CN109756168B - 电机的转子角度和转速控制方法、系统及汽车 - Google Patents

电机的转子角度和转速控制方法、系统及汽车 Download PDF

Info

Publication number
CN109756168B
CN109756168B CN201711077955.7A CN201711077955A CN109756168B CN 109756168 B CN109756168 B CN 109756168B CN 201711077955 A CN201711077955 A CN 201711077955A CN 109756168 B CN109756168 B CN 109756168B
Authority
CN
China
Prior art keywords
motor
speed
rotor angle
rotating speed
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711077955.7A
Other languages
English (en)
Other versions
CN109756168A (zh
Inventor
张敏彦
翟国建
邱文渊
徐学海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen V&t Technologies Co ltd
Original Assignee
Shenzhen V&t Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen V&t Technologies Co ltd filed Critical Shenzhen V&t Technologies Co ltd
Priority to CN201711077955.7A priority Critical patent/CN109756168B/zh
Publication of CN109756168A publication Critical patent/CN109756168A/zh
Application granted granted Critical
Publication of CN109756168B publication Critical patent/CN109756168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明属于电机控制技术领域,提供了一种基于无速度传感器的电机的转子角度和转速控制方法、系统及新能源汽车。所述方法包括:通过高频注入法对电机的转子角度和转速进行估算,得到转子角度θ1和转速n1;通过滑模观测器对电机的转子角度和转速进行估算,得到转子角度θ2和转速n2;根据所述转速n1和所述转速n2得到电机的转速n3;根据所述电机的转速n3判断电机的运行状态,输出所述电机的转速n4和转子角度θ4;通过本发明可有效地解决现有技术对电机的转子角度和转速进行估算时,造成的电机控制系统可靠性降低,估算成本高以及容易造成安全隐患的问题。

Description

电机的转子角度和转速控制方法、系统及汽车
技术领域
本发明属于电机控制技术领域,尤其涉及一种基于无速度传感器的电机的 转子角度和转速控制方法、基于无速度传感器的电机的转子角度和转速控制系 统及新能源汽车。
背景技术
新能源汽车的迅速发展引起了人们对电动汽车的安全性能和高性价比的 关注,在现有的新能源汽车电机控制方法中,主要通过旋转变压器或编码器测 得电机的转子角度和转速,从而实现对电机的闭环控制。
因此,现有的技术至少存在以下问题:现有技术需要通过额外的旋转变压 器或解码电路器件来检测转子角度和转速,降低了电机控制系统的可靠性,提 高了电机控制系统的成本,一旦旋转变压器或解码电路器件发生故障,将导致 电机严重失控,操作人员造成极大的安全隐患。
发明内容
本发明提供一种基于无速度传感器的电机的转子角度和转速控制方法、基 于无速度传感器的电机的转子角度和转速控制系统及新能源汽车,旨在解决现 有技术采用旋转变压器或编码器检测电机的转子角度和转速时,电机控制系统 成本高、容易造成安全隐患的问题。
本发明第一方面提供一种基于无速度传感器的电机的转子角度和转速控 制方法,所述方法包括:
通过高频注入法对电机的转子角度和转速进行估算,得到转子角度θ1和转 速n1
通过滑模观测器对电机的转子角度和转速进行估算,得到转子角度θ2和转 速n2
根据所述转速n1和所述转速n2得到电机的转速n3,其中:
n3=k1×n1+k2×n2
其中,k1、k2为提前设定的常量;
根据所述电机的转速n3判断电机的运行状态,输出所述电机的转速n4和转 子角度θ4
若所述电机处于低速运行状态,则:n4=n1,θ4=θ1
若所述电机处于高速运行状态,则:n4=n2,θ4=θ2
若所述电机处于高低速切换状态,则:n4=a1×n1+(1-a1)×n2, θ4=a2×θ1+(1-a2)×θ2,其中,a1和a2为提前设定的常量,并且0<a1<1,0<a2<1。
本发明第二方面提供一种基于无速度传感器的电机的转子角度和转速控 制系统,所述系统包括:
第一估算单元,通过高频注入法对电机的转子角度和转速进行估算,得到 转子角度θ1和转速n1
第二估算单元,通过滑模观测器对电机的转子角度和转速进行估算,得到 转子角度θ2和转速n2
角度仲裁单元,根据所述转速n1和所述转速n2得到电机的转速n3,其中:
n3=k1×n1+k2×n2
其中k1、k2为提前设定的常量;
输出单元,根据所述电机的转速n3判断电机的运行状态,输出所述电机的 转速n4和转子角度θ4
若所述电机处于低速运行状态,则:n4=n1,θ4=θ1
若所述电机处于高速运行状态,则:n4=n2,θ4=θ2
若所述电机处于高低速切换状态,则:n4=a1×n1+(1-a1)×n2, θ4=a2×θ1+(1-a2)×θ2,其中,a1和a2为提前设定的常量,并且0<a1<1,0<a2<1。
本发明第三方面提供一种新能源汽车,包括如上所述的基于无速度传感器 的电机的转子角度和转速控制系统。
本发明与现有技术相比存在的有益效果是:根据高频注入法和滑模观测器 的特点,若电机处于低速运行状态时,采用高频注入法估算电机的转子角度和 转速,若电机处于高速运行时,采用滑模观测器估算电机的转子角度和转速, 充分结合了两种估算方法的优点,省略了旋变变压器、编码器以及解码电路等 器件,降低了成本,同时减少了由于器件失效引起的安全隐患,保证了电机运 行的稳定性,进一步增加了新能源汽车的可靠性、安全性和高效性,从而有效 地解决了现有技术中需要通过旋变变压器、解码电路等器件检测电机的转子角 度和转速,造成电机控制系统成本较高,以及容易造成安全隐患的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种基于无速度传感器的电机的转子角度和转 速控制方法的实现流程图;
图2是本发明实施例提供的一种通过高频注入法对电机的转子角度和转速 进行估算的实现流程图;
图3是本发明实施例提供的一种采用滑模观测器对电机的转子角度和转速 进行估算的实现流程图;
图4是本发明实施例提供的一种基于无速度传感器的电机的转子角度和转 速控制系统的结构图;
图5示出了本发明实施例提供的一种第一估算单元的结构图;
图6示出了本发明实施例提供的一种第二估算单元的结构图;
图7本发明实施例提供的一种新能源汽车结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。
图1示出了本发明实施例提供的基于无速度传感器的电机的转子角度和转 速控制方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分, 详述如下:
如图1所示,该方法包括:
步骤S101:通过高频注入法对电机的转子角度和转速进行估算,得到转 子角度θ1和转速n1
具体的,高频注入法适用于电机在低速运行过程中,对电机的转子角度和 转速进行估算,由于电机不具有凸极性,但是通过合理利用电机的高频激励信 号、信号解调处理等基本特征,通过数字处理器对电压和电流进行精度检测; 从而通过高频注入法可以精确地检测出电机在低速运行时转子角度和转速的 微小变化,鲁棒性好、检测的精度高。
步骤S102:通过滑模观测器对电机的转子角度和转速进行估算,得到转 子角度θ2和转速n2
具体的,滑模观测器适用于电机在高速运行过程中,对电机转子角度和转 速进行估算,该滑模观测器在原有电机控制系统状态下直接可以测量的各种输 入量作为新的输入量,估计系统参数的过去和当前状态;由于该滑模观测器结 合了实际电机控制系统的模型误差与测量噪声的统计特性,因此,通过该滑模 观测器对于电机高速运行下的转子角度和转速进行估算,具有最小的均方误 差,估算偏差较小。
步骤S103:根据所述转速n1和所述转速n2得到电机的转速n3
具体的,电机的转速n3的计算公式为:
n3=k1×n1+k2×n2
其中k1、k2为提前设定的常量,通过电机的转速n3可评价电机的转速情况。
步骤S104:根据所述电机的转速n3判断电机的运行状态,输出所述电机的 转速n4和转子角度θ4
具体的,若所述电机处于低速运行状态,则:
n4=n1
θ4=θ1
若所述电机处于高速运行状态,则:
n4=n2
θ4=θ2
若所述电机处于高低速切换状态,则:
n4=a1×n1+(1-a1)×n2
θ4=a2×θ1+(1-a2)×θ2
上式中a1和a2为提前设定的常量,并且0<a1<1,0<a2<1。
当电机处于不同的运行状态时,对于电机的转子角度和转速的估算方法也 不相同,即输出的转子角度和转速也不相同;其中所述高速运行状态和所述低 速运行状态只是用于限定电机转速大小,在实际应用中,电机高速与低速之间 的阀值可以提前设定,可选的,所述低速运行是指所述电机的转速n3小于或者 等于300r/min,所述r/min表示转速的单位:转/分;所述高速运行是指所述电 机的转速n3大于300r/min。
需要说明的是,所述高低速切换状态是在电机正处在调速过程中,电机的 转速正在发生变化,例如,电机处于启动过程中,电机的转速逐渐从低速转换 为高速;若电机处于停机过程中,电机的转速逐渐从高速转换为低速;当电机 处于高低速切换状态时,电机的转速处于变动当中,因此需要通过特定的公式 来计算所述电机的转速n4和转子角度θ4
通过本实施例,该基于无速度传感器的电机的转子角度和转速控制方法结 合了高频注入法和滑模观测器两种估算方法的优点,根据电机处于的实际运行 状态,采用不同估算方法来检测电机的转子角度和转速,从而极大地提高了估 算精度,降低了对电机转子角度和转速的估算成本;有效地克服了现有技术通 过旋变变压器或编码器以及解码电路等器件检测电机转子角度和转速时,容易 引起安全隐患以及电机控制失控的不足之处。
图2示出了本发明实施例提供的通过高频注入法对电机的转子角度和转速 进行估算的实现流程,详述如下:
步骤S201:向所述电机的定子绕组输入高频旋转电压信号Vah、Vbh、Vch
步骤S202:采集所述电机输出的三相电流Ia、Ib、Ic
具体的,向所述电机的定子绕组输入高频旋转电压信号Vah、Vbh、Vch,将 该高频旋转电压信号Vah、Vbh、Vch叠加到电机的定子绕组的控制电压中,根据 电机内部固有的不对称性,通过电流传感器采集电机的包含高频电流信号的三 相电流Ia、Ib、Ic
步骤S203:通过带通滤波器对所述三相电流Ia、Ib、Ic进行分离得到直轴 高频电流Idh和交轴高频电流Iqh
具体的,所述带通滤波器通过某一频率范围内的频率分量、但将其他范围 的频率分量衰减到极低水平的滤波器;由于所述三相电流Ia、Ib、Ic中既包含 高频电流分量也包含低频电流分量,根据高频旋转角度在两相坐标系下得到包 含电机转子位置角信息的电流分量,在通过带通滤波器对三相电流Ia、Ib、Ic进 行滤波,对该三相电流Ia、Ib、Ic进行分离得到包含高频电流信号的直轴高频 电流Idh和交轴高频电流Iqh
步骤S204:对所述直轴高频电流Idh和所述交轴高频电流Iqh进行PLL运算 得到转子位置信号θk,并根据所述转子位置信号θk得到所述电机的转子角度θ1和转速n1
具体的,所述PLL为锁相环,PLL运算是指:通过检测输入电流信号和 输出电流信号之间的相位差,并将检测出的相位差信号转换为位置信号输出, 从而测量电机的各项参数;通过PLL运算得到转子位置信号θk,该转子位置信 号θk作为评价电机运行特性的重要参数,通过以下计算公式:
Figure BDA0001458324940000081
上式中,θ0为电机的转子初始角度,m为固有系数,上式的具体含义为: 当n逐渐从1到m进行变化时,θk(n)也随之变化;存在一个n1(1≤n1≤m),当n=n1, 电机的性能处于最佳,此时,
Figure BDA0001458324940000082
从而得到所述电机的转子角 度θ1,并由所述电机的转子角度θ1得到电机的转速n1
图3示出了本发明实施例提供的采用滑模观测器对电机的转子角度和转速 进行估算的实现流程,详述如下:
步骤S301:采集所述电机的三相电流I1、I2、I3
步骤S302:根据所述三相电流I1、I2、I3,估算出在两相坐标系下的相电 流Ialpha、Ibeta
具体的,通过采集电机的三相电流I1、I2、I3,在两相坐标系下估算电机 的相电流Ialpha、Ibeta;由于电机的模型过于复杂,如果直接采用电机的三相电 流I1、I2、I3进行运算将会增加电机数学模型的计算难度;因此,通过估算出 电机的相电流Ialpha、Ibeta,将会有利于降低电机数学模型的复杂度。
步骤S303:根据所述相电流Ialpha、Ibeta,得到校正项Za * lpha、Zb * eta
具体的,在两相坐标系下,根据电机的数学模型:
Figure BDA0001458324940000083
Figure BDA0001458324940000084
上式中,
Figure BDA0001458324940000085
Figure BDA0001458324940000086
分别为相电流Ialpha、Ibeta的微分,R为电机的等效电 阻,L为电机的电感系数,Valpha、Vbeta为电机的相电压,Ealpha、Ebeta为电机的反 电动势系数,Zalpha、Zbeta为电机的校正系数;根据上述电机的数学模型估算出 电机的电流
Figure BDA0001458324940000091
根据该电流
Figure BDA0001458324940000092
与电机的相电流Ialpha、Ibeta之间的 差值,对电机进行闭环控制,调节输出校正项
Figure BDA0001458324940000093
步骤S304:通过低通滤波器对所述校正项
Figure BDA0001458324940000094
进行滤波后得到电机 的反电动势
Figure BDA0001458324940000095
步骤S305:对所述电机的反电动势
Figure BDA0001458324940000096
进行反正切运算得到转子角 度θ2和转速n2
具体的,所述低通滤波器是指容许低于截止频率的信号通过,而不允许高 于该截止频率的通过;由于该校正项
Figure BDA0001458324940000097
包含多种频率段的信号,通过 设定一个截止频率,从而去除校正项
Figure BDA0001458324940000098
中所包含的环境缓变信号,减 少了电机控制参数的干扰项,从而得到该校正项
Figure BDA0001458324940000099
作用产生的反电动 势
Figure BDA00014583249400000910
进一步地,通过对反电动势
Figure BDA00014583249400000911
进行反正切运算即可解 码得到转子角度θ2和转速n2
通过本实施例,在上述基于无速度传感器的电机的转子角度和转速控制方 法,分别分析了高频注入法和滑模观测器对电机的转子角度和转速进行估算步 骤,高频注入法适用于电机在低速运行阶段,而滑模观测器适用于高速运行阶 段,通过结合高频注入法和滑模观测器可以实现对电机的转子角度和转速在全 范围内进行精确估算,弥补了两种估算方法的不足之处;从而有效地解决了现 有技术对电机的转子角度和转速进行检测时,检测的结果具有较大误差的问 题。
图4示出了本发明实施例提供的基于无速度传感器的电机的转子角度和转 速控制系统的结构图,详述如下:
该基于无速度传感器的电机的转子角度和转速控制系统40包括:第一估 算单元401、第二估算单元402、角度仲裁单元403及输出单元404。
第一估算单元401通过高频注入法对电机的转子角度和转速进行估算,得 到转子角度θ1和转速n1
第二估算单元402通过滑模观测器对电机的转子角度和转速进行估算,得 到转子角度θ2和转速n2
角度仲裁单元403根据所述转速n1和所述转速n2得到电机的转速n3,其中:
n3=k1×n1+k2×n2
其中k1、k2为提前设定的常量。
输出单元404根据所述电机的转速n3判断电机的运行状态,输出所述电机 的转速n4和转子角度θ4
若所述电机处于低速运行状态,则:
n4=n1
θ4=θ1
若所述电机处于高速运行状态,则:
n4=n2
θ4=θ2
若所述电机处于高低速切换状态,则:
n4=a1×n1+(1-a1)×n2
θ4=a2×θ1+(1-a2)×θ2
上式中a1和a2为提前设定的常量,并且0<a1<1,0<a2<1。
图5示出了本发明实施例提供的第一估算单元的结构图,详述如下:
第一估算单元401包括:信号输入模块4011、信号采集模块4012、信号 分离模块4013及信号运算模块4014。
信号输入模块4011向所述电机的定子绕组输入高频旋转电压信号Vah、Vbh、 Vch
信号采集模块4012采集所述电机输出的三相电流Ia、Ib、Ic
信号分离模块4013通过带通滤波器对所述三相电流Ia、Ib、Ic进行分离得 到直轴高频电流Idh和交轴高频电流Iqh
信号运算模块4014对所述直轴高频电流Idh和所述交轴高频电流Iqh进行 PLL运算得到转子位置信号θk,并根据所述转子位置信号θk得到所述电机的转 子角度θ1和转速n1
图6示出了本发明实施例提供的第二估算单元的结构图,详述如下:
第二估算单元402包括:电路采集模块4021、电流估算模块4022、校正 模块4023、滤波模块4024及反正切运算模块4025。
电路采集模块4021采集所述电机的三相电流I1、I2、I3
电流估算模块4022根据所述三相电流I1、I2、I3,估算出在两相坐标系下 的相电流Ialpha、Ibeta
校正模块4023根据所述相电流Ialpha、Ibeta,得到校正项
Figure BDA0001458324940000111
滤波模块4024通过低通滤波器对所述校正项
Figure BDA0001458324940000112
进行滤波后得到电 机的反电动势
Figure BDA0001458324940000113
反正切运算模块4025对所述电机的反电动势
Figure BDA0001458324940000114
进行反正切运算得 到转子角度θ2和转速n2
图7本发明实施例提供的新能源汽车结构图,如图7所示,该新能源汽车 70包括如上所述的基于无速度传感器的电机的转子角度和转速控制系统40。
通过本实施例,在基于无速度传感器的电机的转子角度和转速控制系统中 通过根据电机不同的运行状态,在高频注入法和滑模观测器两者之间进行切 换,充分利用了两种方法对于电机的转子角度和转速进行估算的优点,提高了 估算精度,降低了估算成本,保证了电机的平稳运行,提高了电动汽车的安全、 可靠、高效行驶;从而有效地克服了现有技术通过旋转变压器和解码电路等器 件来检测电机的转子角度和转速,成本高、具有较高的安全隐患的问题。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个 实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这 种实际的关系或者顺序。而且术语“包括”、“包含”或者任何其他变体意在 涵盖非排他性的包含,从而使得包括一系列要素的产品或者结构所固有的要 素。在没有更多限制的情况下,由语句“包括……”或者“包含……”限定的 要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另 外的要素。此外,在本文中,“大于”、“小于”、“超过”等理解为不包括 本数;“以上”、“以下”、“以内”等理解为包括本数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明 的保护范围之内。

Claims (5)

1.一种基于无速度传感器的电机的转子角度和转速控制方法,其特征在于,所述方法包括:
通过高频注入法对电机的转子角度和转速进行估算,得到转子角度θ1和转速n1
通过滑模观测器对电机的转子角度和转速进行估算,得到转子角度θ2和转速n2
根据所述转速n1和所述转速n2得到电机的转速n3,其中:
n3=k1×n1+k2×n2
其中,k1、k2为提前设定的常量;
根据所述电机的转速n3判断电机的运行状态,输出所述电机的转速n4和转子角度θ4
若所述电机处于低速运行状态,则:n4=n1,θ4=θ1
若所述电机处于高速运行状态,则:n4=n2,θ4=θ2
若所述电机处于高低速切换状态,则:n4=a1×n1+(1-a1)×n2,θ4=a2×θ1+(1-a2)×θ2,其中,所述高低速切换状态是在电机正处在调速过程中,电机的转速正在发生变化,a1和a2为提前设定的常量,并且0<a1<1,0<a2<1;
所述通过高频注入法对电机的转子角度和转速进行估算,得到转子角度θ1和转速n1,包括:
向所述电机的定子绕组输入高频旋转电压信号Vah、Vbh、Vch
采集所述电机输出的三相电流Ia、Ib、Ic
通过带通滤波器对所述三相电流Ia、Ib、Ic进行分离得到直轴高频电流Idh和交轴高频电流Iqh
对所述直轴高频电流Idh和所述交轴高频电流Iqh进行PLL运算得到转子位置信号θk,并根据所述转子位置信号θk得到所述电机的转子角度θ1和转速n1
2.根据权利要求1所述的方法,其特征在于,采用所述滑模观测器对电机的转子角度和转速进行估算,得到转子角度θ2和转速n2,包括:
采集所述电机的三相电流I1、I2、I3
根据所述三相电流I1、I2、I3,估算出在两相坐标系下的相电流Ialpha、Ibeta
根据所述相电流Ialpha、Ibeta,得到校正项
Figure FDA0002642561160000021
通过低通滤波器对所述校正项
Figure FDA0002642561160000022
进行滤波后得到电机的反电动势
Figure FDA0002642561160000023
对所述电机的反电动势
Figure FDA0002642561160000024
进行反正切运算得到转子角度θ2和转速n2
3.一种基于无速度传感器的电机的转子角度和转速控制系统,其特征在于,所述系统包括:
第一估算单元,通过高频注入法对电机的转子角度和转速进行估算,得到转子角度θ1和转速n1
第二估算单元,通过滑模观测器对电机的转子角度和转速进行估算,得到转子角度θ2和转速n2
角度仲裁单元,根据所述转速n1和所述转速n2得到电机的转速n3,其中:
n3=k1×n1+k2×n2
其中k1、k2为提前设定的常量;
输出单元,根据所述电机的转速n3判断电机的运行状态,输出所述电机的转速n4和转子角度θ4
若所述电机处于低速运行状态,则:n4=n1,θ4=θ1
若所述电机处于高速运行状态,则:n4=n2,θ4=θ2
若所述电机处于高低速切换状态,则:n4=a1×n1+(1-a1)×n2,θ4=a2×θ1+(1-a2)×θ2,其中,所述高低速切换状态是在电机正处在调速过程中,电机的转速正在发生变化,a1和a2为提前设定的常量,并且0<a1<1,0<a2<1;
第一估算单元包括:
信号输入模块,用于向所述电机的定子绕组输入高频旋转电压信号Vah、Vbh、Vch
信号采集模块,用于采集所述电机输出的三相电流Ia、Ib、Ic
信号分离模块,通过带通滤波器对所述三相电流Ia、Ib、Ic进行分离得到直轴高频电流Idh和交轴高频电流Iqh
信号运算模块,对所述直轴高频电流Idh和所述交轴高频电流Iqh进行PLL运算得到转子位置信号θk,并根据所述转子位置信号θk得到所述电机的转子角度θ1和转速n1
4.根据权利要求3所述的系统,其特征在于,第二估算单元包括:
电路采集模块,用于采集所述电机的三相电流I1、I2、I3
电流估算模块,根据所述三相电流I1、I2、I3,估算出在两相坐标系下的相电流Ialpha、Ibeta
校正模块,根据所述相电流Ialpha、Ibeta,得到校正项
Figure FDA0002642561160000041
滤波模块,通过低通滤波器对所述校正项
Figure FDA0002642561160000042
进行滤波后得到电机的反电动势
Figure FDA0002642561160000043
反正切运算模块,用于对所述电机的反电动势
Figure FDA0002642561160000044
进行反正切运算得到转子角度θ2和转速n2
5.一种新能源汽车,其特征在于,包括权利要求3或4所述的基于无速度传感器的电机的转子角度和转速控制系统。
CN201711077955.7A 2017-11-06 2017-11-06 电机的转子角度和转速控制方法、系统及汽车 Active CN109756168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711077955.7A CN109756168B (zh) 2017-11-06 2017-11-06 电机的转子角度和转速控制方法、系统及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711077955.7A CN109756168B (zh) 2017-11-06 2017-11-06 电机的转子角度和转速控制方法、系统及汽车

Publications (2)

Publication Number Publication Date
CN109756168A CN109756168A (zh) 2019-05-14
CN109756168B true CN109756168B (zh) 2021-01-26

Family

ID=66400341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711077955.7A Active CN109756168B (zh) 2017-11-06 2017-11-06 电机的转子角度和转速控制方法、系统及汽车

Country Status (1)

Country Link
CN (1) CN109756168B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417308A (zh) * 2019-07-05 2019-11-05 南京理工大学 一种永磁同步电机全速度范围复合策略控制方法
CN111106766B (zh) * 2019-12-22 2021-05-11 同济大学 磁阻同步电机的控制切换过渡方法、系统和控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414423A (zh) * 2013-08-22 2013-11-27 东南大学 一种面贴式永磁同步电机无位置传感器直接转矩控制方法
CN104320036A (zh) * 2014-11-07 2015-01-28 沈阳工业大学 基于pmsm低速无位置传感器矢量控制系统及方法
CN104601072A (zh) * 2015-02-02 2015-05-06 宁波申菱电梯配件有限公司 电梯门机全速范围无位置传感器控制方法
CN104868814A (zh) * 2015-05-06 2015-08-26 北京动力机械研究所 凸极式永磁同步电机无位置传感器的控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414423A (zh) * 2013-08-22 2013-11-27 东南大学 一种面贴式永磁同步电机无位置传感器直接转矩控制方法
CN104320036A (zh) * 2014-11-07 2015-01-28 沈阳工业大学 基于pmsm低速无位置传感器矢量控制系统及方法
CN104601072A (zh) * 2015-02-02 2015-05-06 宁波申菱电梯配件有限公司 电梯门机全速范围无位置传感器控制方法
CN104868814A (zh) * 2015-05-06 2015-08-26 北京动力机械研究所 凸极式永磁同步电机无位置传感器的控制方法及装置

Also Published As

Publication number Publication date
CN109756168A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US7469193B2 (en) Method and apparatus for resolver compensation
CN103036499B (zh) 一种永磁电动机转子位置的检测方法
US9966890B2 (en) Detection of offset errors in phase current measurement for motor control system
US9116019B2 (en) Technique for compensating for abnormal output of resolver for environmentally friendly vehicle
CN107085193B (zh) 用于马达控制系统的相电流测量中的偏移误差的检测
Zhang et al. Online diagnosis of slight interturn short-circuit fault for a low-speed permanent magnet synchronous motor
CN109756168B (zh) 电机的转子角度和转速控制方法、系统及汽车
US20080309267A1 (en) Method and apparatus for resolver compensation
CN105048921A (zh) 相电流测量诊断
KR101883530B1 (ko) 회전 자계 기계의 속도 및 로터 위치를 검출하기 위한 방법 및 장치
US11233472B2 (en) Motor control method and system
CN107947649B (zh) 电机转子位置修正方法、装置及设备、存储介质
CN102045020B (zh) 永磁电机转子位置检测方法
CN108322121A (zh) 一种无人机电机转子初始位置检测方法、装置、设备及存储介质
KR101338707B1 (ko) 여자 신호 발생 장치 및 레졸버 검출 장치
CN109286353B (zh) 一种电机控制模式故障检测方法及装置
CN113691182A (zh) 永磁同步电机的电阻辨识方法、系统、介质及终端
CN106533316A (zh) 转子角度估测方法
CN105720876B (zh) 一种永磁同步电机的内功率因数角检测方法
CN110112982B (zh) 一种永磁同步电机转子初始位置角检测方法和装置
CN108382269A (zh) 一种电机输出扭矩的控制方法、装置及电动汽车
CN111845350B (zh) 一种电机缺相诊断的方法、电机控制器、管理系统及车辆
CN109861612B (zh) 风力发电机组的转子位置角检测方法及装置
CN105827169A (zh) 一种永磁同步电机的直交轴电流检测方法
CN111030543A (zh) 直流变频空调压缩机的零速闭环启动方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant