CN109748327B - A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials - Google Patents
A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials Download PDFInfo
- Publication number
- CN109748327B CN109748327B CN201910138897.7A CN201910138897A CN109748327B CN 109748327 B CN109748327 B CN 109748327B CN 201910138897 A CN201910138897 A CN 201910138897A CN 109748327 B CN109748327 B CN 109748327B
- Authority
- CN
- China
- Prior art keywords
- reaction
- cucoo
- preparing
- deionized water
- steps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 31
- 239000002707 nanocrystalline material Substances 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 94
- 239000002243 precursor Substances 0.000 claims abstract description 45
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 35
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 22
- 239000000376 reactant Substances 0.000 claims abstract description 19
- 239000002244 precipitate Substances 0.000 claims abstract description 17
- 238000004140 cleaning Methods 0.000 claims abstract description 16
- 238000001035 drying Methods 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 71
- 239000008367 deionised water Substances 0.000 claims description 66
- 229910021641 deionized water Inorganic materials 0.000 claims description 66
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 53
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- 239000011259 mixed solution Substances 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000002178 crystalline material Substances 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 description 43
- 239000010949 copper Substances 0.000 description 40
- 239000000243 solution Substances 0.000 description 33
- 238000011049 filling Methods 0.000 description 9
- 230000005693 optoelectronics Effects 0.000 description 9
- 230000035484 reaction time Effects 0.000 description 8
- 239000013148 Cu-BTC MOF Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- NOSIKKRVQUQXEJ-UHFFFAOYSA-H tricopper;benzene-1,3,5-tricarboxylate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1.[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 NOSIKKRVQUQXEJ-UHFFFAOYSA-H 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 4
- 239000002159 nanocrystal Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000003746 solid phase reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 238000007736 thin film deposition technique Methods 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及MOFs材料(Metal Organic Frameworks,金属有机骨架材料)、纳米材料合成制备领域,特别是利用水热法在较低反应温度下合成制备纳米级铜铁矿结构CuCoO2晶体材料的方法。The invention relates to the field of synthesis and preparation of MOFs materials (Metal Organic Frameworks, metal organic framework materials) and nanomaterials, in particular to a method for synthesizing and preparing nanoscale delafossite-structured CuCoO 2 crystal materials using a hydrothermal method at a lower reaction temperature.
背景技术Background technique
铜铁矿型氧化物(ABO2,A=Cu,Ag等,B=Al,Ga,Cr,Co或La等)是一类重要的过渡金属氧化物材料。日本东京工业大学Hosono教授等人1997年首次在Nature上报道CuAlO2薄膜的p型导电特性,其室温电导率为9.5×10-2s·cm-1。受CuAlO2化学价带设计思想的启发,系列ABO2结构材料已成为科研工作者的重点研究关注对象。铜铁矿结构的ABO2具有六角层状晶体结构,由于BO6共棱八面体的不同堆垛导致铜铁矿结构氧化物ABO2存在2H和3R两种晶型。作为典型的p型半导体材料,系列ABO2材料先后被广泛报道应用于透明导电氧化物、太阳能电池器件、光/电催化剂等光电器件领域。The delafossite-type oxides (ABO 2 , A=Cu, Ag, etc., B=Al, Ga, Cr, Co or La, etc.) are an important class of transition metal oxide materials. In 1997, Prof. Hosono from Tokyo Institute of Technology and others reported the p-type conductivity of CuAlO 2 thin film for the first time in Nature, and its room temperature conductivity was 9.5×10 -2 s·cm -1 . Inspired by the design idea of the chemical valence band of CuAlO 2 , a series of ABO 2 structural materials have become the focus of scientific researchers. The delafossite-structured ABO 2 has a hexagonal layered crystal structure. Due to the different stacking of the common edge octahedron of BO 6 , the delafossite-structured oxide ABO 2 has two crystal forms, 2H and 3R. As a typical p-type semiconductor material, a series of ABO 2 materials have been widely reported in the fields of optoelectronic devices such as transparent conductive oxides, solar cell devices, and photo/electrocatalysts.
CuCoO2材料是一种新型廉价、环保的ABO2材料。在3R铜铁矿相CuCoO2的晶格中, Cu具有密切壳d10结构,具有哑铃状线性结构的O-Cu-O层和CoO6共棱八面体层交替堆垛的层状结构。3R晶型的CuCoO2的晶胞参数由于铜3d轨道和氧2p轨道的杂化,导致氧原子在价带边局域化,且六角密排的铜层是其主要的导电层,所以该材料具有较大的光学带隙宽度和较高的电导率,在光电器件领域中有着良好的应用前景。目前,国内外对CuCoO2材料的研究报道较少,一般通过离子交换反应或高温固相反应可以制备出CuCoO2晶体材料。但是反应时间过长或者反应温度过高,会导致CuCoO2材料晶体尺寸较大、反应效率低。比如,2010年,M.Beekman等人通过CuCl和LiCoO2之间简单的离子交换固态反应,在590℃下反应48小时后,制备出多晶铜铁矿氧化物 CuCoO2材料。2013年,RuttanapunC等人在高温1005℃下,采用常规固相反应法合成铜铁矿结构CuCoO2晶体材料。与传统的离子交换反应法或者高温烧结法相比,水热法将反应物置于特殊的环境下(密闭、高压等)发生合成反应,避免了高温煅烧和球磨两项复杂的实验操作,可以大幅提高产物合成效率,广泛应用于纳米结构晶体材料合成领域。申请人课题组于2017年利用低温水热法,首次在反应温度为100℃时合成制备出2微米大小的 CuCoO2晶体材料,并对其电解水析氧活性进行研究。但由于CuCoO2晶体材料尺寸较大,比表面积较小导致其活性位较少,其电解水活性仍然有待提高。此外,由于纳米级p型半导体ABO2材料合成制备非常困难,ABO2纳米晶材料的匮乏严重制约该系列材料的光电器件应用研究。目前只有CuGaO2、CuCrO2、CuAlO2、CuMnO2、AgCrO2等几种纳米晶材料的相关报道,暂未发现关于水热法合成纳米级CuCoO2晶体材料的研究报道。因此,急需探索研发利用新的材料合成方法,以有效调控其晶体微观形貌和尺寸,制备出高质量的 CuCoO2纳米晶材料。所以,研究利用水热法制备CuCoO2纳米晶材料是非常新颖的,对于探索制备p型ABO2纳米晶材料及其器件应用具有十分重要的研究意义。CuCoO 2 material is a new type of cheap and environmentally friendly ABO 2 material. In the lattice of the 3R delafossite phase CuCoO2, Cu has a close-shell d10 structure, a layered structure in which O-Cu-O layers with dumbbell-like linear structure and CoO6 co-edge octahedral layers are alternately stacked. Unit cell parameters of CuCoO 2 in 3R crystal form Due to the hybridization of copper 3d orbitals and
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种低温制备铜铁矿结构CuCoO2纳米晶材料的方法,该方法具有低温、快速的特点。The purpose of the present invention is to provide a method for preparing a delafossite structure CuCoO 2 nanocrystalline material at a low temperature, and the method has the characteristics of low temperature and high speed.
为实现上述目的,本发明所采取的技术方案是:一种低温制备纳米级铜铁矿结构CuCoO2晶体材料的方法,其特征是包括如下步骤:以MOFs材料作为Cu或Co源起始反应物来制备反应前驱体(或称水热反应前驱体,即以含Cu或者Co的MOFs材料为起始反应物制备反应前驱体),将反应前驱体放入水热反应釜中,在100~140℃下进行水热反应24~48小时后,将反应产物经离心清洗处理得到沉淀物,沉淀物烘干,得到铜铁矿结构的CuCoO2晶体材料(晶体尺寸约为50~200nm的CuCoO2晶体材料。In order to achieve the above object, the technical scheme adopted in the present invention is: a method for preparing nanoscale delafossite structure CuCoO 2 crystal material at low temperature, which is characterized by comprising the following steps: using MOFs material as a Cu or Co source starting reactant to prepare the reaction precursor (or hydrothermal reaction precursor, that is, using the MOFs material containing Cu or Co as the starting reactant to prepare the reaction precursor), put the reaction precursor into the hydrothermal reaction kettle, at 100 ~ 140 After the hydrothermal reaction is carried out at ℃ for 24 to 48 hours, the reaction product is subjected to centrifugal cleaning to obtain a precipitate, and the precipitate is dried to obtain a delafossite-structured CuCoO 2 crystal material (a CuCoO 2 crystal with a crystal size of about 50 to 200 nm). Material.
按上述技术方案,所述的反应前驱体的制备方法为:将Co源反应物和Cu源反应物按照质量比1:1~1.3加入去离子水和无水乙醇的混合溶液中,去离子水和无水乙醇的体积比为1:0.4~3.0,在磁力搅拌器充分搅拌溶解后(搅拌10~15分钟),再加入Co源反应物或Cu源反应物质量10~50倍的NaOH作为矿化剂,充分搅拌至溶解完全,得到反应前驱体。According to the above technical scheme, the preparation method of the reaction precursor is as follows: the Co source reactant and the Cu source reactant are added to a mixed solution of deionized water and absolute ethanol according to a mass ratio of 1:1 to 1.3, and the deionized water The volume ratio to absolute ethanol is 1:0.4-3.0. After the magnetic stirrer is fully stirred and dissolved (stirring for 10-15 minutes), NaOH with 10-50 times the mass of Co source reactant or Cu source reactant is added as a mineral. The chemical agent is fully stirred until the dissolution is complete, and the reaction precursor is obtained.
具体是,所述的反应前驱体的制备方法为下述三种之一(去离子水和无水乙醇的体积量比为1:0.4~3.0):Specifically, the preparation method of the reaction precursor is one of the following three (the volume ratio of deionized water and absolute ethanol is 1:0.4-3.0):
1)将Co的MOFs材料和Cu基化合物按照质量比1:1~1.3加入去离子水和无水乙醇的混合溶液中,搅拌溶解后,再加入Co的MOFs材料或Cu基化合物质量10~50倍的NaOH 作为矿化剂,搅拌至溶解完全,得到反应前驱体;1) Add the MOFs material of Co and the Cu-based compound to the mixed solution of deionized water and absolute ethanol according to the mass ratio of 1:1-1.3, after stirring and dissolving, then add the MOFs material of Co or the Cu-based compound with a mass of 10-50 times NaOH as a mineralizer, stirring until the dissolution is complete to obtain the reaction precursor;
2)将Co基化合物和Cu的MOFs材料按照质量比1:1~1.3加入去离子水和无水乙醇的混合溶液中,搅拌溶解后,再加入Co基化合物或Cu的MOFs材料质量10~50倍的NaOH 作为矿化剂,搅拌至溶解完全,得到反应前驱体;2) Add the Co-based compound and the Cu MOFs material to the mixed solution of deionized water and absolute ethanol according to the mass ratio of 1:1-1.3, and after stirring and dissolving, then add the Co-based compound or the Cu MOFs material with a mass of 10-50 times NaOH as a mineralizer, stirring until the dissolution is complete to obtain the reaction precursor;
3)将Co的MOFs材料和Cu的MOFs材料按照质量比1:1~1.3加入去离子水和无水乙醇的混合溶液中,搅拌溶解后,再加入Co的MOFs材料或Cu的MOFs材料质量10~50 倍的NaOH作为矿化剂,搅拌至溶解完全,得到反应前驱体。3) Add the MOFs material of Co and the MOFs material of Cu to the mixed solution of deionized water and absolute ethanol according to the mass ratio of 1:1-1.3, after stirring and dissolving, then add the MOFs material of Co or the MOFs material of
按上述技术方案,所述Cu源反应物为含Cu2+的化合物{如Cu(NO3)2、CuSO4等水溶液},或含Cu的MOFs材料。According to the above technical solution, the Cu source reactant is a compound containing Cu 2+ {such as an aqueous solution of Cu(NO 3 ) 2 , CuSO 4 , etc.}, or a MOFs material containing Cu.
按上述技术方案,所述Co反应物为含Co2+的化合物{如Co(NO3)2、CoSO4等水溶液},或含Co的MOFs材料。According to the above technical solution, the Co reactant is a Co 2+ -containing compound {such as Co(NO 3 ) 2 , CoSO 4 and other aqueous solutions}, or a Co-containing MOFs material.
按上述技术方案,所述水热反应中,水热反应釜中反应液为去离子水和无水乙醇混合溶液,其组成为:去离子水和无水乙醇体积比为1:0.4~3.0,去离子水电阻率为18.24MΩ·cm (25℃),其填充率为60~75%。According to the above technical scheme, in the hydrothermal reaction, the reaction solution in the hydrothermal reaction kettle is a mixed solution of deionized water and absolute ethanol, which is composed of: the volume ratio of deionized water and absolute ethanol is 1:0.4~3.0, The resistivity of deionized water is 18.24MΩ·cm (25°C), and its filling rate is 60-75%.
按上述技术方案,所述离心清洗处理的方法为:依次采用去离子水、稀NH3·H2O(质量分数1~10%)、无水乙醇的次序对反应产物进行离心清洗。其中离心清洗液的先后清洗顺序可以调整(也可采用:去离子水、稀NH3·H2O、去离子水、无水乙醇等离心清洗)。According to the above technical scheme, the centrifugal cleaning method is as follows: the reaction product is centrifugally cleaned in the order of deionized water, dilute NH 3 ·H 2 O (mass fraction 1-10%), and absolute ethanol. The order of the centrifugal cleaning solution can be adjusted (centrifugal cleaning such as deionized water, dilute NH 3 ·H 2 O, deionized water, anhydrous ethanol, etc. can also be used).
按上述技术方案,所述的离心清洗处理的方法为:按照稀NH3·H2O(质量分数1~10%)、去离子水、无水乙醇的次序进行离心清洗。According to the above technical scheme, the centrifugal cleaning method is as follows: centrifugal cleaning is performed in the order of dilute NH 3 ·H 2 O (mass fraction 1-10%), deionized water, and absolute ethanol.
按上述技术方案,所述的烘干为:将离心清洗处理后的沉淀物在真空干燥烘箱中60℃干燥4~12小时。According to the above technical scheme, the drying is as follows: drying the precipitate after centrifugal cleaning treatment in a vacuum drying oven at 60° C. for 4 to 12 hours.
上述一种低温制备铜铁矿结构CuCoO2纳米晶材料的应用,其特征是:作为新型半导体工作电极材料应用在各种光电功能器件中。The above-mentioned application of preparing the delafossite structure CuCoO 2 nanocrystalline material at low temperature is characterized in that it is used in various optoelectronic functional devices as a novel semiconductor working electrode material.
按上述技术方案,所述的在各种光电功能器件中应用为:在太阳能电池、电解水、光电解水或光催化器件等中。According to the above technical scheme, the application in various optoelectronic functional devices is as follows: in solar cells, electrolyzed water, photoelectrolyzed water or photocatalytic devices.
本发明利用低温水热反应,调控包括反应前驱体组分、反应温度及水热反应釜中反应液的填充率参数,首次在较低温度下(100~140℃)通过一步反应法制备出纳米级CuCoO2晶体材料。以MOFs材料作为反应物引入Cu或者Co源,开发出一种CuCoO2晶体材料低温、高产率、低成本的快速制备方法,对于促进铜铁矿结构p型半导体材料及其在光电器件领域的应用发展,均具有十分重要的学术价值。The invention utilizes low-temperature hydrothermal reaction to control and control the parameters including reaction precursor components, reaction temperature and the filling rate parameter of the reaction solution in the hydrothermal reaction kettle, and prepares nanometers by a one-step reaction method at a relatively low temperature (100-140° C.) for the first time. Grade CuCoO 2 crystal material. Using MOFs material as reactant to introduce Cu or Co source, a fast preparation method of CuCoO 2 crystal material at low temperature, high yield and low cost was developed, which is helpful for promoting the delafossite structure p-type semiconductor material and its application in the field of optoelectronic devices development is of great academic value.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
首次利用低温水热法制备出纳米级CuCoO2晶体材料,填补了国内外关于合成制备铜铁矿结构CuCoO2纳米晶材料的研究空白,有望促进p型ABO2半导体材料及其在光电器件领域的应用发展。还具有如下特点:Nano-scale CuCoO 2 crystalline materials were prepared by low-temperature hydrothermal method for the first time, which filled the research gap on the synthesis and preparation of delafossite-structured CuCoO 2 nano-crystalline materials at home and abroad, and is expected to promote p-type ABO 2 semiconductor materials and their application in the field of optoelectronic devices. application development. It also has the following features:
(1)该方法制备工艺简单、工艺参数容易控制、实验重复性好、单次产量高。(1) The method has the advantages of simple preparation process, easy control of process parameters, good experimental repeatability and high single output.
(2)该方法使用的反应原材料来源广泛,价格低廉、生产成本低。(2) The reaction raw materials used in the method have wide sources, low prices and low production costs.
(3)当反应温度为100~140℃时,均可制备出CuCoO2晶体材料(如图1)。随着反应温度从140℃降低到100℃时,纳米晶尺寸从~150nm(如图2)减小到~50nm(如图3)。(3) When the reaction temperature is 100-140 °C, CuCoO 2 crystal materials can be prepared (as shown in Figure 1). As the reaction temperature decreased from 140°C to 100°C, the nanocrystal size decreased from ∼150 nm (as shown in Fig. 2) to ∼50 nm (as shown in Fig. 3).
(4)采用XPS对CuCoO2晶体材料表面元素价态信息进行测试分析(如图4),测试结果表明化合物中Cu为Cu+、Co为Co3+,属于铜铁矿(AIBⅢO2)结构材料,和文献报道一致。(4) XPS was used to test and analyze the valence information of elements on the surface of the CuCoO 2 crystal material (as shown in Figure 4). The test results show that Cu in the compound is Cu + , Co is Co 3+ , belonging to delafossite (AI B Ⅲ O 2 ) Structural materials, consistent with literature reports.
附图说明Description of drawings
图1为实施例1、2、3、4所制备出的反应产物X射线衍射图谱;图中横坐标为衍射角度,纵坐标为相对强度。从图中可以看出,在反应温度为100~140℃时,均可以制备出CuCoO2晶体材料,对应标准衍射图谱编号为#21-0256,为铜铁矿结构CuCoO2晶体材料为主晶相。Fig. 1 is the X-ray diffraction pattern of the reaction products prepared in Examples 1, 2, 3, and 4; the abscissa in the figure is the diffraction angle, and the ordinate is the relative intensity. It can be seen from the figure that when the reaction temperature is 100-140 °C, CuCoO 2 crystal materials can be prepared, and the corresponding standard diffraction pattern number is #21-0256, which is the main crystal phase of the delafossite structure CuCoO 2 crystal material. .
图2为实施例2所制备出的CuCoO2晶体材料扫描电镜图。在反应温度为140℃时,利用场发射扫描电子显微镜对反应产物观测拍摄微观形貌照片。从图中可以看出,所制备出的CuCoO2材料晶体大小约100~200nm,微观形貌符合典型的铜铁矿结构晶体材料。2 is a scanning electron microscope image of the CuCoO 2 crystal material prepared in Example 2. When the reaction temperature was 140°C, the microstructure photos were taken by using field emission scanning electron microscope to observe the reaction product. It can be seen from the figure that the crystal size of the prepared CuCoO 2 material is about 100-200 nm, and the microscopic morphology conforms to the typical delafossite crystal material.
图3为实施例4所制备出的CuCoO2晶体材料扫描电镜图。在反应温度为100℃时,利用场发射扫描电子显微镜对反应产物观测拍摄微观形貌照片。从图中可以看出,所制备出的CuCoO2材料晶体大小约50~80nm。FIG. 3 is a scanning electron microscope image of the CuCoO 2 crystal material prepared in Example 4. FIG. When the reaction temperature was 100°C, the microstructure photos were taken by using a field emission scanning electron microscope to observe the reaction products. It can be seen from the figure that the crystal size of the prepared CuCoO 2 material is about 50-80 nm.
图4为实施例1所制备出的CuCoO2晶体材料进行X射线光电子能谱(XPS)测试分析结果,其中图a为Cu 2p的两个特征谱线Cu 2p 3/2和Cu 2p 1/2,分别对应于933.0eV 和952.7eV,与其他ABO2材料CuAlO2、CuFeO2中Cu 2p谱线位置相近,表明为Cu+。另外,从图b可以看出Co 2p的两个特征谱线Co 2p 3/2和Co 2p 1/2,分别对应于780.3eV 和795.4eV,与Co2O3中Co 2p特征谱线位置相近,表明为Co3+。Figure 4 shows the results of X-ray photoelectron spectroscopy (XPS) test and analysis of the CuCoO 2 crystal material prepared in Example 1, wherein Figure a shows the two characteristic spectral lines of
具体实施方式Detailed ways
本发明利用水热反应制备纳米级CuCoO2晶体材料所使用的化学药品,主要包括Co(NO3)2、甲醇、2-甲基咪唑、间苯三甲酸、Cu(NO3)2、NaOH、无水乙醇、NH3·H2O和去离子水等。The chemical used in the preparation of nano-scale CuCoO 2 crystal material by hydrothermal reaction in the present invention mainly includes Co(NO 3 ) 2 , methanol, 2-methylimidazole, isophthalic acid, Cu(NO 3 ) 2 , NaOH, Absolute ethanol, NH 3 ·H 2 O and deionized water, etc.
例如含Cu的MOFs晶体材料(Cu-BTC)的制备:利用水热合成方法,制备出含Cu 的Cu-BTC(为现有文献报道方法),经离心清洗干燥后,可得到Cu-BTC粉末。For example, the preparation of Cu-containing MOFs crystal material (Cu-BTC): using the hydrothermal synthesis method, Cu-BTC containing Cu was prepared (the method reported in the existing literature), and after centrifugal cleaning and drying, the Cu-BTC powder can be obtained .
例如含Co的MOFs晶体材料(ZIF-67)的制备:利用室温陈化方法,制备出含Co 的ZIF-67(为现有文献报道方法),经离心清洗干燥后,可得到ZIF-67粉末。For example, the preparation of Co-containing MOFs crystal material (ZIF-67): use room temperature aging method to prepare Co-containing ZIF-67 (the method reported in the existing literature), and after centrifugal cleaning and drying, ZIF-67 powder can be obtained .
下面结合实施例及附图对本发明作进一步说明,但并不局限于下面所述内容。The present invention will be further described below with reference to the embodiments and accompanying drawings, but is not limited to the content described below.
实施例1:Example 1:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将Co的MOFs晶体材料(ZIF-67)和 Cu(NO3)2按照质量比1:1加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:2.5),在磁力搅拌器搅拌10~15分钟溶解后,再加入ZIF-67 质量10倍的NaOH作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): add the Co MOFs crystal material (ZIF-67) and Cu(NO 3 ) 2 to the reaction solution in a mass ratio of 1:1 (the reaction solution is deionized water Mixed solution with absolute ethanol, the volume ratio of deionized water and absolute ethanol is 1:2.5), after stirring for 10 to 15 minutes with a magnetic stirrer to dissolve, then add 10 times the mass of ZIF-67 NaOH as a mineralizer, Continue to stir for 10 to 15 minutes until it is completely dissolved to obtain a reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应溶液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:2.5),去离子水电阻率为18.24MΩ·cm(25℃),填充率约70%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为140℃,反应时间为24小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:2.5), the resistivity of deionized water is 18.24MΩ·cm (25°C), and the filling rate is about 70%. After sealing the kettle body, it was placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature was set to 140° C. and the reaction time was 24 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物(得到沉淀物)。反应产物(得到沉淀物)依次使用去离子水、稀NH3·H2O(质量分数1%)、去离子水、无水乙醇等离心清洗2次,最后在真空烘箱中60℃保温12小时干燥,可以得到100~200nm 大小的CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product (to obtain a precipitate). The reaction product (precipitate obtained) was washed twice by centrifugation with deionized water, dilute NH 3 ·H 2 O (mass fraction 1%), deionized water, absolute ethanol, etc., and finally kept in a vacuum oven at 60 °C for 12 hours. After drying, a CuCoO 2 nanocrystalline material with a size of 100-200 nm can be obtained.
实施例2:Example 2:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将ZIF-67和Cu(NO3)2按照质量比1:1.2加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:2.5),在磁力搅拌器充分搅拌溶10~15分钟解后,再加入ZIF-67质量50倍的NaOH作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): add ZIF-67 and Cu(NO 3 ) 2 to the reaction solution in a mass ratio of 1:1.2 (the reaction solution is a mixed solution of deionized water and absolute ethanol) , the volume ratio of deionized water and absolute ethanol is 1:2.5), after the magnetic stirrer is fully stirred for 10 to 15 minutes to dissolve, then add 50 times the mass of ZIF-67 NaOH as a mineralizer, and continue to stir for 10 to 15 minutes. minutes to complete dissolution to obtain a reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:2.5),去离子水电阻率为18.24MΩ·cm(25℃),填充率约75%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为140℃,反应时间为24小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:2.5), the resistivity of deionized water is 18.24MΩ·cm (25°C), and the filling rate is about 75%. After sealing the kettle body, it was placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature was set to 140° C. and the reaction time was 24 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物(得到沉淀物)。反应产物(得到沉淀物)依次使用去离子水、稀NH3·H2O(质量分数3%)、去离子水、无水乙醇等离心清洗3次,最后在真空烘箱中60℃保温8小时干燥,可以得到100~200nm大小的CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product (to obtain a precipitate). The reaction product (precipitate obtained) was successively cleaned by centrifugation 3 times with deionized water, dilute NH 3 ·H 2 O (mass fraction 3%), deionized water, absolute ethanol, etc., and finally kept in a vacuum oven at 60 °C for 8 hours. After drying, a CuCoO 2 nanocrystalline material with a size of 100-200 nm can be obtained.
实施例3:Example 3:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将Co基MOF材料ZIF-67和Cu(NO3)2按照质量比1:1.2加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:2.5),在磁力搅拌器充分搅拌10~15分钟溶解后,再加入Cu(NO3)2质量10倍的NaOH作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): add the Co-based MOF material ZIF-67 and Cu(NO 3 ) 2 to the reaction solution in a mass ratio of 1:1.2 (the reaction solution is deionized water and anhydrous The mixed solution of ethanol, the volume ratio of deionized water and absolute ethanol is 1:2.5), after the magnetic stirrer is fully stirred for 10 to 15 minutes to dissolve, then add 10 times the mass of Cu(NO 3 ) 2 NaOH as a mineralizer , and continue to stir for 10-15 minutes until it is completely dissolved to obtain a reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:2.5),去离子水电阻率为18.24MΩ·cm(25℃),填充率约60%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为120℃,反应时间为24小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:2.5), the resistivity of deionized water is 18.24MΩ·cm (25°C), and the filling rate is about 60%. After sealing the kettle body, it was placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature was set to 120° C. and the reaction time was 24 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物。反应产物(得到沉淀物)依次使用去离子水、稀NH3·H2O(质量分数5%)、去离子水、无水乙醇等离心清洗 3次,最后在真空烘箱中60℃保温8小时干燥,可以得到80~200nm大小的CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product. The reaction product (precipitate obtained) was washed 3 times with deionized water, dilute NH 3 ·H 2 O (mass fraction 5%), deionized water, absolute ethanol, etc. in sequence, and finally kept in a vacuum oven at 60 °C for 8 hours. After drying, a CuCoO 2 nanocrystalline material with a size of 80-200 nm can be obtained.
实施例4:Example 4:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将ZIF-67和Cu(NO3)2按照质量比1:1.3加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:2.5),在磁力搅拌器充分搅拌10~15分钟溶解后,再加入Cu(NO3)2质量50倍的NaOH 作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): add ZIF-67 and Cu(NO 3 ) 2 into the reaction solution in a mass ratio of 1:1.3 (the reaction solution is a mixed solution of deionized water and absolute ethanol) , the volume ratio of deionized water and absolute ethanol is 1:2.5), after the magnetic stirrer is fully stirred for 10 to 15 minutes to dissolve, then add Cu(NO 3 ) 2 50 times the mass of NaOH as a mineralizer, and continue to stir for 10 ~15 minutes to complete dissolution to obtain the reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:2.5),去离子水电阻率为18.24MΩ·cm(25℃)填充率约75%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为100℃,反应时间为24~48小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:2.5), the resistivity of deionized water is 18.24MΩ·cm (25°C), and the filling rate is about 75%. After sealing the kettle body, it is placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature is set to 100° C. and the reaction time is 24 to 48 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物。反应产物(得到沉淀物)依次使用去离子水、稀NH3·H2O(质量分数10%)、去离子水、无水乙醇等离心清洗 3次,最后在真空烘箱中60℃保温8小时干燥,可以得到50~80nm大小的CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product. The reaction product (precipitate obtained) was washed 3 times with deionized water, dilute NH 3 ·H 2 O (
实施例5:Example 5:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将ZIF-67和Cu(NO3)2按照质量比1:1.2加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:0.4),在磁力搅拌器搅拌10~15分钟溶解后,再加入Cu(NO3)2质量30倍的NaOH作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): add ZIF-67 and Cu(NO 3 ) 2 to the reaction solution in a mass ratio of 1:1.2 (the reaction solution is a mixed solution of deionized water and absolute ethanol) , the volume ratio of deionized water and absolute ethanol is 1:0.4), after stirring with a magnetic stirrer for 10 to 15 minutes to dissolve, then add Cu(NO 3 ) 2 30 times the mass of NaOH as a mineralizer, and continue to stir for 10 to 10 minutes. 15 minutes to complete dissolution to obtain a reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:0.4),去离子水电阻率为18.24MΩ·cm(25℃),填充率约75%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为100℃,反应时间为48小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:0.4), the resistivity of deionized water is 18.24 MΩ·cm (25° C.), and the filling rate is about 75%. After sealing the kettle body, it was placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature was set to 100° C. and the reaction time was 48 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物。反应产物(得到沉淀物)依次使用去离子水、稀NH3·H2O(质量分数5%)、去离子水、无水乙醇等离心清洗 4次,最后在真空烘箱中60℃保温12小时干燥,可以得到CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product. The reaction product (precipitate obtained) was successively cleaned by centrifugation for 4 times with deionized water, dilute NH 3 ·H 2 O (mass fraction 5%), deionized water, absolute ethanol, etc., and finally kept in a vacuum oven at 60 °C for 12 hours. After drying, CuCoO 2 nanocrystalline materials can be obtained.
实施例6:Example 6:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将Co(NO3)2和Cu的MOFs晶体材料 (Cu-BTC)按照质量比1:1.2加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:1),在磁力搅拌器搅拌10~15分钟溶解后,再加入Cu-BTC 质量10倍的NaOH作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): add the MOFs crystal material (Cu-BTC) of Co(NO 3 ) 2 and Cu to the reaction solution in a mass ratio of 1:1.2 (the reaction solution is deionized water) Mixed solution with absolute ethanol, the volume ratio of deionized water and absolute ethanol is 1:1), after stirring with a magnetic stirrer for 10 to 15 minutes to dissolve, then add 10 times the mass of Cu-BTC as a mineralizer, Continue to stir for 10 to 15 minutes until it is completely dissolved to obtain a reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:1),去离子水电阻率为18.24MΩ·cm(25℃),填充率约70%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为140℃,反应时间为24小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:1), the resistivity of deionized water is 18.24 MΩ·cm (25° C.), and the filling rate is about 70%. After sealing the kettle body, it was placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature was set to 140° C. and the reaction time was 24 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物。反应产物(得到沉淀物)依次使用去离子水、稀NH3·H2O(质量分数5%)、去离子水、无水乙醇等离心清洗 4次,最后在真空烘箱中60℃保温12小时干燥,可以得到CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product. The reaction product (precipitate obtained) was successively cleaned by centrifugation for 4 times with deionized water, dilute NH 3 ·H 2 O (mass fraction 5%), deionized water, absolute ethanol, etc., and finally kept in a vacuum oven at 60 °C for 12 hours. After drying, CuCoO 2 nanocrystalline materials can be obtained.
实施例7:Example 7:
一种低温制备纳米级铜铁矿结构的CuCoO2晶体材料的方法,包括如下步骤:A method for preparing nanoscale delafossite-structured CuCoO 2 crystal material at low temperature, comprising the following steps:
先制备反应前驱体(或称水热反应前驱体):将Co的MOFs晶体材料(ZIF-67)和 Cu的MOFs晶体材料(Cu-BTC)按照质量比1:1.2加入反应液中(反应液为去离子水和无水乙醇的混合溶液,去离子水与无水乙醇体积比为1:3.0),在磁力搅拌器搅拌10~15 分钟溶解后,再加入Cu-BTC质量10倍的NaOH作为矿化剂,继续搅拌10~15分钟至完全溶解,得到反应前驱体。First prepare the reaction precursor (or hydrothermal reaction precursor): The MOFs crystal material of Co (ZIF-67) and the MOFs crystal material of Cu (Cu-BTC) are added to the reaction solution according to the mass ratio of 1:1.2 (the reaction solution It is a mixed solution of deionized water and absolute ethanol, the volume ratio of deionized water and absolute ethanol is 1:3.0), after stirring for 10-15 minutes with a magnetic stirrer to dissolve, then add 10 times the mass of Cu-BTC as NaOH. The mineralizer is continuously stirred for 10 to 15 minutes until it is completely dissolved to obtain a reaction precursor.
将上述反应前驱体转移至水热反应釜中(一般为聚四氟乙烯),控制反应液(水热反应釜中反应液为去离子水和无水乙醇混合溶液,去离子水与无水乙醇体积比为1:3.0),去离子水电阻率为18.24MΩ·cm(25℃),填充率约70%。密封釜体后置于程序控温烘箱中进行水热反应,设定反应温度为140℃,反应时间为24小时。The above-mentioned reaction precursor is transferred to the hydrothermal reactor (generally polytetrafluoroethylene), and the control reaction solution (the reaction solution in the hydrothermal reactor is a mixed solution of deionized water and absolute ethanol, deionized water and absolute ethanol) The volume ratio is 1:3.0), the resistivity of deionized water is 18.24 MΩ·cm (25° C.), and the filling rate is about 70%. After sealing the kettle body, it was placed in a temperature-controlled oven for hydrothermal reaction, and the reaction temperature was set to 140° C. and the reaction time was 24 hours.
反应结束后,待釜体自然冷却至室温,打开釜体取出反应产物。反应产物(得到沉淀物)依次使用去离子水、无水乙醇等离心清洗4次,最后在真空烘箱中60℃保温12小时干燥,可以得到CuCoO2纳米晶材料。After the reaction, after the kettle body was naturally cooled to room temperature, the kettle body was opened to take out the reaction product. The reaction product (precipitate obtained) was sequentially washed four times with deionized water, anhydrous ethanol, etc., and finally dried in a vacuum oven at 60° C. for 12 hours to obtain CuCoO 2 nanocrystalline material.
实施例8:Example 8:
上述实施例1-7所制备出的铜铁矿结构CuCoO2纳米晶材料的用途,主要是指在半导体氧化物的光电功能器件中作为电极材料使用。将CuCoO2颗粒利用薄膜沉积技术(如丝网印刷法、热喷涂分解法等),在导电玻璃(FTO)表面上制备CuCoO2薄膜材料,用作太阳能电池(染料/量子点敏化、钙钛矿太阳能电池等)电极材料。例如,按照比例添加 CuCoO2纳米晶(1.0g)、乙基纤维素(5.0g)、松油醇(6.0g)、无水乙醇(30.0g)等,通过超声分散和旋蒸等处理后得到不同固含量的CuCoO2浆料,然后利用丝网印刷法在导电玻璃表面刷膜,经热处理烧结去除有机物后,最后得到CuCoO2电极薄膜材料。The use of the delafossite-structured CuCoO 2 nanocrystalline materials prepared in the above examples 1-7 mainly refers to the use as electrode materials in optoelectronic functional devices of semiconductor oxides. CuCoO 2 particles are prepared on the surface of conductive glass (FTO) by thin film deposition techniques (such as screen printing, thermal spraying decomposition, etc.) Mineral solar cells, etc.) electrode materials. For example, CuCoO 2 nanocrystals (1.0g), ethyl cellulose (5.0g), terpineol (6.0g), absolute ethanol (30.0g), etc. are added according to the proportion, and the obtained product is obtained by ultrasonic dispersion and rotary evaporation. CuCoO 2 slurries with different solid contents are then brushed on the surface of conductive glass by screen printing, and after heat treatment and sintering to remove organic substances, CuCoO 2 electrode film materials are finally obtained.
实施例9:Example 9:
上述实施例1-7所制备出的铜铁矿结构CuCoO2纳米晶材料的用途,主要是指在半导体氧化物的光电功能器件中作为电极材料使用。将CuCoO2颗粒利用薄膜沉积技术(如滴涂法、热喷涂分解法等),在工作电极表面或者导电玻璃(FTO)表面上负载CuCoO2纳米晶材料,用作光电化学电池中电极催化剂材料。例如,按照比例添加CuCoO2纳米晶(2.0 g)、Nafion(10.0g)、异丙醇(12.0g)、H2O(50.0g)等,通过超声分散制备出一定浓度的CuCoO2纳米晶悬浮液,调整悬浮液体积可以制备出不同载量的CuCoO2工作电极材料,可以作为催化剂电极材料用在光/电解水析氢析氧实验中。The use of the delafossite-structured CuCoO 2 nanocrystalline materials prepared in the above examples 1-7 mainly refers to the use as electrode materials in optoelectronic functional devices of semiconductor oxides. The CuCoO 2 particles are loaded with CuCoO 2 nanocrystalline materials on the surface of the working electrode or on the surface of conductive glass (FTO) by thin film deposition techniques (such as drop coating method, thermal spraying decomposition method, etc.), which are used as electrode catalyst materials in photoelectrochemical cells. For example, adding CuCoO 2 nanocrystals (2.0 g), Nafion (10.0 g), isopropanol (12.0 g), H 2 O (50.0 g), etc. in proportion to prepare a certain concentration of CuCoO 2 nanocrystal suspension by ultrasonic dispersion The CuCoO 2 working electrode material with different loadings can be prepared by adjusting the volume of the suspension, which can be used as a catalyst electrode material in the light/electrolysis water hydrogen evolution and oxygen evolution experiments.
显然,本领域的技术人员可以对本发明的铜铁矿结构CuCoO2纳米晶材料的水热制备方法及其纳米晶材料进行各种改动和变型而不脱离本发明的精神和范围。例如,采用含Cu或含Co的MOFs及其衍生物中的一种或者多种作为反应物,引入Cu源或Co源而进行水热反应。这样,倘若对本发明的这些修改和变型属于本发明的权利要求及其等同的技术范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the hydrothermal preparation method of the delafossite structure CuCoO 2 nanocrystalline material and the nanocrystalline material of the present invention without departing from the spirit and scope of the present invention. For example, one or more of Cu- or Co-containing MOFs and derivatives thereof are used as reactants, and a Cu source or a Co source is introduced to carry out the hydrothermal reaction. Thus, provided that these modifications and variations of the present invention fall within the technical scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910138897.7A CN109748327B (en) | 2019-02-25 | 2019-02-25 | A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910138897.7A CN109748327B (en) | 2019-02-25 | 2019-02-25 | A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109748327A CN109748327A (en) | 2019-05-14 |
CN109748327B true CN109748327B (en) | 2020-08-04 |
Family
ID=66407685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910138897.7A Active CN109748327B (en) | 2019-02-25 | 2019-02-25 | A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109748327B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110980791B (en) * | 2019-12-05 | 2021-05-11 | 武汉理工大学 | A kind of p-type delafossite structure CuScO2 crystal material and its preparation method and use |
CN110993739A (en) * | 2019-12-13 | 2020-04-10 | 陕西易莱德新材料科技有限公司 | A kind of production method of membrane electrode for solar cell |
CN114177911B (en) * | 2021-12-10 | 2023-05-23 | 湖南大学 | Carbon-supported multi-metal oxide catalyst and preparation method and application thereof |
CN114113582B (en) * | 2021-12-20 | 2022-09-16 | 云南大学 | Metal organic framework nanoenzyme biological probe and ELISA kit |
CN115679471B (en) * | 2022-12-09 | 2024-11-29 | 福州市福塑科学技术研究所有限公司 | Preparation method of rod-like hollow nano copper oxide antibacterial wear-resistant nylon fiber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120063925A (en) * | 2010-12-08 | 2012-06-18 | 한국전자통신연구원 | Method of manufacturing porous metal oxides |
CN103922421B (en) * | 2014-05-13 | 2017-05-03 | 西北大学 | Method for preparing alpha-Fe2O3 |
CN104058461B (en) * | 2014-07-04 | 2016-07-06 | 武汉理工大学 | A kind of delafossite structure CuFeO2The low temperature preparation method of crystalline material |
CN104659358B (en) * | 2015-01-30 | 2017-02-22 | 南京工业大学 | Preparation method of nickel cobaltate nano hollow polyhedron |
CN107098401B (en) * | 2017-06-02 | 2018-11-30 | 武汉理工大学 | A kind of delafossite structure CuCoO2Crystalline material and its low temperature preparation method |
CN108666544B (en) * | 2018-04-18 | 2020-11-06 | 燕山大学 | A synthetic method for preparing carbon-coated CoTiO3 nanocrystalline materials derived from MOF |
CN108715457A (en) * | 2018-06-21 | 2018-10-30 | 福州大学 | Based on MOF template controlledly synthesis nano structure of zinc oxide gas sensors |
-
2019
- 2019-02-25 CN CN201910138897.7A patent/CN109748327B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109748327A (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109748327B (en) | A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials | |
CN103708559B (en) | Tungsten trioxide nano-film with photocatalytic performance, and preparation method thereof | |
CN102774883B (en) | Rutile type titanium dioxide nanowire film and preparation method and applications thereof | |
CN103265065B (en) | Preparation method of graded zinc stannate macroporous materials | |
CN102553563B (en) | Method for preparing high catalytic activity sodium tantalate photocatalyst by hydrothermal method | |
CN107089683A (en) | A kind of preparation method of molybdenum disulfide/copper sulfide/cuprous nano composite | |
Guo et al. | Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting | |
CN101311376A (en) | Method for preparing strontium titanate nanometer powder of one-dimensional structure | |
CN112875755B (en) | A kind of preparation method of bismuth tungstate nano powder | |
CN104532290B (en) | A kind of Fe2O3/ ZnO homojunction materials and its production and use | |
CN105148888B (en) | The preparation method of silver/silver chlorate and titanium dioxide composite heterogenous junction structure nano material | |
CN112871186A (en) | Nickel diselenide/sulfur indium zinc composite photocatalyst and preparation method and application thereof | |
CN107694580B (en) | Nano composite selenide and preparation method thereof | |
JP4714844B2 (en) | Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film | |
CN101613121A (en) | A kind of preparation method of ellipsoidal zinc oxide | |
CN108483404A (en) | A kind of preparation method of unformed metal hydroxides nanometer sheet and phosphide nanometer sheet | |
CN102527372A (en) | Method for hydrothermally preparing nitrogen-doped sodium tantalate photochemical catalyst powder | |
CN106082306B (en) | A kind of aluminum-doped zinc oxide nanometer powder and its microwave radiation technology preparation method and application | |
CN111233048A (en) | Double-shell MnCo2O4Hollow nanosphere material and synthesis method thereof | |
CN116639729A (en) | Symbiotic bismuth layered ferroelectric Bi 7 Ti 4 NbO 21 Preparation method and application of semiconductor material | |
CN105366714A (en) | Synthetic method of stannic oxide nanoflower array | |
CN106629830B (en) | A kind of zinc titanate nano-material and its application in perovskite solar cell | |
CN105664921B (en) | A kind of nanometer W0.4Mo0.6O3The preparation method of high-performance optical catalyst | |
CN110395769A (en) | A kind of preparation method of high-purity 3R delafossite structure CuFeO2 microcrystalline material | |
CN102491415A (en) | Preparation method of monodispersed anatase titanium dioxide nano porous microspheres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |