggcgg 18
<210> 3
<211> 18
<212> DNA
<213> 人工序列
<400> 3
ccagccttcc agctcctt 18
Claims (10)
1.一种核酸球形纳米颗粒药物,其特征在于,所述的核酸球形纳米颗粒药物包括核酸、二硫单体化合物,其中二硫单体化合物结构通式如下:
,
其中,A含有一个或多个二硫键S-S基团;
R为碳链骨架;
M为一带正电基团。
2.根据权利要求1所述的核酸球形纳米颗粒药物,其特征在于,所述的核酸包含一个或多个与目标正义核酸互补的序列。
3.根据权利要求2所述的核酸球形纳米颗粒药物,其特征在于,所述的核酸包括DNA,siRAN,miRNA中的一种或多种。
4.根据权利要求1所述的核酸球形纳米颗粒药物,其特征在于,所述的二硫单体化合物的A基团为疏水区域。
5.根据权利要求1所述的核酸球形纳米颗粒药物,其特征在于,所述的核酸球形纳米颗粒药物的形成作用力是通过核酸分子的磷酸基团PO4 -和正电基团M之间形成的多个盐桥牢固地粘附到核酸模板,形成核酸/寡聚体复合物,进一步形成纳米颗粒。
6.一种如权利要求1所述的核酸球形纳米颗粒药物的制备方法,其特征在于,包括以下步骤:(1)将核酸与二硫单体化合物在Tris-HCl缓冲液中混合搅拌;(2)透析,除去未反应的核酸和二硫单体化合物,得到核酸球形纳米颗粒。
7.根据权利要求6所述的核酸球形纳米颗粒药物的制备方法,其特征在于,所述二硫单体化合物中的M基团电荷数与核酸中的磷酸基团的摩尔比为1~15。
8.一种如权利要求1~7任一所述的核酸球形纳米颗粒药物在制备抑制肿瘤药物中的应用。
9.根据权利要求8所述的应用,其特征在于,所述核酸球形纳米颗粒通过非内吞途径,即硫醇交换途径直接进入细胞;核酸球形纳米颗粒药物进入细胞后,在内源性谷胱甘肽的作用下,核酸球形纳米颗粒解聚并释放核酸,进而与目标正义核酸互补配对,抑制所述目标正义核酸表达。
10.根据权利要求书9所述的核酸球形纳米颗粒药物的应用,其特征在于,所述的目标正义核酸包括mRNA、siRNA、microRNA中的一种或多种。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910176094.0A CN109758588B (zh) | 2019-03-08 | 2019-03-08 | 一种核酸球形纳米颗粒药物的制备方法及应用 |
CN202210073258.9A CN114404607A (zh) | 2019-03-08 | 2019-03-08 | 核酸球形纳米颗粒药物、及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910176094.0A CN109758588B (zh) | 2019-03-08 | 2019-03-08 | 一种核酸球形纳米颗粒药物的制备方法及应用 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210073258.9A Division CN114404607A (zh) | 2019-03-08 | 2019-03-08 | 核酸球形纳米颗粒药物、及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109758588A true CN109758588A (zh) | 2019-05-17 |
CN109758588B CN109758588B (zh) | 2022-02-22 |
Family
ID=66458021
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210073258.9A Pending CN114404607A (zh) | 2019-03-08 | 2019-03-08 | 核酸球形纳米颗粒药物、及其制备方法和应用 |
CN201910176094.0A Active CN109758588B (zh) | 2019-03-08 | 2019-03-08 | 一种核酸球形纳米颗粒药物的制备方法及应用 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210073258.9A Pending CN114404607A (zh) | 2019-03-08 | 2019-03-08 | 核酸球形纳米颗粒药物、及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN114404607A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111939132A (zh) * | 2020-09-03 | 2020-11-17 | 福州大学 | 一种多功能核酸纳米组装体及其制备方法 |
CN113546168A (zh) * | 2020-04-24 | 2021-10-26 | 福州大学 | 含有至少2个硫原子的杂环化合物在制备纳米疫苗中的应用及制得的纳米疫苗 |
CN115998894A (zh) * | 2021-10-21 | 2023-04-25 | 福州大学 | 一种硫属元素杂环化合物和胰岛素组装形成的团聚体及其制备方法和胰岛素口服制剂 |
CN115998707A (zh) * | 2021-10-21 | 2023-04-25 | 福州大学 | 一种聚二硫多肽纳米粒及其制备方法和多肽药物口服制剂 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115813860A (zh) * | 2022-12-10 | 2023-03-21 | 郑州大学 | 一种超小型可编程纯核酸纳米粒的制备方法及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109172827A (zh) * | 2018-10-17 | 2019-01-11 | 江苏大学 | 姜黄素-核酸-二硫化亚铁纳米复合物及制备方法和用途 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011011631A2 (en) * | 2009-07-22 | 2011-01-27 | Samuel Zalipsky | Nucleic acid delivery vehicles |
US10780058B2 (en) * | 2017-06-23 | 2020-09-22 | University Of Connecticut | Nucleic acid nanocapsules for drug delivery and targeted gene knockdown |
CN108685873B (zh) * | 2018-07-16 | 2020-09-04 | 中国医学科学院生物医学工程研究所 | 仿生型自组装球形核酸纳米颗粒及其制备方法与用途 |
-
2019
- 2019-03-08 CN CN202210073258.9A patent/CN114404607A/zh active Pending
- 2019-03-08 CN CN201910176094.0A patent/CN109758588B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109172827A (zh) * | 2018-10-17 | 2019-01-11 | 江苏大学 | 姜黄素-核酸-二硫化亚铁纳米复合物及制备方法和用途 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113546168A (zh) * | 2020-04-24 | 2021-10-26 | 福州大学 | 含有至少2个硫原子的杂环化合物在制备纳米疫苗中的应用及制得的纳米疫苗 |
WO2021212858A1 (zh) * | 2020-04-24 | 2021-10-28 | 福州大学 | 含有至少2个硫原子的杂环化合物在制备纳米疫苗中的应用及制得的纳米疫苗 |
CN113546168B (zh) * | 2020-04-24 | 2023-07-28 | 苏州维益生物科技有限公司 | 含有至少2个硫原子的杂环化合物在制备纳米疫苗中的应用及制得的纳米疫苗 |
CN111939132A (zh) * | 2020-09-03 | 2020-11-17 | 福州大学 | 一种多功能核酸纳米组装体及其制备方法 |
CN115463095A (zh) * | 2020-09-03 | 2022-12-13 | 福州大学 | 一种多功能核酸纳米组装体及其制备方法 |
CN115998894A (zh) * | 2021-10-21 | 2023-04-25 | 福州大学 | 一种硫属元素杂环化合物和胰岛素组装形成的团聚体及其制备方法和胰岛素口服制剂 |
CN115998707A (zh) * | 2021-10-21 | 2023-04-25 | 福州大学 | 一种聚二硫多肽纳米粒及其制备方法和多肽药物口服制剂 |
WO2023065551A1 (zh) * | 2021-10-21 | 2023-04-27 | 福州大学 | 一种硫属元素杂环化合物和胰岛素组装形成的团聚体及其制备方法和胰岛素口服制剂 |
WO2023065550A1 (zh) * | 2021-10-21 | 2023-04-27 | 福州大学 | 一种聚二硫多肽纳米粒及其制备方法和多肽药物口服制剂 |
Also Published As
Publication number | Publication date |
---|---|
CN114404607A (zh) | 2022-04-29 |
CN109758588B (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109758588A (zh) | 一种核酸球形纳米颗粒药物的制备方法及应用 | |
US9567430B2 (en) | Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery | |
US20150073041A1 (en) | Formulations for targeted release of agents to low ph tissue environments or cellular compartments and methods of use thereof | |
US10465042B2 (en) | Poly(amine-co-ester) nanoparticles and methods of use thereof | |
JP5697123B2 (ja) | 酸性化ポリエチレンイミンを用いる細胞への核酸導入方法 | |
WO2013082529A1 (en) | Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery | |
CN106893054B (zh) | 一种阳离子聚合物基因载体及其制备方法和应用 | |
Saengkrit et al. | The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells | |
WO2019104760A1 (zh) | 一种肝靶向共输送基因/药物的整合纳米系统及制备方法 | |
CN106890343B (zh) | 一种靶向型多肽纳米基因载体复合物 | |
WO2019192488A1 (zh) | 具有靶向性的穿膜肽-多臂聚乙二醇-药物偶联物及其应用 | |
JP2024505744A (ja) | イオン化可能なカチオン性脂質アナログ材料およびその薬物送達担体としての応用 | |
WO2016081621A1 (en) | Formulations for targeted release of agents under low ph conditions and methods of use thereof | |
CN109663134B (zh) | 5-氟尿嘧啶和as1411修饰的dna四面体 | |
US10682422B2 (en) | Formulations for targeted release of agents under low pH conditions and methods of use thereof | |
US20230003727A1 (en) | Luminescent zwitterionic polymeric nanoparticles | |
CN105727304B (zh) | 核酸偶联物、其制备方法及其应用 | |
CN102935239A (zh) | 用于预防或治疗肺癌的制剂及其制备方法与应用 | |
US11292878B2 (en) | Poly(L-lysine isolphthalamide) (PLP) polymers with hydrophobic pendant chains | |
CN113265050B (zh) | 一种可降解高分子材料和自组装纳米复合物及应用 | |
EP4108669A1 (en) | Carbohydrate derivatives and kits for cell surface labeling | |
CA3179084A1 (en) | Universal multi-functional gsh-responsive silica nanoparticles for delivery of biomolecules into cells | |
CN108403665B (zh) | EpDT3适配体修饰的前列腺癌靶向给药载体、递送系统及其制备与应用 | |
Mishra et al. | Combinatorial library of biodegradable polyesters enables delivery of plasmid DNA to polarized human RPE monolayers for retinal gene therapy | |
KR20190108918A (ko) | Rna 간섭을 통한 줄기세포의 연골분화 유도를 위한 나노입자 전달체 및 이를 이용한 연골세포로의 분화방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20211122 Address after: 215000 room 404, building B2, phase I project of biomedical industrial park, 218 Xinghu street, Suzhou Industrial Park, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu Applicant after: Suzhou Weiyi Biotechnology Co.,Ltd. Address before: No.2 Xueyuan Road, Fuzhou University Town, Shangjie Town, Minhou County, Fuzhou City, Fujian Province Applicant before: FUZHOU University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |