CN109738698B - 神经元仿生电路和信号频率检测系统 - Google Patents

神经元仿生电路和信号频率检测系统 Download PDF

Info

Publication number
CN109738698B
CN109738698B CN201811631732.5A CN201811631732A CN109738698B CN 109738698 B CN109738698 B CN 109738698B CN 201811631732 A CN201811631732 A CN 201811631732A CN 109738698 B CN109738698 B CN 109738698B
Authority
CN
China
Prior art keywords
signal
module
resistor
circuit
sodium channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811631732.5A
Other languages
English (en)
Other versions
CN109738698A (zh
Inventor
满梦华
马贵蕾
张明亮
刘尚合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Army Engineering University of PLA
Original Assignee
Army Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Army Engineering University of PLA filed Critical Army Engineering University of PLA
Priority to CN201811631732.5A priority Critical patent/CN109738698B/zh
Publication of CN109738698A publication Critical patent/CN109738698A/zh
Application granted granted Critical
Publication of CN109738698B publication Critical patent/CN109738698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明属于频率检测技术领域,提供一种神经元仿生电路和信号频率检测系统。所述系统包括:信号输入端,用于接收被测信号;神经元仿生电路,用于根据被测信号向第二微分电路发送神经仿生脉冲;第一微分电路,用于对被测信号进行微分并向计数器发送第一脉冲信号;第二微分电路,用于对神经仿生脉冲进行微分并向计数器发送第二脉冲信号;计数器,用于根据第二脉冲信号对第一脉冲信号计数,得到目标信号计数序列;控制模块根据目标信号计数序列确定被测信号的频率。本发明的仿生电路成本小、功耗低,克服了传统频率检测设备稳定性不好、温漂等缺点,检测系统无需精准时钟,频率检测精度更高。

Description

神经元仿生电路和信号频率检测系统
技术领域
本发明属于频率检测控制领域,更具体地说,是涉及一种神经元仿生电路和信号频率检测系统。
背景技术
在传统的信号分析中,通常采用频率计测量周期信号的频率与脉冲信号的重复频率,其测量原理一般可分为测频法和测周法。测频法是利用时基信号控制闸门触发器对输入脉冲进行计数,适用于测量较高频率信号,测周法是利用被测信号作为闸门触发器的触发信号,对标准时基脉冲进行计数,适用于测量较低频率信号。这两种方法都需要时基电路提供精准的基准时钟,才能获得准确的测量结果。但是,由于时基电路内部元件的温漂、热噪声、晶振抖动和外界环境中电磁干扰的存在,使基准时钟不可避免的存在时基误差,使得传统频率测量方法的准确度和稳定度受到影响。
发明内容
鉴于此,本发明提供一种神经元仿生电路和信号频率检测系统,旨在现有技术中频率测量设备的基准时钟易受内部器件和外部环境的干扰,降低频率测量的准确性的问题。
本发明实施例的第一方面提供了一种神经元仿生电路,包括:电流泵、充放电模块、钠通道模块和钾通道模块;
所述电流泵,与所述充放电模块连接,用于接收外部信号源的被测信号,并根据所述被测信号向所述充放电模块输出与被测信号相同频率与脉宽的电流脉冲信号;
所述充放电模块,分别与所述钠通道模块和所述钾通道模块并联,用于根据所述电流脉冲信号进行充电并形成膜电压;
所述钠通道模块,用于在所述膜电压大于第一预设电压时输出钠通道电流;
所述钾通道模块,用于根据所述电流泵输出的电流脉冲信号和所述钠通道电流进行充电,在充电电压大于第二预设电压时输出钾通道电流;
所述充放电模块还根据所述电流泵输出的电流脉冲信号和所述钠通道电流进行充电,以及根据所述钾通道电流进行放电,并输出所述被测信号的神经仿生脉冲。
可选的,所述电流泵包括:输入端、输出端、第一电阻、第二电阻、第三电阻、第四电阻和运放器;
所述电流泵的输入端与所述外部信号源连接,输出端与所述充放电模块连接;
所述第一电阻的第一端与所述电流泵的输入端连接,所述第一电阻的第二端分别与所述运放器的正相输入端和所述电流泵的输出端连接;
所述运放器的负相输入端通过所述第二电阻接地,还通过所述第三电阻与所述运放器的输出端连接,所述运放器的输出端通过所述第四电阻和所述电流泵的输出端连接。
可选的,所述充放电模块包括:第一端、第二端、第一电容和泄放电阻;
所述充放电模块的第一端分别与所述电流泵和所述钠通道模块的第一端连接,所述充放电模块的第二端与所述钠通道模块的第二端连接;
所述第一电容的第一端分别与所述充放电模块的第一端和所述泄放电阻的第一端连接,所述第一电容的第二端分别与所述充放电模块的第二端和所述泄放电阻的第二端连接,所述泄放电阻的第二端接地。
可选的,所述钠通道模块包括:第一端、第二端、第一三极管、第二三极管、第五电阻、第六电阻和模拟钠通道平衡电压的电压源;
所述钠通道模块的第一端与所述钾通道模块的第一端连接,所述钠通道模块的第二端与所述钾通道模块的第二端连接;
所述第一三极管的基极与所述钠通道模块的第一端和所述第二三极管的集电极连接,所述第一三极管的集电极与所述第二三极管的基极连接,所述第一三极管的发射极通过所述第五电阻分别与所述模拟钠通道平衡电压的电压源的第二端、所述钠通道模块的第二端和地端连接;
所述第二三极管的集电极还与所述钠通道模块的第一端连接,所述第二三极管的发射极通过所述第六电阻与所述模拟钠通道平衡电压的电压源的第一端连接。
可选的,所述钾通道模块包括:第一端、第二端、第七电阻、第八电阻、第三三极管、第二电容和模拟钾通道平衡电压的电压源;
所述钾通道模块的第一端与所述钠通道模块的第一端连接,所述钾通道模块的第二端与所述钠通道模块的第二端连接;
所述第七电阻的第一端分别与所述钾通道模块的第一输入端、所述钾通道模块的输出端和所述第八电阻的第一端连接,所述第七电阻的第二端与所述第三三极管的集电极连接;
所述第三三极管的基极分别与所述第八电阻的第二端和所述第二电容的第一端连接,所述第三三极管的发射极通过所述模拟钾通道平衡电压的电压源与所述钾通道模块的第二输入端、所述第二电容的第二端和地端连接。
本发明实施例的第二方面提供了一种信号频率检测系统,包括:信号输入端、第一微分电路、第二微分电路、计数器和控制模块,还包括如上述实施例的第一方面提供的任一种所述的神经元仿生电路;所述信号输入端用于接收被测信号;
其中,所述神经元仿生电路,分别与所述信号输入端和所述第二微分电路连接,用于根据所述被测信号向所述第二微分电路发送神经仿生脉冲;
所述第一微分电路,分别与所述信号输入端和所述计数器的时钟端连接,用于对所述被测信号进行微分,并向所述计数器发送第一脉冲信号;
所述第二微分电路,与所述计数器的复位端连接,用于对所述神经仿生脉冲进行微分,并向所述计数器发送第二脉冲信号;
所述计数器,与所述控制模块连接,用于根据所述第二脉冲信号对所述第一脉冲信号计数,得到目标信号计数序列;
所述控制模块根据所述目标信号计数序列确定所述被测信号的频率。
可选的,所述控制模块具体用于:
存储所述目标信号计数序列和多个标定频率计数序列;
利用二分法将所述目标信号计数序列与所述多个标定频率计数序列进行匹配,根据匹配结果确定所述被测信号的频率。
可选的,所述信号输入端包括:放大单元和整形单元;
所述放大单元,用于接收所述被测信号并对所述被测信号进行放大;
所述整形单元,用于将放大后的所述被测信号进行整形处理并发送给所述神经元仿生电路。
可选的,所述信号频率检测系统还包括:用于对所述神经仿生脉冲进行整形的整形电路;
所述神经元仿生电路通过所述整形电路与所述第二微分电路连接。
可选的,所述信号频率检测系统还包括:用于显示所述被测信号的频率的显示模块;
所述显示模块与所述控制模块连接。
本发明实施例中神经元仿生电路和信号频率检测系统与现有技术相比的有益效果在于:神经元仿生电路成本小、功耗低,即通过被测信号对充放电模块充电,然后充放电模块根据钠通道模块输出的钠通道电流和钾通道模块输出的钾通道电流充放电,并输出被测信号的神经仿生脉冲,即通过类生物神经元动作电位特征检测信号频率,克服了传统信号检测装置的稳定性不好、温漂等缺点;计数器根据神经仿生脉冲的微分信号对被测信号的微分信号进行计数,得到目标信号计数序列,最后控制模块根据目标信号计数序列确定被测信号的频率,通过计数方法检测频率,无需精准时钟,频率检测精度更高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的神经元仿生电路的结构示意图;
图2为本发明实施例提供的神经元仿生电路的电路示意图;
图3为本发明实施例提供的电流泵的电路示意图;
图4为本发明实施例提供的另一种电流泵的电路示意图;
图5为本发明实施例提供的信号频率检测系统的结构示意图;
图6为本发明实施例提供的另一种信号频率检测系统的结构示意图;
图7为本发明实施例提供的第一脉冲信号和第二脉冲信号的示意图;
图8为本发明实施例提供的标定频率计数序列与已知频率的对应关系示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例一
参见图1,本发明实施例提供的一种神经元仿生电路,包括:电流泵10、充放电模块20、钠通道模块30和钾通道模块40。电流泵10与充放电模块20连接,充放电模块20分别与钠通道模块30、钾通道模块40并联。
电流泵10用于接收外部信号源的被测信号,并根据所述被测信号向充放电模块20输出与被测信号相同频率与脉宽的电流脉冲信号;充放电模块20用于根据所述电流脉冲信号进行充电;钠通道模块30用于在充放电模块20的电压大于第一预设电压时向钾通道模块40输出钠通道电流;钾通道模块40用于根据所述电流泵10输出的电流脉冲信号和所述钠通道电流进行充电,在充电电压大于第二预设电压时输出钾通道电流;最后充放电模块20还根据所述电流泵10输出的电流脉冲信号和所述钠通道电流进行充电,以及根据所述钾通道电流放电,并输出所述被测信号的神经仿生脉冲。
神经元仿生电路是一种一种模拟生物神经元细胞膜上动作电位产生和传导特性、模仿生物神经元放电特性、可以产生类神经元动作电位脉冲的电路。示例性的,被测信号r(如图2中电流泵20输入的脉冲r)输入到电流泵10,电流泵10将被测信号r转换成电流信号对充放电模块20进行充电,然后充放电模块20根据钠通道模块30输出的钠通道电流和钾通道模块40输出的钾通道电流充放电,并输出被测信号的神经仿生脉冲δ(如图2中输出端输出的脉冲δ),该神经仿生脉冲δ为连续的、非周期性的类生物神经元的动作电位脉冲。实际应用中,被测信号可以是正弦波、锯齿波、方波、谐波、周期脉冲等瞬时幅值随时间重复变化的信号。
上述神经元仿生电路成本小、功耗低,即通过被测信号对充放电模块20充电,然后充放电模块20根据钠通道模块30输出的钠通道电流和钾通道模块40输出的钾通道电流充放电,并输出被测信号的神经仿生脉冲,即通过类生物神经元动作电位特征检测频率,克服了传统频率测量电路稳定性不好、温漂等缺点,减小了外界干扰,进而提高了频率测量精度和准确性。
一个实施例中,电流泵10可以为Howland电流泵。
参见图3,电流泵10可以包括:输入端、输出端、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4和运放器U1。
电流泵10的输入端接收被测信号,输出端与充放电模块20连接。
第一电阻R1的第一端与电流泵10的输入端连接,第一电阻R1的第二端分别与运放器U1的正相输入端和电流泵10的输出端连接。
运放器U1的负相输入端通过第二电阻R2接地,还通过第三电阻R3与运放器U1的输出端连接,运放器U1的输出端通过第四电阻R4和电流泵10的输出端连接。
可选的,参见图4,电流泵10还可以包括电阻Rx1、电阻Rx2、电阻Rx3、电容Cx、电阻Ry1、电阻Ry2、电阻Ry2、电容Cy和运放器U2。
电阻Ry1的第一端接地,第二端分别与运放器U2的反相输入端、电阻Ry2的第一端和电容Cy的第一端连接;电阻Ry2的第二端分别与电容Cy的第二端和电阻Ry3的第一端连接,电阻Ry3的第二端分别与运放器U2的输出端和电阻Rx3的第一端连接;电阻Rx1的第一端与脉冲输入端口连接,第二端分别与运放器U2的正相输入端、电阻Rx2的第一端和电容Cx的第一端连接,电阻Rx2的第二端分别与电容Cx的第二端、电阻Rx3的第二端和充放电模块30连接。
电流泵10接收被测信号并根据被测信号对充放电模块20充电,电流输出稳定,结构简单,功耗低。
一个实施例中,参见图2,充放电模块20包括:第一端、第二端、第一电容C1和泄放电阻Rn。泄放电阻Rn用于泄放第一电容C1上的电压。
充放电模块20的第一端与电流泵10和钠通道模块30的第一端连接,充放电模块20的第二端与钠通道模块30的第二端连接。第一电容C1的第一端分别与充放电模块20的第一端和泄放电阻Rn的第一端连接,第一电容C1的第二端分别与充放电模块20的第二端和泄放电阻Rn的第二端连接,泄放电阻Rn的第二端接地。
一个实施例中,参见图2,钠通道模块30包括:第一端、第二端、第一三极管Q1、第二三极管Q2、第五电阻R5、第六电阻R6和模拟钠通道平衡电压的电压源VNa。钠通道模块30的第一端与钾通道模块40的第一端连接,钠通道模块30的第二端与钾通道模块40的第二端连接。
第一三极管Q1的基极与钠通道模块30的第一端和第二三极管Q2的集电极连接,第一三极管Q1的集电极与第二三极管Q2的基极连接,第一三极管Q1的发射极通过第五电阻R5分别与钠通道模块30的第二端、模拟钠通道平衡电压的电压源VNa的第二端和地端连接。
第二三极管Q2的集电极还与钠通道模块30的第一端连接,第二三极管Q2的发射极通过第六电阻R6与模拟钠通道平衡电压的电压源VNa的第一端连接。
一个实施例中,参见图2,钾通道模块40包括:第一端、第二端、第七电阻R7、第八电阻R8、第三三极管Q3、第二电容C2和模拟钾通道平衡电压的电压源VK。钾通道模块40的第一端与钠通道模块30的第一端连接,钾通道模块40的第二端与钠通道模块30的第二端连接。
第七电阻R7的第一端分别与钾通道模块40的第一端和第八电阻R8的第一端连接,第七电阻R7的第二端与第三三极管Q3的集电极连接。
第三三极管Q3的基极分别与第八电阻R8的第二端和第二电容C2的第一端连接,第三三极管Q3的发射极通过模拟钾通道平衡电压的电压源VK与钾通道模块40的第二端、第二电容C2的第二端和地端连接。
结合上述实施例中的神经元仿生电路的具体电路结构,对本实施的神经元仿生电路的工作原理进行说明,详述如下:
参见图2,电流泵10接收被测信号r,并输出电流脉冲信号对充放电模块20的第一电容C1进行充电,第一电容C1两端形成膜电压,膜电压逐渐升高直到超过第一三极管Q1的开启电压(第一预设电压),第一三极管Q1导通,第二三极管Q2也导通,模拟钠通道平衡电压的电压源VNa经第六电阻R6和第二三极管Q2产生正的钠通道电流,膜电压快速升高,模拟了生物神经元细胞膜外钠离子迅速内流而使膜电压快速升高的去极化过程。
同时,钠通道电流和电流脉冲信号还通过第八电阻R8对第二电容C2充电,在第二电容C2两端的电压大于第三三极管Q3的开启电压(第二预设电压)时,第三三极管Q3导通,模拟钾通道平衡电压的电压源VK产生负的钾通道电流(钾通道电流),第一电容C1根据钾通道电流快速放电,膜电压迅速下降,输出被测信号的神经仿生脉冲,此过程模拟了神经元细胞膜内钾离子迅速外流而使膜电压快速降低的复极化过程。
当膜电压下降到阈值电压时,第一三极管Q1关闭,钠通道模块30停止充电,模拟了生物神经元细胞膜上钠离子通道的关闭过程;当膜电压下降到静息电位时,第二电容C2通过第八电阻R8放电,第二电容C2两端电压仍然大于第三三极管Q3的开启电压,模拟钾通道平衡电压的电压源VK通过第七电阻单元R7和第三三极管Q3输出负的钾通道电流,膜电压继续降低,从而使膜电压小于静息电位,模拟了神经元膜电压的超极化过程;当第二电容C2两端电压小于第三三极管Q3的开启电压时,第三三极管Q3截止,模拟了钾离子通道的关闭过程。其中,可控电流源输出的电流信号会继续对膜电容C1充电,从而使膜电压恢复到静息电位,即完成一个动作电位的产生过程,输出神经元仿生脉冲。
上述实施例中,神经元仿生电路成本小、功耗低,即通过被测信号对充放电模块20充电,然后充放电模块20根据钠通道模块30输出的钠通道电流和钾通道模块40输出的钾通道电流充放电,并输出被测信号的神经仿生脉冲,即通过类生物神经元动作电位特征检测频率,不需要精确的基准时钟,克服了传统频率测量电路稳定性不好、温漂等缺点,减小了外界干扰,进而提高了频率测量精度和准确性。
实施例二
基于上述实施例一提供的神经元仿生电路,本实施例提供了的一种信号频率检测系统。参见图5,信号频率检测系统包括:信号输入端100、第一微分电路200、第二微分电路400、计数器500和控制模块600,还包括上述实施例一提供的神经元仿生电路300;信号输入端100用于接收被测信号。
神经元仿生电路300分别与信号输入端100和第二微分电路400连接,第一微分电路200分别与信号输入端100和计数器500的时钟端连接,第二微分电路400与计数器500的复位端连接,计数器500与控制模块600连接。
具体的,神经元仿生电路300用于根据所述被测信号向第二微分电路400发送神经仿生脉冲;第一微分电路200用于对所述被测信号进行微分,并向计数器500发送第一脉冲信号;第二微分电路400用于对所述神经仿生脉冲进行微分,并向计数器500发送第二脉冲信号;计数器500用于根据所述第二脉冲信号对所述第一脉冲信号计数,得到目标信号计数序列;控制模块600根据所述目标信号计数序列确定所述被测信号的频率。
示例性的,被测信号通过信号输入端100得到方波信号r,方波信号r输入到神经元仿生电路300和第一微分电路200中,神经元仿生电路300根据方波脉冲r向第二微分电路400发送被测信号的神经仿生脉冲δ。如图6,方波脉冲r经过第一微分电路200转换成相同周期的第一脉冲信号r’,神经仿生脉冲δ经过第二微分电路400转换成第二脉冲信号δ',第一脉冲信号r’与第二脉冲信号δ'在时间上的关系如图7所示。
然后,计数器500的时钟端CLK在接收到第一脉冲信号r’的上升沿时进行计数并锁存,当复位端CLR接收到第二脉冲信号δ'的上升沿时对计数值清零,计数器500的时钟端接收到第一脉冲信号r’的上升沿时重新计数并锁存,一直循环,直至第二脉冲信号δ'传输完成,则得到目标信号计数序列,目标信号计数序列不会受到其他电路的信号干扰,计数结果与脉冲信号频率有关,计数结果较稳定;最后控制模块600根据所述目标信号计数序列确定被测信号的频率。方波脉冲r的频率越高,计数器500计数频率越高,序列的维数越大,则频率测量精度和准确性越高。
上述信号频率检测系统,神经元仿生电路300成本小、功耗低,即通过被测信号对充放电模块20充电,然后充放电模块20根据钠通道模块30输出的钠通道电流和钾通道模块40输出的钾通道电流充放电,并输出被测信号的神经仿生脉冲,即通过生物神经元动作电位特征检测信号频率,克服了传统信号检测装置的稳定性不好、温漂等缺点;计数器500根据神经仿生脉冲的微分信号对被测信号的微分信号进行计数,得到目标信号计数序列,最后控制模块600根据目标信号计数序列确定被测信号的频率,通过计数方法检测频率,无需精准时钟,频率检测精度和准确度更高。
可选的,控制模块600具体用于:存储所述目标信号计数序列和多个标定频率计数序列;利用二分法将所述目标信号计数序列与所述多个标定频率计数序列进行匹配,根据匹配结果确定所述被测信号的频率。
标定频率计数序列是指预先将多个已知频率的信号经过神经元仿生电路300并计数器500进行计数后得到的序列。在被测信号得到目标信号计数序列后,将目标信号计数序列与多个标定频率计数序列进行一一匹配,由于标定频率计数序列较多,所以本实施例采用二分法将目标信号计数序列与多个标定频率计数序列进行匹配,根据匹配结果确定所述目标信息,即在标定频率计数序列中找到与目标信号计数序列相同的序列,即确定了该被测信号的频率。
具体的,可以先判断目标信号计数序列Seqx与多个标定频率计数序列的中间序列Seqj(j=N/2,N为标定频率计数序列的总个数,且为正整数)是否相等,若相等,目标信号的频率值等于与Seqj对应的频率值,fx=fj,即确定了被测信号的频率;若不相等,判断目标信号计数序列Seqx是否大于Seqj,若大于,目标信号计数序列Seqx与较大频率值的一部分标定频率计数序列逐一匹配,若小于,目标信号计数序列Seqx与较小频率值的一部分标定频率计数序列逐一匹配,直至匹配出与目标信号计数序列Seqx相等的标定频率计数序列,即确定了被测信号的频率。
可选的,控制模块600还可以用来控制计数器500的启动等。控制模块600可以由单片机、ARM(Advanced RISC Machines,高级精简指令集处理器)、FPGA(Field ProgrammableGate Array,现场可编程门阵列)等微控制器来实现,例如,控制模块600可以为ARMSTM32F103ZET6型号的微控制器。
一个实施例中,参见图6,信号输入端100包括:放大单元110和整形单元120。放大单元110用于接收所述被测信号并对所述被测信号进行放大;整形单元120,用于将放大后的所述被测信号进行整形处理并发送给神经元仿生电路300。
可选的,放大单元110可以为放大电路和/或衰减电路组成,将所述被测信号进行放大和/或衰减,转换成合适的电压范围进行传输。放大电路和/或衰减电路可以由比较器、运算放大器、二极管和反相器等实现。
可选的,整形单元120可以由施密特触发器来实现,将放大/衰减后的被测信号整形成方波脉冲。
一个实施例中,参见图6,所述信号频率检测系统还可以包括:整形电路700,用于对所述神经仿生脉冲进行整形。神经元仿生电路300通过整形电路700与第二微分电路400连接。整形电路700可以减少神经仿生脉冲的噪声和干扰,提高频率测量的准确性。
一个实施例中,参见图6,所述信号频率检测系统还可以包括:显示模块800,用于显示所述被测信号的频率;显示模块800与控制模块600连接。
具体的,神经元仿生电路300每输出一个神经仿生脉冲δi,计数器500得到一个计数值Si,将获取的计数值按获取的时间前后进行排列,则构成一组目标信号计数序列Seqx={S1 S2 S3 …Si…}。控制模块600存储标定频率计数序列与频率的对应关系,每一组标定频率计数序列对应一个频率,如图8所示,具体可以参见表1,为标定频率计数序列与已知频率的对应关系。
表1 标定频率计数序列与已知频率的对应关系
然后控制模块600利用二分法将目标信号计数序列Seqx与多个标定频率计数序列进行匹配,根据匹配结果确定所述被测信号的频率,即可得到获取目标信号计数序列Seqx所对应的频率,并将其在显示模块800中显示出来。
控制模块600输出的被测信号频率越高,则获取的已知信号频率的标定频率计数序列和目标信号计数序列的维度也就越大,频率测量精度和准确性也就越高,其精度可以达到1ppm。
上述实施例中,神经元仿生电路300成本小、功耗低,即通过被测信号对充放电模块充电,然后充放电模块20根据钠通道模块30输出的钠通道电流和钾通道模块40输出的钾通道电流充放电,并输出被测信号的神经仿生脉冲,即通过生物神经元动作电位特征检测信号频率,克服了传统信号检测装置的稳定性不好、温漂等缺点;计数器500根据神经仿生脉冲的微分信号对被测信号的微分信号进行计数,得到目标信号计数序列,最后控制模块600根据目标信号计数序列确定被测信号的频率,通过计数方法检测频率,无需精准时钟,频率检测精度和准确度更高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种神经元仿生电路,其特征在于,包括:电流泵、充放电模块、钠通道模块和钾通道模块;
所述电流泵,与所述充放电模块连接,用于接收外部信号源的被测信号,并根据所述被测信号向所述充放电模块输出与被测信号相同频率与脉宽的电流脉冲信号;
所述充放电模块,分别与所述钠通道模块和所述钾通道模块并联,用于根据所述电流脉冲信号充电并形成膜电压;
所述钠通道模块,用于在所述膜电压大于第一预设电压时输出钠通道电流;
所述钾通道模块,用于根据所述电流泵输出的电流脉冲信号和所述钠通道电流进行充电,在充电电压大于第二预设电压时输出钾通道电流;
所述充放电模块还根据所述电流泵输出的电流脉冲信号和所述钠通道电流进行充电,以及根据所述钾通道电流进行放电,并输出所述被测信号的神经仿生脉冲;
所述电流泵包括:输入端、输出端、第一电阻、第二电阻、第三电阻、第四电阻和运放器;
所述电流泵的输入端与所述外部信号源连接,输出端与所述充放电模块连接;
所述第一电阻的第一端与所述电流泵的输入端连接,所述第一电阻的第二端分别与所述运放器的正相输入端和所述电流泵的输出端连接;
所述运放器的负相输入端通过所述第二电阻接地,还通过所述第三电阻与所述运放器的输出端连接,所述运放器的输出端通过所述第四电阻和所述电流泵的输出端连接。
2.如权利要求1所述的神经元仿生电路,其特征在于,所述充放电模块包括:第一端、第二端、第一电容和泄放电阻;
所述充放电模块的第一端分别与所述电流泵和所述钠通道模块的第一端连接,所述充放电模块的第二端与所述钠通道模块的第二端连接;
所述第一电容的第一端分别与所述充放电模块的第一端和所述泄放电阻的第一端连接,所述第一电容的第二端分别与所述充放电模块的第二端和所述泄放电阻的第二端连接,所述泄放电阻的第二端接地。
3.如权利要求1所述的神经元仿生电路,其特征在于,所述钠通道模块包括:第一端、第二端、第一三极管、第二三极管、第五电阻、第六电阻和模拟钠通道平衡电压的电压源;
所述钠通道模块的第一端与所述钾通道模块的第一端连接,所述钠通道模块的第二端与所述钾通道模块的第二端连接;
所述第一三极管的基极与所述钠通道模块的第一端和所述第二三极管的集电极连接,所述第一三极管的集电极与所述第二三极管的基极连接,所述第一三极管的发射极通过所述第五电阻分别与所述模拟钠通道平衡电压的电压源的第二端、所述钠通道模块的第二端和地端连接;
所述第二三极管的集电极还与所述钠通道模块的第一端连接,所述第二三极管的发射极通过所述第六电阻与所述模拟钠通道平衡电压的电压源的第一端连接。
4.如权利要求1所述的神经元仿生电路,其特征在于,所述钾通道模块包括:第一端、第二端、第七电阻、第八电阻、第三三极管、第二电容和模拟钾通道平衡电压的电压源;
所述钾通道模块的第一端与所述钠通道模块的第一端连接,所述钾通道模块的第二端与所述钠通道模块的第二端连接;
所述第七电阻的第一端分别与所述钾通道模块的第一输入端、所述钾通道模块的输出端和所述第八电阻的第一端连接,所述第七电阻的第二端与所述第三三极管的集电极连接;
所述第三三极管的基极分别与所述第八电阻的第二端和所述第二电容的第一端连接,所述第三三极管的发射极通过所述模拟钾通道平衡电压的电压源与所述钾通道模块的第二输入端、所述第二电容的第二端和地端连接。
5.一种信号频率检测系统,其特征在于,包括:信号输入端、第一微分电路、第二微分电路、计数器和控制模块,还包括如权利要求1至4任一项所述的神经元仿生电路;所述信号输入端用于接收被测信号;
其中,所述神经元仿生电路,分别与所述信号输入端和所述第二微分电路连接,用于根据所述被测信号向所述第二微分电路发送神经仿生脉冲;
所述第一微分电路,分别与所述信号输入端和所述计数器的时钟端连接,用于对所述被测信号进行微分,并向所述计数器发送第一脉冲信号;
所述第二微分电路,与所述计数器的复位端连接,用于对所述神经仿生脉冲进行微分,并向所述计数器发送第二脉冲信号;
所述计数器,与所述控制模块连接,用于根据所述第二脉冲信号对所述第一脉冲信号计数,得到目标信号计数序列;
所述控制模块根据所述目标信号计数序列确定所述被测信号的频率。
6.如权利要求5所述的信号频率检测系统,其特征在于,所述控制模块具体用于:
存储所述目标信号计数序列和多个标定频率计数序列;
利用二分法将所述目标信号计数序列与所述多个标定频率计数序列进行匹配,根据匹配结果确定所述被测信号的频率。
7.如权利要求5所述的信号频率检测系统,其特征在于,所述信号输入端包括:放大单元和整形单元;
所述放大单元,用于接收所述被测信号并对所述被测信号进行放大;
所述整形单元,用于将放大后的所述被测信号进行整形处理并发送给所述神经元仿生电路。
8.如权利要求5至6任一项所述的信号频率检测系统,其特征在于,所述信号频率检测系统还包括:用于对所述神经仿生脉冲进行整形的整形电路;
所述神经元仿生电路通过所述整形电路与所述第二微分电路连接。
9.如权利要求5至6任一项所述的信号频率检测系统,其特征在于,所述信号频率检测系统还包括:用于显示所述被测信号的频率的显示模块;
所述显示模块与所述控制模块连接。
CN201811631732.5A 2018-12-29 2018-12-29 神经元仿生电路和信号频率检测系统 Active CN109738698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811631732.5A CN109738698B (zh) 2018-12-29 2018-12-29 神经元仿生电路和信号频率检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811631732.5A CN109738698B (zh) 2018-12-29 2018-12-29 神经元仿生电路和信号频率检测系统

Publications (2)

Publication Number Publication Date
CN109738698A CN109738698A (zh) 2019-05-10
CN109738698B true CN109738698B (zh) 2024-04-30

Family

ID=66362112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811631732.5A Active CN109738698B (zh) 2018-12-29 2018-12-29 神经元仿生电路和信号频率检测系统

Country Status (1)

Country Link
CN (1) CN109738698B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL29933A0 (en) * 1967-05-12 1968-07-25 Hoffmann La Roche Frequency measuring apparatus
US3833903A (en) * 1973-01-02 1974-09-03 Gordon Eng Co Compensated voltage-controlled oscillator particularly for analog to digital converters
US6026321A (en) * 1997-04-02 2000-02-15 Suzuki Motor Corporation Apparatus and system for measuring electrical potential variations in human body
CN103260560A (zh) * 2010-08-31 2013-08-21 康奈尔大学 视网膜假体
CN105607041A (zh) * 2015-09-22 2016-05-25 吉林大学 基于仿生沙蝎定位功能的脉冲定位模型
CN207302125U (zh) * 2017-03-23 2018-05-01 意法半导体有限公司 集成式人工神经元装置和集成式电路
CN209590128U (zh) * 2018-12-29 2019-11-05 中国人民解放军陆军工程大学 神经元仿生电路和信号频率检测系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997495B2 (ja) * 2006-03-06 2012-08-08 国立大学法人東京工業大学 神経等価回路、シナプス等価回路及び神経細胞体等価回路
US7764126B2 (en) * 2007-06-25 2010-07-27 Sanyo Electric Co., Ltd. Clock generation circuit and clock generation control circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL29933A0 (en) * 1967-05-12 1968-07-25 Hoffmann La Roche Frequency measuring apparatus
US3833903A (en) * 1973-01-02 1974-09-03 Gordon Eng Co Compensated voltage-controlled oscillator particularly for analog to digital converters
US6026321A (en) * 1997-04-02 2000-02-15 Suzuki Motor Corporation Apparatus and system for measuring electrical potential variations in human body
CN103260560A (zh) * 2010-08-31 2013-08-21 康奈尔大学 视网膜假体
CN105607041A (zh) * 2015-09-22 2016-05-25 吉林大学 基于仿生沙蝎定位功能的脉冲定位模型
CN207302125U (zh) * 2017-03-23 2018-05-01 意法半导体有限公司 集成式人工神经元装置和集成式电路
CN209590128U (zh) * 2018-12-29 2019-11-05 中国人民解放军陆军工程大学 神经元仿生电路和信号频率检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于忆阻器的脉冲神经网络研究综述;徐桂芝;姚林静;李子康;;生物医学工程学杂志(第03期);全文 *

Also Published As

Publication number Publication date
CN109738698A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN112213554B (zh) 一种基于电流频率变换法的微弱电流测量电路及方法
CN103913749A (zh) 一种基于激光脉冲飞行时间测量的测距方法
CN109670585B (zh) 神经元仿生电路和神经形态系统
CN107728460B (zh) 一种高分辨率的时间间隔测量方法
CN104067097A (zh) 高分辨率温度测量
CN103499743B (zh) 一种高精度测量电阻电容的系统及电路
CN104048628A (zh) 超声波等效峰值精准检测厚度的方法及其装置
CN109738698B (zh) 神经元仿生电路和信号频率检测系统
CN104316950A (zh) 一种辐射剂量率低功耗探测与宽量程刻度方法及装置
CN103984004B (zh) 一种自动消除PIPSα能谱峰温度漂移的方法及装置
CN109683024B (zh) 神经元仿生电路和电容检测系统
CN109709511B (zh) 神经元仿生电路和信号时差检测系统
CN209590128U (zh) 神经元仿生电路和信号频率检测系统
CN103983401A (zh) 一种用于差压传感器的等精度测量方法
CN108957174B (zh) 一种电压暂降检测装置及方法
CN201488835U (zh) 改进结构的测温器
CN109714119B (zh) 神经形态电路和信号频移检测系统
CN209911535U (zh) 神经元仿生电路和信号时差检测系统
CN104914136B (zh) 一种差分信号交织控制的土壤含水率传感器
CN204832345U (zh) 一种数字式的相位测量仪
RU2602493C1 (ru) Высокочувствительный преобразователь емкости в частоту
CN205318240U (zh) 一种非接触电容感应式液位传感器
CN103529687B (zh) 脉冲时间间隔测量装置
CN203502749U (zh) 脉冲时间间隔测量装置
CN108037358B (zh) 单片机频率测试系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant