CN109737864A - 一种通信基站天线形变的监测系统 - Google Patents

一种通信基站天线形变的监测系统 Download PDF

Info

Publication number
CN109737864A
CN109737864A CN201910135912.2A CN201910135912A CN109737864A CN 109737864 A CN109737864 A CN 109737864A CN 201910135912 A CN201910135912 A CN 201910135912A CN 109737864 A CN109737864 A CN 109737864A
Authority
CN
China
Prior art keywords
base station
monitoring
deformation
communication base
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910135912.2A
Other languages
English (en)
Inventor
杜洪伟
郭现伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xing Yu Technology Co Ltd
Original Assignee
Guangdong Xing Yu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Xing Yu Technology Co Ltd filed Critical Guangdong Xing Yu Technology Co Ltd
Priority to CN201910135912.2A priority Critical patent/CN109737864A/zh
Publication of CN109737864A publication Critical patent/CN109737864A/zh
Withdrawn legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及通信行业形变监测领域,公开了一种通信基站天线形变的监控系统:包括监测端、云端和监控终端;监测端包括定位装置、数据采集器和第一通信单元,定位装置固定在通信基站天线面板上;云端用于接收和存储监测端数据,解算定位装置位置,计算形变数据;监控终端实现显示和控制。本发明的一些技术效果在于:降低了硬件成本,实现了太阳能供电,云端数据处理和存储,终端便捷调整监控频次和时长。

Description

一种通信基站天线形变的监测系统
技术领域
本发明通信行业形变监测领域,涉及一种通信基站天线形变的监控系统。
背景技术
卫星导航技术是目前最常用的导航定位技术,已经广泛应用于陆地、海洋、天空、太空的各类军事及民用领域。仅使用导航卫星进行实时单点定位,其定位精度在10米左右,若通过地面若干基准站对导航卫星实时观测,基于观测值对卫星的钟差、轨道,电离层延迟等信息进行修正,将修正信息封装至差分数据产品中,再通过各种途径将差分数据产品播发至用户,用户结合差分数据产品与导航卫星的原始观测值可将实时定位精度提升至米级、分米级甚至厘米级,在极大地提高用户定位精度的同时也会催生更多高精度位置服务应用。
随着移动通信网络的迅猛发展,目前三大运营商仅存量通信基站天线数就超过350万,随着时间的推移,基站天线的功能参数、天线方位角与俯仰角都会发生变化,会导致基站天线实际覆盖区域偏离规划的范围,将直接影响通信质量,尤其是沿海台风多发地带,其基站天线变化更为频繁。因此天线方位角的实时监测尤其重要,但是,由于对其工作状况缺乏有效的监控手段,基站天线系统的工作参数管理一直是维护的难点。随着4G网络规模的不断扩大,依靠传统的巡检手段进行天线管理,不仅消耗了大量的人力物力,维护成本高,而且现场采集的数据实时性和准确性较差。
现有的通信基站通常会配备有3个朝向不同方向的通信天线。通信天线数量增多了以后,如果遇到大风暴雨等极端环境时,很难了解天线面板是否发生了波动。通常情况下单个通信天线面板的信号会覆盖以面板为中心的约 120°的区域,一旦通信天线的朝向角度发生了变化就会直接影响覆盖范围内的手机信号质量,甚至会出现没有信号的情况。利用人工排查的方法需要花费较长的时间才能定位到具体的问题天线。现有人工方法费时费力。
在一个服务区域中,通信运营商为了实现该区域内的数据通信通常需要架设一组或多组通信天线,每组通信天线通常由3个通信天线组成,每个通信天线的覆盖范围约120°,利用3个通信天线就能实现一个区域内通讯信号的全覆盖。现有的监测通信天线的方法,一种是根据客户的反馈来大致确定发生故障的一组通信面板,然后在可能的范围内查找问题面板,效率较低;另一种方法是采用定位装置加惯性器件的方式,即在每个天线面板上固定放置两个定位装置和惯性器件通过计算两个定位装置的方位角和倾角来监测通信面板。此外现有的方法多采用24小时不间断方式监测,需要额外添加供电设备,安装使用较复杂。除了发生特殊紧急情况外,不需要实时对天线面板监测,只需要在指定时刻对定位装置数据进行采集并分析其动态情况就能做到对天线面板的监测。同时根据本地区的天气和地质情况合理调节每日上报数据的时间,在遇到突发情况时,通过云端控制系统对数据上报模块的上报时间做出调整,根据调整时间后采集的数据进行分析就能确定通信面板是否发生了变动。而且现有的方法多采用本地计算,然后将结果上报云端的方式,虽然在本地计算时将参与计算的原始观测数据也保存到了本地,但一旦有异常事件发生,需要对监测结果进行核实时,只能事后待取出本地数据,才能对数据做进一步验证,不能实现实时验证,对结果的验证具有一定的滞后性。同时现有的利用定位装置监测同一组通信天线的方法,多采用双天线模组的方式,利用两个定位装置独立地对每个通信天线进行监测,没有通过联合解算3个通信天线面板上的定位装置数据的方式来对整体进行监测。相对于独立监测,整体监测需要的天线数更少,同时当查到某一组通信天线发生变动后,第一时间通知工作人员,工作人员利用专业设备即可很快确定出发生变动的通信天线面板。在降低成本的同时也提高了监测工作的效率。
专利申请201610569468.1提出了一种通过两块采集终端加多个定位天线的通信天线形变监测方法,该方法提出在一个通信天线上放置两个定位天线,3个通信天线面板上共放置6个定位天线模块,但公用2个射频子板,需要时将待监测通信天线面板上的2个定位天线连接到射频板上,再采集数据计算方位角,这样做虽然降低了采集终端的数量,但耗费了较多的定位天线。
论文《基站天线工参监测方案研究》提出了一种双定位天线加射频前段加主控板加陀螺仪和加速度传感器的方法,但一次只能监测一个终端,同时利用多模块协同监测成本较高,且耗电较大,遇到供电异常时不能保证长时间连续监测。
传统的方法是直接在每个通信天线上方放置2个定位天线、2个射频子板和1个主控板。这意味着,通常的通信基站需要使用6个定位装置;同时,使用数目众多的定位天线也意味着误差积累,造成结果不精准。可见,目前的方法存在缺点:耗费更多的定位天线,积累了误差。
可见,目前的方法存在缺点:耗费更多的定位装置,积累了误差;采用 24小时不间断监测,不能按需调控监控频率和时长,耗能浪费;采用本地解算的方式,对硬件要求高,成本高;数据存储在本地,验证滞后;无警报设置。
发明内容
为解决前述的技术问题,本发明提出了一种通信基站天线形变的监控系统。
监控系统包括监测端、云端和监控终端;所述监测端包括定位装置、数据采集器和第一通信单元,定位装置固定在通信基站天线面板上;所述云端用于接收和存储监测端数据,解算定位装置位置,计算定位装置的第一形变数据;所述的监控终端包括第二通信单元和处理器。
具体地,定位装置有3个,分别安装在通信基站的3个通信基站天线上,用于接收卫星信号。
具体地,数据采集器用于采集定位装置收集到的卫星信号,并解码。
具体地,监测端还包括电源装置,所述的电源装置可采用锂电池、太阳能供能。
具体地,第一通信单元还包括自检单元,所述自检单元用于检测电源装置的电量是否达到电量阈值,第一通信单元是否正常工作;若自检单元监测电量达到电量阈值,则电源装置供电给数据采集器,监测电量达不到电量阈值,则不供电给数据采集器。
具体地,第一通信单元还包括唤醒装置,所述的唤醒装置用于唤醒第一通信单元和自检单元。
具体地,第一通信单元还包括唤醒装置,所述的唤醒装置通过监控终端设置监测端的唤醒频次和时长。
具体地,云端还计算第二形变数据,用于验证通信基站天线是否发生形变。
具体地,云端设定形变阈值,当第一形变数据高于预设形变阈值,向监控终端发起警报。
具体地,监控终端用于设置电量阈值、形变阈值、监测端的唤醒频次和时长。
具体地,监控终端还包括显示器和输入装置,显示器用于显示监测端的电量、监测端的通信工作状态、通信基站天线的形变数据、通信基站天线的 ID,输入装置可以是鼠标、键盘、触摸屏、语音识别系统。
具体地,监控终端可采用手持移动监控终端或远程桌面监控终端。
本发明的一些技术效果在于:在监测同样数量的通信基站天线的前提下,通过本发明可以减少定位装置的使用数量,极大压缩和减少了成本;同时,监测系统的定位装置减少,也能降低监测系统的误差积累;太阳能供能,节能环保;采用云端解算和数据分析,降低了硬件要求和成本;数据存储在云端,可随时调用验证;实现自动预警。
附图说明
为更好地理解本发明的技术方案,可参考下列的、用于对现有技术或实施例进行辅助说明的附图。这些附图将对现有技术或本发明部分实施例中,涉及到的产品或方法有选择地进行展示。这些附图的基本信息如下:
图1一种通信基站天线形变的监控系统的结构示意图
图2通信基站天线形变的监测示意图
其中,附图标记为:
图一
1.监测端;2.监控终端;3.云端;11.定位装置;12.数据采集装置;13. 第一通信单元;14.电源装置;15.自检单元;16.唤醒单元;21.第二通信单元;22.服务器;23.显示器;24.输入装置。
图二
A/B/C/C’为定位装置,定位装置外接长方形为通信天线。
具体实施方式
下文将对本发明涉及的技术手段或技术效果作进一步的展开描述,显然,所提供的实施例仅是本发明的部分实施方式,而并非全部。基于本发明中的实施例以及图文的明示或暗示,本领域技术人员在没有作出创造性劳动的前提下所能获得的所有其他实施例,都将在本发明保护的范围之内。
本发明实施例提供了一种通信基站天线形变的监控系统,实现了太阳能供电,云端数据处理,终端便捷调整监控频次和时长。
请参阅图1,本发明一种通信基站天线形变的监控系统的一个实施例,包括监测端、云端和监控终端;监测端包括定位装置、数据采集器和第一通信单元,定位装置安装固定在通信基站天线面板上;云端用于接收和存储监测端数据,解算定位装置位置,计算定位装置的第一形变数据和第二形变数据;监控终端包括第二通信单元和处理器。
需要说明的是,定位装置安装固定在通信基站天线面板上,故通过定位装置的形变数据即可获知通信基站天线的形变数据。其中,可通过任意一种安全固定方式,包括但不限于螺栓连接、焊接、铆接、粘贴固定,将定位装置固定在通信天线上。
进一步地,一组定位装置通常包含3个定位装置,分别安装在通信基站的3个通信基站天线上,用于接收卫星信号。
需要说明的是,在一个服务区域中,通信运营商为了实现该区域的数据通信通常需要架设一组或多组通信天线,每组通信基站天线通常由3个通信基站天线组成,每个通信基站天线的覆盖范围约120°,利用3个通信天线就能实现一个区域内通讯信号的覆盖。故此,一般地,需要安装固定的定位装置数量为3N(N为通信基站的天线组数)。同时,现有的利用定位装置监测同一组通信天线的方法,多采用双天线模组的方式,即利用2个定位装置独立地对每个通信基站天线进行监测,没有通过联合解算3个通信基站天线面板上的定位装置的数据的方式来对整体进行监测。相对于独立监测,整体监测需要的定位装置数更少。本发明中使用的整体检测过程的数据处理方式,见后续实施例公开。
进一步地,数据采集器用于采集定位装置收集到的卫星信号,并将卫星发射的电磁波信号转化为电信号。这里可采用市面购买的梦芯板卡用于数据采集器。
进一步地,监测端还包括电源装置,所述的电源装置可采用锂电池、太阳能供能。
需要说明的是,这里电源装置可采用锂电池或者太阳能供能。当采用太阳能供能时,电源装置外壳可用太阳能板制作用于收集太阳能;或太阳能板独立安装在通信基站的其它位置,并与电源装置连接。
进一步地,第一通信单元还包括自检单元,自检单元用于检测电源装置的电量是否达到电量阈值,第一通信单元是否正常工作;若自检单元监测电量达到电量阈值,则电源装置供电给数据采集器,监测电量达不到电量阈值,则不供电给数据采集器。
需要说明的是,这里的自检单元在每次监测端正常工作前,均进行一次自检即可;监测端正常工作后,自检单元关闭或休眠。设置的电量阈值可根据监测端采用的元器件材料、工作功率、工作时长、周围环境、气候状态等因素,视需调整;具体地,在监测端采用的元器件材料、工作功率一定的前提下,针对不同的工作场景,设置若干模式,每个模式对应一个电量阈值,并通过监控终端进行模式设置和选择。
进一步地,第一通信单元还包括唤醒装置,唤醒装置用于唤醒第一通信单元和自检单元。
需要说明的是,当监测端处于非工作状态时,第一通信单元处于休眠状态。唤醒装置根据监控终端设置的频次和时长,唤醒第一通信单元和自检单元进行工作。
进一步地,第一通信单元还包括唤醒装置,唤醒装置通过监控终端设置监测端的唤醒频次和时长。
进一步地,云端还计算第二形变数据,用于验证通信基站天线是否发生形变。
需要说明的是,云端通过第一形变数据检测通信基站天线是否发生形变,再设置第二形变数据进行验证。其中,形变数据类别包括三维坐标信息、位移信息、方位角信息等。第一形变数据和第二形变数据分别选择不同的形变数据类别。
进一步地,云端设定形变阈值,当第一形变数据高于预设形变阈值,向监控终端发起警报。
具体地,当第一形变数据高于预设形变阈值时,判断通信基站卫星发生形变,向监控终端发起警报。这里的形变阈值可根据定位装置的性能、通信基站的形变要求等,视需设置。
进一步地,监控终端用于设置电量阈值、形变阈值、监测端的唤醒频次和时长。
进一步地,监控终端还包括显示器,显示器用于显示监测端的电量、监测端的通信工作状态、通信基站天线的形变数据、通信基站天线的ID。监控终端还包括输入装置,具体可通过鼠标、键盘、触摸屏、声音识别等方式实现信息输入。
需要说明的是,还可以显示目前系统选定的电量阈值、形变阈值。
进一步地,监控终端可采用手持移动监控终端或远程桌面监控终端。
实施例2
本实施例中,对使用3个定位装置整体监测3个通信基站天线背后的数据处理方法和分析内容进行公开。为简明清晰陈述,这里选择第一形变数据为方位角,第二形变数据为位移。应当预见的是,对4个以上的通信基站天线进行监测,使用本发明方法也能得到实现;第一形变数据和第二形变数据也可以根据实际需求,选择不同的形变数据。
本发明中涉及模糊度解算,因此在这里先交待共用的数据处理方法。
部分一模糊度解算
以一条基线方位角的计算为例。假设解算时刻为t,两个天线的编号为 1,2,卫星编号为m,n。卫星m对应的伪距和载波相位站间单差观测方程为:
卫星n对应的单差方程和上式类似。在卫星m和卫星n之间做一次差得到站星双差方程:
公式(1)至(4)中Δ和分别表示单差和双差算子,P和分别表示伪距和载波相位观测值,δt表示接收机钟差,c和f分别为常量,表示光速和载波的频率值。表示以米为单位的对流层延迟误差和电离层延迟误差。N为载波相位观测值对应的整周模糊度。
由于3个通信天线面板的距离通常非常近,多数在2米以内,所以双差后的电离层延迟误差和对流层延迟误差通常可以忽略不计。在单点定位中利用序贯最小二乘的方法求解出定位装置1和定位装置2的近似坐标值,拿到定位装置的近似坐标后,对对定位装置和卫星之间的几何距离进行一阶泰勒级数展开。对应的泰勒级数展开值为:
上式中表示根据定位装置1和定位装置2的近似坐标计算得到的站星之间距离,X表示位置误差改正数,A表示对应的系数矩阵
在利用载波相位观测值进行解算时,对于周跳问题,本方法中直接根据数据采集模块给出的周跳标志对周跳进行判断,一旦检测到数据发生了周跳不会对周跳进行修复,而是把周跳当成是模糊度的一部分,重新计算模糊度的值。在计算时,以截止高度角10°为阈值筛选可用的卫星。假设同一时刻定位装置1和定位装置2同时观测到p个相同的卫星,那么在同一时刻就可以同时组成p-1个双差方程。而在做双差时,这里根据卫星的高度角和锁定时长综合选择参考卫星。
部分二模糊度检验
本方法中采用LAMBDA方法对整周模糊度进行搜索并采用ratio检验对搜索出的模糊度候选组合进行检验,ratio检验的阈值设置为3。
部分三计算基线向量
根据固定后的整周模糊度可以计算出基线12的向量值(Δx,Δy,Δz),它表示的是天线1和天线2之间的坐标差值。Δx,Δy,Δz对应的坐标系为WGS-84坐标系,为了计算基线的方位角还需要对基线向量值作一次坐标系转换,将它转换到本地坐标系-北东天坐标系下,假设转换后的坐标值为(n,e,u),则转换公式为:
基线12对应的方位角为:
由于α为正切值,而根据正切函数的定义,同一个正切值可能会对应两个角度值。为了避免出现多值的问题,这里需要还需要根据e、n的取值对α所在的象限进行判断。假设最终输出的方位角值为αfinal,则αfinal的最终取值对应4种情况:
①当α>0时,若e>0,则表示α位于第一象限,αfinal=α;
②当α>0时,若e<0,则表示α位于第二象限,αfinal=α+180;
③当α<0时,若e<0,则表示α位于第三象限,αfinal=α+180;
④当α<0时,若e>0,则表示α位于第四象限,αfinal=360+α。
第一形变数据监测
本文提出一种新的基站天线监测方法。和常用的一个通信天线配置一个定位模块监测通信天线的位置的方法不同,本方案采用多个定位装置同步算多个定位装置的位置的方法来监测通信天线的变化。
将每个定位装置安装固定在指定的通信天线上。由于定位装置是和通讯天线固定在一起的,所以当检测到定位装置的位置发生变化后即可认为通讯天线发生了变动。首次安装定位装置后需要在云端或本地对每个定位装置的初始位置进行长时间的计算,取多次计算结果的均值作为该定位装置的初始位置,在没有发生人为移动通信天线的情况下,这个初始位置被作为通讯天线是否移动的参考的位置。
利用初始位置坐标可以计算出每条基线的初始方位角值,这个角度值可以作为定位装置在静止状态下未发生位移时的参考值。在一个通信抱杆上,同一平面内通常配备有3个通信天线面板,且三个通信面板通常距离比较近,所以当检测到一条基线的方位角值和对应的初始方位角值差值比较大时就可以同时对这条基线所在的平面内的三个通信天线都作一次检查。但我们这里也可以根据计算的结果来确认是哪一个通信天线发生了变动。
以一个通信天线发生了位置变动的情况为例。假设在外部因素的作用下只有C点的定位装置发生了移动,移动后的位置为C’。对定位装置A、定位装置B和定位装置C’的原始观测数据进行解算就可以得到基线AB、基线 AC’和基线BC’的方位角。将当前计算得到的三条基线的工作方位角值和它们对应的初始方位角值作差,若角度差大于设定的角度误差阈值σα时,就可以确定出发生位移的基站天线C’。这里误差阈值σα的大小与天线的性能和实际工程的精度要求有关。
具体地,在基站的通信天线上通过任意一种安装固定方式,包括但不限于螺栓连接、焊接、铆接、粘贴固定,将定位装置固定在通信天线上。一般地,基站的通信天线为3个,故这里分别在3个通信天线上各安装1个定位装置。其中,定位装置在通信天线上的固定位置不做要求。应该预见的是,使用本发明,在4个以上的通信天线上,其技术效果也能得到实现。
具体地,通过定位装置接收信号数据,按照前述的数据处理方法,在本地或者云端解算模糊度并校验,以获得3个定位装置的位置坐标。
具体地,3个定位装置分别命名为定位装置A、定位装置B、定位装置 C。3个定位装置首尾闭环连接成三角形,并且生成向量AB、向量BC、向量 CA,分别对应基线AB、基线BC、基线CA。通过实施例1中的数据处理,分别获得基线AB、基线BC、基线CA的初始方位角。
具体地,通过实施例1中的数据处理,分别获得基线AB、基线BC、基线 CA的工作方位角。
具体地,状态分析通过计算方位角变化量的绝对值,并与设定的阈值做比较进行分析。
状态分析执行规则如下:如所有基线方位角变化量的绝对值均小于设定的阈值,则认为三个定位装置未发生形变;如三条基线中只有两条基线方位角变化量的绝对值大于设定的阈值,则可以确定同一组定位装置中该两条基线的公共定位装置发生了形变;如三条基线的方位角变化量的绝对值都大于设定阈值,则认为至少有两个定位装置发生形变。将分析结果在控制终端或者本地,通过警报、短信等方式进行报告。
进一步地,对于初始方位角和工作方位角的计算,设置校验环节:即根据每条基线的方位角计算出三条基线所构成的三角形各角的角度值;对计算得到的内角值求和并与180°作差,取差值为δp;若δp小于阈值,则认为各条基线方位角计算正确,停止解算;反之,则对模糊度重新解算,重新计算方位角,直至δp小于阈值为止。
第二形变数据验证
进一步地,设置验证步骤:监测方位角进行状态分析后,再通过监测基线长度变化来验证通信天线是否发生形变。
当通过计算基线方位角判断通信天线发生变动后,为了更准确地确认天线是否发生了变动,再采用比较各基线长度的变化的方法来确认天线的位移情况。与利用方位角判断通信天线面板上定位装置是否移动的方法不同的是,利用基线长度判断天线是否移动时需要借助于连续运行参考站系统 (CORS)。取定位装置A为例。根据定位装置A的大致坐标虚拟出一个靠近定位装置A的虚拟参考站(VRS),利用这个虚拟参考站的观测值和定位装置A的观测值采用相对定位的方法就可以求解得到定位装置A的精确位置。由于定位装置之间的距离通常比较短,可以被视为是超短基线,所以可通过相对定位的方法根据天线A的位置和观测数值准确确定剩余两个定位装置的位置。以定位装置A为基准站,计算基线AB,基线AC的基线长度值。然后再根据B点的概略位置参照同样的方法,计算出B点的精确坐标位置,然后利用相对定位的方法计算基线BC的长度值。这样就完成了一组定位装置各基线长度值的确定。
例如,定义当前历元基线AC的长度值为LAC(t),初始安装时基线长度值为LAC(t0)。定义基线长度变化值ΔL为:
ΔL=|LAC(t)-LAC(t)|
上式中| |表示取绝对值。当ΔL超过阈值时,则认为基线发生变动。
一般地,现实中,当通过方位角变化量检测到仅某一个定位装置发生形变,此时相应地,通过基线长度可以监测到以该定位装置为公共定位装置的两条基线的变动情况。当存在两个或三个定位装置发生形变,此时三条基线均会发生变动。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

1.一种通信基站天线形变的监控系统,其特征在于,包括监测端、云端和监控终端;所述监测端包括定位装置、数据采集器和第一通信单元,定位装置固定在通信基站天线面板上;所述云端用于接收和存储监测端数据,解算定位装置位置,计算定位装置的第一形变数据;所述的监控终端包括第二通信单元和处理器。
2.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的定位装置有3个,分别安装在通信基站的3个通信基站天线上,用于接收卫星信号。
3.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的数据采集器用于采集定位装置收集到的卫星信号,并解码。
4.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的监测端还包括电源装置,所述的电源装置可采用锂电池、太阳能供能。
5.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的第一通信单元还包括自检单元,所述自检单元用于检测电源装置的电量是否达到电量阈值,第一通信单元是否正常工作;若自检单元监测电量达到电量阈值,则电源装置供电给数据采集器,监测电量达不到电量阈值,则不供电给数据采集器。
6.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的第一通信单元还包括唤醒装置,所述的唤醒装置用于唤醒第一通信单元和自检单元。
7.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的第一通信单元还包括唤醒装置,所述的唤醒装置通过监控终端设置监测端的唤醒频次和时长。
8.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的云端还计算第二形变数据,用于验证通信基站天线是否发生形变。
9.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的云端设定形变阈值,当第一形变数据高于预设形变阈值,向监控终端发起警报。
10.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述监控终端用于设置电量阈值、形变阈值、监测端的唤醒频次和时长。
11.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的监控终端还包括显示器和输入装置,显示器用于显示监测端的电量、监测端的通信工作状态、通信基站天线的形变数据、通信基站天线的ID,输入装置可以是鼠标、键盘、触摸屏、语音识别系统。
12.如权利要求1所述的一种通信基站天线形变的监控系统,其特征在于,所述的监控终端可采用手持移动监控终端或远程桌面监控终端。
CN201910135912.2A 2019-02-18 2019-02-18 一种通信基站天线形变的监测系统 Withdrawn CN109737864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910135912.2A CN109737864A (zh) 2019-02-18 2019-02-18 一种通信基站天线形变的监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910135912.2A CN109737864A (zh) 2019-02-18 2019-02-18 一种通信基站天线形变的监测系统

Publications (1)

Publication Number Publication Date
CN109737864A true CN109737864A (zh) 2019-05-10

Family

ID=66368106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910135912.2A Withdrawn CN109737864A (zh) 2019-02-18 2019-02-18 一种通信基站天线形变的监测系统

Country Status (1)

Country Link
CN (1) CN109737864A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109168A (zh) * 2019-05-23 2019-08-09 广东星舆科技有限公司 一种基站天线位姿变化的监测方法及监测系统
CN110285784A (zh) * 2019-07-10 2019-09-27 广东星舆科技有限公司 一种铁塔形变的监测方法及监测系统
CN110879403A (zh) * 2019-10-29 2020-03-13 中海北斗(深圳)导航技术有限公司 一种简单可行的星基增强系统监测方法及系统
CN111089535A (zh) * 2020-01-09 2020-05-01 上海交通大学 一种射电望远镜天线反射面变形检测方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170321A (zh) * 2011-04-20 2011-08-31 李英祥 一种基站天线参数监测仪及自动监测方法
CN102238589A (zh) * 2011-07-04 2011-11-09 珠海世纪鼎利通信科技股份有限公司 一种无线网络通信基站天线性能监测装置
CN202066499U (zh) * 2011-05-09 2011-12-07 厦门特力通信息技术有限公司 一种远程实时监测基站天线方位角装置
CN102468536A (zh) * 2010-11-17 2012-05-23 中国移动通信集团江苏有限公司 基站天线角度调整方法及系统
CN102509886A (zh) * 2011-11-03 2012-06-20 长沙威佳通信科技有限公司 基站天线状态自动监控系统
CN202734810U (zh) * 2012-06-28 2013-02-13 潍坊新控机电科技有限公司 一种基站天线方位监测装置
CN103402217A (zh) * 2013-07-29 2013-11-20 长沙威佳通信科技有限公司 基站天线参数处理系统
CN205506058U (zh) * 2015-10-20 2016-08-24 陈伟林 一种基站天线姿态的远程自动监测分析预警系统
CN106289154A (zh) * 2016-07-19 2017-01-04 中国科学院重庆绿色智能技术研究院 一种通信基站天线方位角监测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468536A (zh) * 2010-11-17 2012-05-23 中国移动通信集团江苏有限公司 基站天线角度调整方法及系统
CN102170321A (zh) * 2011-04-20 2011-08-31 李英祥 一种基站天线参数监测仪及自动监测方法
CN202066499U (zh) * 2011-05-09 2011-12-07 厦门特力通信息技术有限公司 一种远程实时监测基站天线方位角装置
CN102238589A (zh) * 2011-07-04 2011-11-09 珠海世纪鼎利通信科技股份有限公司 一种无线网络通信基站天线性能监测装置
CN102509886A (zh) * 2011-11-03 2012-06-20 长沙威佳通信科技有限公司 基站天线状态自动监控系统
CN202734810U (zh) * 2012-06-28 2013-02-13 潍坊新控机电科技有限公司 一种基站天线方位监测装置
CN103402217A (zh) * 2013-07-29 2013-11-20 长沙威佳通信科技有限公司 基站天线参数处理系统
CN205506058U (zh) * 2015-10-20 2016-08-24 陈伟林 一种基站天线姿态的远程自动监测分析预警系统
CN106289154A (zh) * 2016-07-19 2017-01-04 中国科学院重庆绿色智能技术研究院 一种通信基站天线方位角监测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109168A (zh) * 2019-05-23 2019-08-09 广东星舆科技有限公司 一种基站天线位姿变化的监测方法及监测系统
CN110285784A (zh) * 2019-07-10 2019-09-27 广东星舆科技有限公司 一种铁塔形变的监测方法及监测系统
CN110879403A (zh) * 2019-10-29 2020-03-13 中海北斗(深圳)导航技术有限公司 一种简单可行的星基增强系统监测方法及系统
CN111089535A (zh) * 2020-01-09 2020-05-01 上海交通大学 一种射电望远镜天线反射面变形检测方法及系统
CN111089535B (zh) * 2020-01-09 2021-05-28 上海交通大学 一种射电望远镜天线反射面变形检测方法及系统

Similar Documents

Publication Publication Date Title
CN109737864A (zh) 一种通信基站天线形变的监测系统
CN102722178B (zh) 用于无人机巡检带电导线的电场测量避障系统及方法
CN102722184B (zh) 单脉冲天线角度模拟跟踪方法
CN107703480B (zh) 基于机器学习的混合核函数室内定位方法
CN101201870A (zh) 空中交通飞行态势动态仿真的方法
CN202632112U (zh) 一种用于无人机巡检带电导线的电场差分避障系统
CN101833099A (zh) 直升机巡检电力线路的锁定跟踪方法
CN110501667B (zh) 一种超短波定向仪的测试系统及地面试验方法
CN104994526A (zh) 一种测算移动通信基站天线方位角的方法
CN109814405A (zh) 一种测控布站方案综合量化评估方法
CN110146860A (zh) 一种远程雷达标校卫星系统及其标校方法
CN112556632A (zh) 一种利用协同精密定位监测地质体形变的方法及结构
CN106767698B (zh) 基于北斗ⅱ姿态测量的输电线路杆塔倾斜度监测系统及监测方法
CN113311460B (zh) 一种基于北斗的预警方法及其系统
CN114993263A (zh) 一种基于水准点定位的高精度建筑物无人机测绘系统
CN114513805A (zh) 无线建模方法和系统
CN110146050A (zh) 一种通信基站天线监测方法
CN105813103B (zh) 基站俯仰角的测量方法和装置
CN114397009A (zh) 一种基于北斗差分定位的输电导线舞动监测系统及方法
CN212843542U (zh) 一种基站天线姿态监测设备
CN208171236U (zh) 一种配电网杆塔形变的监测系统
CN106134454B (zh) 电波环境综合监测预警装置
Liu et al. Power Monitoring System Based on 4G Network Wireless Transmission
CN107615687B (zh) 一种天线姿态的检测方法和装置
CN103731917A (zh) 消除多天线方向偏差的wlan定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190510

WW01 Invention patent application withdrawn after publication