CN109738895B - 一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法 - Google Patents

一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法 Download PDF

Info

Publication number
CN109738895B
CN109738895B CN201910098827.3A CN201910098827A CN109738895B CN 109738895 B CN109738895 B CN 109738895B CN 201910098827 A CN201910098827 A CN 201910098827A CN 109738895 B CN109738895 B CN 109738895B
Authority
CN
China
Prior art keywords
vegetation
initial
fourier
legendre
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910098827.3A
Other languages
English (en)
Other versions
CN109738895A (zh
Inventor
朱建军
张兵
付海强
汪长城
李志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910098827.3A priority Critical patent/CN109738895B/zh
Publication of CN109738895A publication Critical patent/CN109738895A/zh
Application granted granted Critical
Publication of CN109738895B publication Critical patent/CN109738895B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于二阶傅里叶‑勒让德多项式的植被高度反演模型的构建与反演方法,其中构建方法为:首先获取关于植被覆盖层垂直结构的SAR影像,进行极化干涉处理并生成极化复相干系数γ(ω);然后将SAR影像所对应的植被覆盖层垂直结构表述为二阶傅里叶‑勒让德多项式;最终将极化复相干系数γ(ω)作为观测值,基于傅里叶‑勒让德系数a00,a10,a20、植被高度hv和地表高程hg,建立基于二阶傅里叶‑勒让德多项式的植被高度反演模型。本方案的植被高度反演模型,将植被高度、地表高程、用来表述植被覆盖层垂直结构的傅里叶‑勒让德系数有机结合到同一个函数方程中以作为模型参数并建立植被高度反演模型,其建模过程简单明了,易于实现。

Description

一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的 构建与反演方法
技术领域
本发明涉及极化干涉合成孔径雷达(PolInSAR)在植被高度反演领域,具体涉及一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法。
背景技术
森林生态系统是陆地上生物总量最高的生态系统,对陆地生态环境有决定性的影响。而植被高度参数是森林生态分析、森林能量规律探求、全球碳循环研究等的重要参数之一,可为森林演化、生物量存储、气候调节提供有力的信息支撑。近年来,基于极化合成孔径雷达干涉测量(Polarimetric SAR Interferometry,PolInSAR)的植被高度反演方法得到了长足发展。PolInSAR技术通过识别同一分辨单元内的不同散射体,判断森林冠层散射以及地表散射的位置从而提取植被高度,其已成为目前区域及全球尺度植被高度反演最有发展前景的技术之一。
目前,应用PolInSAR技术提取植被高度应用最为广泛的模型为1996年Treuhaft提出的随机地体二层相干散射(Random Volume over Ground,RVoG)模型,其建立了InSAR相干性与植被参数之间的关联。已有研究证明,该模型在森林高度反演中会受到植被覆盖层垂直结构、时间去相干、消光系数、地形坡度、散射体介电常数等因素影响,基于此,许多学者在RVoG模型上做出了一系列改进。例如:①三层植被相干散射(RVoG+Canopy FillFactor,RVoG+CFF)模型。②RVoG+VTD(RVoG+Volume Temporal Decorrelation)模型;RMoG(Random Motion Over Ground)模型。③S-RVoG(Slope-RVoG)模型。④RMoG+DF(RMoG+Dielectric Fluctuation)模型。但是,RVoG模型及其改进模型,仍然受限于将微波信号穿透植被层的过程抽象为指数函数形式,且将植被层描述为覆盖为地表层上具有一定厚度(植被高度)的均匀介质,这在森林地区显然难以准确表达复杂的植被场景。
2006年,Cloude提出极化相干层析技术(Polarization Coherence Tomography,PCT),其可以利用极化干涉SAR数据直接反演植被体垂直结构函数。PCT技术能否成功反演植被覆盖层垂直结构信息的关键在于植被高度、地表相位参数的先验信息是否准确,先验信息精度较差则直接导致最后反演结果较差甚至反演失败。最近,Nafiseh等重建植被体垂直结构,提出单极化RMoGL模型,扩展了RMoG模型。
因此,有必要提出一种新型的简单明了、原理清晰、易于实现的植被高度反演模型。
发明内容
为了克服现有技术的上述缺点,本发明提供了一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法,该模型简单明了、原理清晰、易于实现。
为实现上述技术目的,本发明采用的技术方案如下:
一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建方法,包括以下步骤:
步骤S10,获取关于植被覆盖层垂直结构的SAR影像,进行极化干涉处理并生成极化复相干系数γ(ω);所述SAR影像包括主影像和辅影像,ω表示极化矢量;
步骤S20,将SAR影像所对应的植被覆盖层垂直结构表述为二阶傅里叶-勒让德多项式形式;
步骤S30,将极化复相干系数γ(ω)作为观测值,利用傅里叶-勒让德系数a00,a10,a20、植被高度hv和地表高程hg,建立基于二阶傅里叶-勒让德多项式的植被高度反演模型:
Figure BDA0001965155770000021
其中,a00、a10、a20,分别代表0阶、1阶、2阶傅里叶-勒让德系数;f0、f1、f2,分别为二阶勒让德多项式展开项,具体表达式为:
Figure BDA0001965155770000031
kv为中间参数,且:
Figure BDA0001965155770000032
Figure BDA0001965155770000033
λ为获取SAR影像的雷达波长,θ为雷达波入射角,Δθ为获取主影像与辅影像的雷达波入射角差异。
本方案的植被高度反演模型,将植被高度、地表高程、用来表述植被覆盖层垂直结构的傅里叶-勒让德系数有机结合到同一个函数方程中以作为模型参数并建立植被高度反演模型,其建模过程简单明了,易于实现。
进一步地,SAR影像包括n种极化方式的SAR影像,不同的极化方式q所对应的植被覆盖层垂直结构中的傅里叶-勒让德系数不同,且基于二阶傅里叶-勒让德多项式的植被高度反演模型为:
Figure BDA0001965155770000034
进一步地,SAR影像包括M条基线的SAR影像;不同的基线p且相同的极化方式q所对应的植被覆盖层垂直结构中的傅里叶-勒让德系数相同,且基于二阶傅里叶-勒让德多项式的植被高度反演模型为:
Figure BDA0001965155770000035
通过获取多条基线的全极化SAR影像,且不同干涉基线相同极化方式在模型中表现为傅里叶-勒让德系数相同,在使用得到的模型进行植被高度反演时,更易于实现,从而可突破传统RVoG模型假设均匀植被层的限制,突破PCT技术及RMoGL模型只能运用单一极化方式的劣势,未来可以应用于植被覆盖层内部信息获取、区域乃至全球尺度植被高度估测、林业蓄积量估计、全球碳汇储量评价等多个方面。
进一步地,M条基线分别为x,y,m,每条基线采用2个相位最大分离相干最优极化方式:PDHigh与PDLow极化方式。
进一步地,所述极化干涉处理的过程依次包括:对主辅影像配准、平地效应去除、多视处理和极化干涉。
进一步地,SAR影像采用P波段SAR数据。
P波段雷达波长更长,对植被覆盖层有较强的穿透能力,有助于更好的获取植被覆盖层垂直结构信息。
本发明还提供一种基于二阶傅里叶-勒让德多项式的植被高度反演方法,包括以下步骤:
步骤X10,建立植被高度反演模型,并利用所述反演模型构建观测方程;
采用上述的植被高度反演模型的构建方法构建基于二阶傅里叶-勒让德多项式的植被高度反演模型,并构建观测方程为:
Figure BDA0001965155770000041
步骤X20,植被参数初值确定;
利用步骤S10得到的极化复相干系数γ(ω)获得RVoG模型,应用非线性最小二乘算法进行参数反演,获取植被高度初值Initial_hv和地表相位初值
Figure BDA0001965155770000042
根据植被高度初值Initial_hv和垂直向有效波数kz,按公式(2)和(3)获得中间参数初值Initial_kv和2阶勒让德多项式展开项初值Initial_f0、Initial_f1、Initial_f2
根据中间参数初值Initial_kv、地表相位初值
Figure BDA0001965155770000043
以及步骤1得到的复相干系数γ(ω),按公式(8)获取标准化复相干系数γk(ω):
Figure BDA0001965155770000044
根据标准化复相干系数γk(ω),按公式(9)获得傅里叶-勒让德系数初值Initial_a00、Initial_a10、Initial_a20
Figure BDA0001965155770000051
根据地表相位初值
Figure BDA0001965155770000052
和垂直向有效波数kz,按公式(10)获得地表高程初值Initial_hg
Figure BDA0001965155770000053
步骤X30,植被高度反演;
将步骤X20获得的植被高度初值Initial_hv、地表高程初值Initial_hg以及傅里叶-勒让德系数初值Initial_a10、Initial_a20,作为步骤X10建立的基于二阶傅里叶-勒让德多项式的植被高度反演模型的植被参数初值,按公式(7)采用非线性最小二乘法进行迭代计算,获得待求取的植被高度、地表高程、傅里叶-勒让德系数估计值。
本方案的植被高度反演方法,通过现有的RVoG模型获取本方案植被高度反演模型的植被参数初值,从而本方案模型可通过非线性最小二乘法迭代计算待求取的植被参数,是一种可靠的、新颖的极化干涉合成孔径雷达领域用于植被高度反演的方法。
进一步地,所述步骤X20中的RVoG模型表示为公式(11):
Figure BDA0001965155770000054
其中,μ表示与极化方式q对应的地体散射幅度比,γv表示完全由植被冠层贡献的纯体去相干系数,σ表示植被散射体平均消光系数,则复相干系数γ(ω)表示为公式(12):
Figure BDA0001965155770000055
根据公式(12)应用多基线多极化非线性最小二乘法进行迭代计算,获取植被高度初值Initial_hv和地表相位初值
Figure BDA0001965155770000061
有益效果
一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建方法,首先获取关于植被覆盖层垂直结构的SAR影像,进行极化干涉处理并生成极化复相干系数γ(ω);然后将SAR影像所对应的植被覆盖层垂直结构表述为二阶傅里叶-勒让德多项式;最终将极化复相干系数γ(ω)作为观测值,基于傅里叶-勒让德系数a00,a10,a20、植被高度hv和地表高程hg,建立基于二阶傅里叶-勒让德多项式的植被高度反演模型:
Figure BDA0001965155770000062
本方案的植被高度反演模型,将植被高度、地表高程、用来表述植被覆盖层垂直结构的傅里叶-勒让德系数有机结合到同一个函数方程中以作为模型参数并建立植被高度反演模型,其建模过程简单明了,易于实现。
另外,通过获取多条基线的全极化SAR影像,且不同干涉基线相同极化方式在模型中表现为傅里叶-勒让德系数相同,在使用得到的模型进行植被高度反演时,更易于实现,从而可突破传统RVoG模型假设均匀植被层的限制,突破PCT技术及RMoGL模型只能运用单一极化方式的劣势,因此相应的植被高度反演方法,是一种可靠的、新颖的极化干涉合成孔径雷达领域用于植被高度反演的方法,未来可以应用于植被覆盖层内部信息获取、区域乃至全球尺度植被高度估测、林业蓄积量估计、全球碳汇储量评价等多个方面。
附图说明
图1为本发明植被高度反演方法的流程示意图;
图2为本发明实施例中6个不同极化方式去除平地相位、经过多视处理后的干涉条纹;
图3为本发明实施例中6个不同极化方式去除平地相位、经过多视处理后的相干性情况;
图4,其中(a)为基于RVoG模型的植被高度反演结果,(b)为本发明的植被高度反演结果,(c)为LIDAR测量植被高度结果;
图5,其中(a)为基于RVoG模型植被高度反演结果与LiDAR植被高度产品的样地交叉验图,(b)为本发明植被高度反演结果与LiDAR植被高度产品的样地交叉验图。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步的说明,并采用BioSAR 2008项目提供的瑞典北部Krycklan地区(64°14′N,19°46′E)多基线全极化数据对本文算法进行验证。本实施例的实验数据仅用于举例说明,本发明并不仅仅限定单一数据。
实验区域内植被以北方针叶林为主,辅以少部分桦树。采用E-SAR P波段SAR数据进行实验,相对C/X/L波段SAR数据,本实施例的P波段雷达波长更长,对植被覆盖层有较强的穿透能力,有助于更好的获取植被层垂直结构信息。
实验数据采用4景机载P波段全极化数据,以编号0103影像为主影像、其他为辅影像可以组成3个干涉对。利用欧空局发布的POLSARpro软件进行数据预处理。
实施例一:
本实施例一的基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建方法,具体步骤如下:
步骤S10,极化干涉处理。
获取基于植被覆盖层垂直结构的全极化SAR影像,以编号0103影像为主影像,编号0107、0109、0111影像为辅影像,共组成3条干涉基线,应用POLSARpro软件分别对主辅全极化SAR影像进行配准、平地效应去除、多视处理(方位向2:距离向1)和极化干涉,然后获取与极化方式与对应的复相干系数
Figure BDA0001965155770000071
其中p=x,y,m代表不同的干涉基线,q=1,2,…,n代表不同的极化方式。
本实施例中,每条基线采用2个相位最大分离相干最优极化方式,即PDHigh与PDLow极化方式。最终生成3条基线,每条基线对应2种不同的极化方式,因此本实施例中设有6种极化方式:PDHighx,PDHighy,PDHighm,PDLowx,PDLowy,PDLowm,上标x,y,m分别代表不同的干涉基线,PDHigh、PDLow代表不同的极化方式,在本实施例的6种不同极化方式去除平地相位、经过多视处理后的干涉条纹可如图2所示,相干性情况可如图3所示。因此,本实施例获取的极化复相干系数具体为γ(PDHighx)、γ(PDHighy)、γ(PDHighm)、γ(PDLowx)、γ(PDLowy)、γ(PDLowm)。
步骤S20,将SAR影像所对应的植被覆盖层垂直结构表述为二阶傅里叶-勒让德多项式形式。
步骤S30,将极化复相干系数γ(ω)作为观测值,基于植被覆盖层垂直结构a00f0+a10f1+a20f2、植被高度hv和地表高程hg,建立基于二阶傅里叶-勒让德多项式的植被高度反演模型:
Figure BDA0001965155770000081
其中,a00、a10、a20,分别代表0阶、1阶、2阶傅里叶-勒让德系数;f0、f1、f2,分别为二阶勒让德多项式展开项,具体表达式为:
Figure BDA0001965155770000082
kv为中间参数,且:
Figure BDA0001965155770000083
Figure BDA0001965155770000084
λ为获取SAR影像的雷达波长,θ为雷达波入射角,Δθ为获取主影像与辅影像的雷达波入射角差异。
其中,每条基线的SAR影像包括n种极化方式的SAR影像时,不同的极化方式q所对应的植被覆盖层垂直结构中的傅里叶-勒让德系数不同,因此将单基线单极化复相干系数扩展到多极化配置,可得到单基线多极化植被高度反演模型:
Figure BDA0001965155770000091
式中,1,2,…,n代表不同的极化方式。
其中,SAR影像包括M条基线的SAR影像;不同的基线p且相同的极化方式q所对应的植被覆盖层垂直结构中的傅里叶-勒让德系数相同,因此将单基线多极化植被高度模型扩展到多基线配置,最终得到多基线多极化植被高度反演模型。在该多基线多极化植被高度反演模型中,不同干涉基线相同极化方式对于植被覆盖层垂直结构的描述是相同的,即数学上表述为傅里叶-勒让德系数相同,具体如以下不同基线不同极化方式的表达式所示:
Figure BDA0001965155770000092
其中,x,y,…,m表示不同的基线。
本实施例,获取的SAR影像包括主影像和与3条基线(分别为x,y,m)分别对应的3个辅影像,且SAR影像为全极化SAR影像,具体每条基线采用2个相位最大分离相干最优极化方式,即PDHigh与PDLow极化方式,因此本实施例的基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型为:
Figure BDA0001965155770000101
实施例二:
本实施例基于实施例一建立的基于提供一种二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型,提供一种二阶傅里叶-勒让德多项式的植被高度反演方法,如图1所示,包括以下步骤:
步骤X10,建立植被高度反演模型;
采用上述实施例一建立的多基线多极化植被高度反演模型,再按eix=cosx+isinx对模型进行变换,再并拆分模型实部、虚部,得到与模型相应的观测方程组:
Figure BDA0001965155770000111
步骤X20,植被参数初值确定。
此步骤主要目的为获取基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型的植被参数初值。
采用目前极化干涉SAR植被高度反演领域应用最广泛的RVoG模型,应用多基线多极化非线性最小二乘法迭代计算,获取植被高度、地表相位初值;进而获取傅里叶-勒让德系数初值以及地表高程初值。具体如下:
RVoG模型是随机地体二层散射(Random Volume Over Ground,RVoG)模型的简称,其将PolInSAR观测量(即γ(ω))与植被参数间的关系,概括为以下表达式:
Figure BDA0001965155770000112
公式(11)中的参数:
i表示复数虚部标识;
Figure BDA0001965155770000113
表示与基线p对应的地表相位,未知实数;μ表示与极化方式q对应的地体散射幅度比,未知实数;γv表示完全由植被冠层贡献的纯体去相干系数RVoG模型认为微波穿透植被层的衰减过程服从指数分布,因此将其假设为指数函数形式;
θ为雷达波入射角,已知实数;kz为垂直向有效波数,已知实数;hv为植被高度,未知实数;σ为植被散射体平均消光系数,RVoG模型假设植被散射体各向同性,可以认为其为定值,未知实数。
因此在RVoG模型中,复相干系数γ(ω)与植被参数之间关系可表示为公式(12):
Figure BDA0001965155770000121
在RVoG模型中,可采用非线性最小二乘法进行参数反演,当存在M条基线,N个极化方式时,拆分复数实部、虚部有2*MN个观测方程,未知数为2(植被高度hv、植被散射体平均消光系数σ)+M(与基线p对应的地表相位
Figure BDA0001965155770000122
)+N(与极化方式q对应的地体幅度比μ)个,当2*MN>2+M+N时可以进行参数反演,获取植被高度初值Initial_hv和地表相位初值
Figure BDA0001965155770000123
在本实施例中,包括3条基线x,y,z,每条基线对应2种极化方式:PDHigh、PDLow,满足2*MN>2+M+N,可以在RVoG模型中采用非线性最小二乘法进行参数反演,获取植被高度初值Initial_hv和地表相位初值
Figure BDA0001965155770000124
然后,再根据植被高度初值Initial_hv和地表相位初值
Figure BDA0001965155770000125
Figure BDA0001965155770000126
获取傅里叶-勒让德系数初值和地表高程初值。具体以基线x为例对获取傅里叶-勒让德系数初值进行说明:
将根据RVoG模型获得的植被高度初值Initial_hv以及垂直向有效波数
Figure BDA0001965155770000127
(已知实数)代入公式(3),即可得到与基线x相应的中间参数初值
Figure BDA0001965155770000128
再将中间参数初值
Figure BDA0001965155770000129
代入公式(2),即可得到与基线x相应的二阶勒让德多项式展开项初值
Figure BDA00019651557700001210
将根据RVoG模型获得与基线x相应的地表相位初值
Figure BDA00019651557700001211
以及中间参数初值
Figure BDA00019651557700001212
和步骤1得到的复相干系数γ(PDHighx)、γ(PDLowx),按公式(8)获取标准化复相干系数γk(PDHighx)、γk(PDLowx):
Figure BDA0001965155770000131
根据标准化复相干系数γk(PDHighx)、γk(PDLowx),按公式(9)获得与极化方式PDHigh相应的傅里叶-勒让德系数初值
Figure BDA0001965155770000132
γk(PDLowx)以及与极化方式PDLow相应的傅里叶-勒让德系数初值
Figure BDA0001965155770000133
Figure BDA0001965155770000134
在本实施例中选取基线为x,根据地表相位初值
Figure BDA0001965155770000135
和垂直向有效波数
Figure BDA0001965155770000136
按公式(10)获得地表高程初值Initial_hg
Figure BDA0001965155770000137
步骤X30,基于步骤X10建立的基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型,进行参数反演。
分别将本实施例的6种极化方式:PDHighx,PDHighy,PDHighm,PDLowx,PDLowy,PDLowm,代入到观测方程中,得到如下观测方程组:
Figure BDA0001965155770000141
其中,按公式(3)和公式(2)可得:
Figure BDA0001965155770000142
Figure BDA0001965155770000143
Figure BDA0001965155770000144
Figure BDA0001965155770000145
Figure BDA0001965155770000146
Figure BDA0001965155770000147
将步骤X20获得的植被高度初值Initial_hv、地表高程初值Initial_hg以及傅里叶-勒让德系数初值
Figure BDA0001965155770000148
作为步骤X10建立的基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型的植被参数初值,观测方程组采用非线性最小二乘法进行迭代计算,获得待求取的植被高度hv、地表高程hg、傅里叶-勒让德系数估计值
Figure BDA0001965155770000151
本实施例分别采用3个干涉对的复相干系数测试基于RVoG模型(如图4(a)所示)和本发明模型(如图4(b)所示)的算法在植被高度反演中的表现情况,如图4所示,两种算法反演的植被高度空间分布趋势相似;但是显然基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型结果与LiDAR植被高度产品(如图4(c)所示)更为一致。
为定量分析基于两种模型的植被高度反演结果,本实施例采用LiDAR植被高度产品作为参考。首先在实验区域内初步均匀选取51×51像素大小的450块样地;之后在选出的样地内选取植被区域,剔除非植被区域;最后选定365块植被样地;计算选定样地对应的平均植被高度用于精度验证。基于选定的植被样地,图5给出了植被高度反演结果与LiDAR植被高度产品的样地交叉验图。分别计算基于两种模型的均方根误差(RMSE)与相关系数(R2)分析两种模型的植被高度反演精度。
显然,本发明基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型反演结果(如图5(b)所示)相比RVoG模型(如图5(a)所示)结果有较大的提升,其对应的RMSE分别为3.02米、6.29米,基于二阶傅里叶-勒让德多项式的多基线多极化植被高度反演模型精度提高了约51.99%;对应的R2分别为0.81和0.44,基于傅里叶-勒让德多项式的多基线多极化植被高度反演模型精度提高了约45.68%。
以上实施例为本申请的优选实施例,本领域的普通技术人员还可以在此基础上进行各种变换或改进,在不脱离本申请总的构思的前提下,这些变换或改进都应当属于本申请要求保护的范围之内。

Claims (8)

1.一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建方法,其特征在于,包括以下步骤:
步骤S10,获取关于植被覆盖层垂直结构的SAR影像,进行极化干涉处理并生成极化复相干系数γ(ω);所述SAR影像包括主影像和辅影像,ω表示极化矢量;
步骤S20,将SAR影像所对应的植被覆盖层垂直结构表述为二阶傅里叶-勒让德多项式形式;
步骤S30,将极化复相干系数γ(ω)作为观测值,利用傅里叶-勒让德系数a00,a10,a20、植被高度hv和地表高程hg,建立基于二阶傅里叶-勒让德多项式的植被高度反演模型:
Figure FDA0002298009630000011
其中,a00、a10、a20,分别代表0阶、1阶、2阶傅里叶-勒让德系数;f0、f1、f2,分别为二阶勒让德多项式展开项,具体表达式为:
Figure FDA0002298009630000012
kv为中间参数,且:
Figure FDA0002298009630000013
Figure FDA0002298009630000014
λ为获取SAR影像的雷达波长,θ为雷达波入射角,Δθ为获取主影像与辅影像的雷达波入射角差异,kz为垂直向有效波数。
2.根据权利要求1所述的方法,其特征在于,SAR影像包括n种极化方式的SAR影像,不同的极化方式q所对应的植被覆盖层垂直结构中的傅里叶-勒让德系数不同,且基于二阶傅里叶-勒让德多项式的植被高度反演模型为:
Figure FDA0002298009630000021
3.根据权利要求2所述的方法,其特征在于,SAR影像包括M条基线的SAR影像;不同的基线p且相同的极化方式q所对应的植被覆盖层垂直结构中的傅里叶-勒让德系数相同,且基于二阶傅里叶-勒让德多项式的植被高度反演模型为:
Figure FDA0002298009630000022
4.根据权利要求3所述的方法,其特征在于,M条基线分别为x,y,m,每条基线采用2个相位最大分离相干最优极化方式:PDHigh与PDLow极化方式。
5.根据权利要求1所述的方法,其特征在于,所述极化干涉处理的过程依次包括:对主辅影像配准、平地效应去除、多视处理和极化干涉。
6.根据权利要求1所述的方法,其特征在于,SAR影像采用P波段SAR数据。
7.一种基于二阶傅里叶-勒让德多项式的植被高度反演方法,其特征在于,包括以下步骤:
步骤X10,建立植被高度反演模型,并利用所述反演模型构建观测方程;
采用权利要求1-6任一所述的方法构建基于二阶傅里叶-勒让德多项式的植被高度反演模型,并构建观测方程为:
Figure FDA0002298009630000023
步骤X20,植被参数初值确定;
利用步骤S10得到的极化复相干系数γ(ω)获得RVoG模型,应用非线性最小二乘算法进行参数反演,获取植被高度初值Initial_hv和地表相位初值
Figure FDA0002298009630000024
根据植被高度初值Initial_hv和垂直向有效波数kz,按公式(2)和(3)获得中间参数初值Initial_kv和2阶勒让德多项式展开项初值Initial_f0、Initial_f1、Initial_f2
根据中间参数初值Initial_kv、地表相位初值
Figure FDA0002298009630000025
以及步骤1得到的复相干系数γ(ω),按公式(8)获取标准化复相干系数γk(ω):
Figure FDA0002298009630000031
根据标准化复相干系数γk(ω),按公式(9)获得傅里叶-勒让德系数初值Initial_a00、Initial_a10、Initial_a20
Figure FDA0002298009630000032
根据地表相位初值
Figure FDA0002298009630000033
和垂直向有效波数kz,按公式(10)获得地表高程初值Initial_hg
Figure FDA0002298009630000034
步骤X30,植被高度反演;
将步骤X20获得的植被高度初值Initial_hv、地表高程初值Initial_hg以及傅里叶-勒让德系数初值Initial_a10、Initial_a20,作为步骤X10建立的基于二阶傅里叶-勒让德多项式的植被高度反演模型的植被参数初值,按公式(7)采用非线性最小二乘法进行迭代计算,获得待求取的植被高度、地表高程、傅里叶-勒让德系数估计值。
8.根据权利要求7所述的方法,其特征在于,所述步骤X20中的RVoG模型表示为公式(11):
Figure FDA0002298009630000035
其中,μ表示与极化方式q对应的地体散射幅度比,γv表示完全由植被冠层贡献的纯体去相干系数,σ表示植被散射体平均消光系数,则复相干系数γ(ω)表示为公式(12):
Figure FDA0002298009630000036
根据公式(12)应用多基线多极化非线性最小二乘法进行迭代计算,获取植被高度初值Initial_hv和地表相位初值
Figure FDA0002298009630000041
CN201910098827.3A 2019-01-31 2019-01-31 一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法 Active CN109738895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910098827.3A CN109738895B (zh) 2019-01-31 2019-01-31 一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910098827.3A CN109738895B (zh) 2019-01-31 2019-01-31 一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法

Publications (2)

Publication Number Publication Date
CN109738895A CN109738895A (zh) 2019-05-10
CN109738895B true CN109738895B (zh) 2020-04-07

Family

ID=66367027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910098827.3A Active CN109738895B (zh) 2019-01-31 2019-01-31 一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法

Country Status (1)

Country Link
CN (1) CN109738895B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110378894B (zh) * 2019-07-25 2021-08-13 内蒙古工业大学 基于相关性的TomoSAR植被病虫害监测方法及装置
CN110441767A (zh) * 2019-09-06 2019-11-12 云南电网有限责任公司电力科学研究院 输电线路走廊树障净空高度的测量方法及系统
CN110703220B (zh) * 2019-10-12 2021-06-22 中南大学 一种顾及时间去相干因子的多基线PolInSAR植被参数反演方法
CN110794402A (zh) * 2019-11-07 2020-02-14 航天信德智图(北京)科技有限公司 一种基于InSAR监测森林蓄积量方法
CN111352109B (zh) * 2020-01-19 2021-11-16 中南大学 一种基于两景sar影像的植被高度反演方法及装置
CN111965645B (zh) * 2020-08-10 2022-04-05 中南大学 一种顾及几何约束的多基线植被高度反演方法及装置
CN117077547B (zh) * 2023-10-16 2023-12-26 西南林业大学 森林地上生物量估计方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854602A (en) * 1997-04-28 1998-12-29 Erim International, Inc. Subaperture high-order autofocus using reverse phase
CN103235301A (zh) * 2013-05-14 2013-08-07 中南大学 基于复数域平差理论的POLInSAR植被高度反演方法
CN105548972A (zh) * 2014-09-19 2016-05-04 波音公司 合成孔径雷达的阶梯式线性调频信号的相位校准
CN108132468A (zh) * 2017-12-25 2018-06-08 中南大学 一种多基线极化干涉sar建筑物高度提取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854602A (en) * 1997-04-28 1998-12-29 Erim International, Inc. Subaperture high-order autofocus using reverse phase
CN103235301A (zh) * 2013-05-14 2013-08-07 中南大学 基于复数域平差理论的POLInSAR植被高度反演方法
CN105548972A (zh) * 2014-09-19 2016-05-04 波音公司 合成孔径雷达的阶梯式线性调频信号的相位校准
CN108132468A (zh) * 2017-12-25 2018-06-08 中南大学 一种多基线极化干涉sar建筑物高度提取方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Polarization coherence tomography;Shane R. Cloude;《RADIO SCIENCE》;20061231;第41卷;第1-27页 *
一种改进的PolInSAR PCT方法反演植被垂直结构;付海强等;《测绘工程》;20141130;第23卷(第11期);第56-61页、第66页 *
干涉、极化干涉SAR技术森林高度估测算法研究进展;张王菲等;《遥感技术与应用》;20171231;第32卷(第6期);第983-997页 *

Also Published As

Publication number Publication date
CN109738895A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN109738895B (zh) 一种基于二阶傅里叶-勒让德多项式的植被高度反演模型的构建与反演方法
Lavalle et al. Extraction of structural and dynamic properties of forests from polarimetric-interferometric SAR data affected by temporal decorrelation
CN110569624B (zh) 适用于PolInSAR反演的森林三层散射模型的确定及分析方法
CN110988879B (zh) 一种植被参数反演方法、终端设备及存储介质
CN104123464A (zh) 一种高分辨率InSAR时序分析反演地物高程与地面沉降量的方法
CN102401892B (zh) 一种极化干涉合成孔径雷达系统性能评估方法
CN110703220B (zh) 一种顾及时间去相干因子的多基线PolInSAR植被参数反演方法
CN115062260B (zh) 一种适用于异质森林的森林生物量PolInSAR估算方法和系统、存储介质
CN107607945A (zh) 一种基于空间嵌入映射的扫描雷达前视成像方法
Fu et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data
Lei et al. A 2-D pseudospectral time-domain (PSTD) simulator for large-scale electromagnetic scattering and radar sounding applications
CN111352109B (zh) 一种基于两景sar影像的植被高度反演方法及装置
Zhang et al. A Multibaseline PolInSAR Forest Height Inversion Model Based on Fourier–Legendre Polynomials
Liu et al. NL-MMSE: A hybrid phase optimization method in multimaster interferogram stack for DS-InSAR applications
Yang et al. A deep learning solution for height estimation on a forested area based on Pol-TomoSAR data
Liu et al. Analysis of Deep Learning 3-D Imaging Methods Based on UAV SAR
Nghia et al. Forest height estimation from PolInSAR image using adaptive decomposition method
Yang et al. Coupling Model-Driven and Data-Driven Methods for Estimating Soil Moisture Over Bare Surfaces With Sentinel-1A Dual-Polarized Data
Dmitriev et al. Fractal polarization signature of radar backscattering variations
Qi et al. Forest structure modeling of a coniferous forest using TanDEM-X InSAR and simulated GEDI lidar data
Xu et al. Theoretical modeling of multi-frequency tomography radar observations of snow stratigraphy
Lei Electromagnetic scattering models for InSAR correlation measurements of vegetation and snow
CN115586527B (zh) 一种基于DS-InSAR技术的云端道路形变预警系统
Fields et al. Wind-Wave Relationship Compared Between the Arabian Sea and Bay of Bengal Regions Using Numerical Ocean Models, Genetic Algorithm
Yang et al. Forest Height Retrieval in Tropical Areas Using P-Band Multibaseline SAR Data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant