CN109731392A - 一种超声式过滤系统及方法 - Google Patents

一种超声式过滤系统及方法 Download PDF

Info

Publication number
CN109731392A
CN109731392A CN201910204744.8A CN201910204744A CN109731392A CN 109731392 A CN109731392 A CN 109731392A CN 201910204744 A CN201910204744 A CN 201910204744A CN 109731392 A CN109731392 A CN 109731392A
Authority
CN
China
Prior art keywords
water
shell
filter
pipe
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910204744.8A
Other languages
English (en)
Other versions
CN109731392B (zh
Inventor
范功端
洪亮
罗静
欧阳恒
肖剑仁
包旻晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Architectural Design Research Institute Co Ltd
Fuzhou University
Fujian University of Technology
Original Assignee
Fujian Architectural Design Research Institute Co Ltd
Fuzhou University
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Architectural Design Research Institute Co Ltd, Fuzhou University, Fujian University of Technology filed Critical Fujian Architectural Design Research Institute Co Ltd
Priority to CN201910204744.8A priority Critical patent/CN109731392B/zh
Publication of CN109731392A publication Critical patent/CN109731392A/zh
Application granted granted Critical
Publication of CN109731392B publication Critical patent/CN109731392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Filtration Of Liquid (AREA)

Abstract

本发明涉及一种超声式过滤系统及方法,该系统包括过滤装置和控制系统,过滤装置包括壳体6,壳体6上设有进水管9、出水管12和排泥管7,进水管9为变径结构,以让进水产生旋流,壳体6内设有与出水管12连接的过滤器5,进水管9、出水管12和排泥管7上分别设有进水电磁阀10、出水电磁阀1和排泥电磁阀8,进水电磁阀10、出水电磁阀1和排泥电磁阀8分别与控制系统的控制信号输出端连接,壳体6外侧壁上设有用于发生超声波的超声波换能器4,超声波换能器4经功率放大器3和信号发生器2与控制系统连接。该系统及方法不仅能够减少杂质聚集、淤积,而且可以有效去除淤积杂质,处理效率高,节能环保,运行成本低。

Description

一种超声式过滤系统及方法
技术领域
本发明涉及水处理技术领域,具体涉及一种超声式过滤系统及方法。
背景技术
水体污染已然成为当今世界最为关注的环境问题之一。随着水污染问题日益严重,我国污水处理行业得到了飞快发展。预处理作为水处理工艺的重要环节,原水预处理优劣程度会对后续工艺的处理效果及出水水质造成直接或间接影响,因此,针对我国水资源分布不均衡、水资源短缺、水污染严重复杂等水质特性,研发一种节能环保、处理效率高的处理装置用于水处理预处理阶段迫在眉睫。
过滤技术是一种被广泛应用于预处理阶段的处理技术,传统普通网式过滤器因其过滤效果好、阻力小等特点被广泛地应用于水源过滤、工业循环水系统、污水处理以及水源热泵系统等领域。但是,因其纳污量小,易受污染物堵塞、清洗工作复杂(必须通过拆卸才可以实现对过滤部分的清洗)、自动化程度低以及受人为因素影响大等缺点难以被广泛地应用于水处理领域。
全自动化清洗过滤器的成功研发,显著地弥补传统普通网式过滤器的缺陷,因具有自动化程度高、处理量大、水重复利用率高、可自行清洗排污并不间断供水以及应用面广等优势,拥有良好的市场环境。但是,全自动化清洗过滤器尚不成熟的设计方案及设计结构,往往会致使过滤器内部杂质大量聚集、淤积,即使在反冲洗阶段也难以实现杂质的有效去除,往往无法保证过滤器持续稳定运行,致使过滤器过滤寿命及效率严重低下。
发明内容
本发明的目的在于提供一种超声式过滤系统及方法,该系统及方法不仅能够减少杂质聚集、淤积,而且可以有效去除淤积杂质,处理效率高,节能环保,运行成本低。
为实现上述目的,本发明的技术方案是:一种超声式过滤系统,包括过滤装置和控制系统,所述过滤装置包括壳体(6),所述壳体(6)上设有进水管(9)、出水管(12)和排泥管(7),所述进水管(9)为变径结构,以让进水产生旋流,所述壳体(6)内设有与所述出水管(12)连接的过滤器(5),所述进水管(9)、出水管(12)和排泥管(7)上分别设有进水电磁阀(10)、出水电磁阀(1)和排泥电磁阀(8),所述进水电磁阀(10)、出水电磁阀(1)和排泥电磁阀(8)分别与所述控制系统的控制信号输出端连接,所述壳体(6)外侧壁上设有用于发生超声波的超声波换能器(4),所述超声波换能器(4)经功率放大器(3)和信号发生器(2)与所述控制系统连接。
进一步地,所述进水管(9)和出水管(12)上分别设有进水压强检测器(11)和出水压强检测器(13),以检测进、出水管之间的压差,所述进水压强检测器(11)和出水压强检测器(13)分别与所述控制系统的检测信号输入端连接。
进一步地,所述控制系统上设有反冲洗周期设定器,以设定反冲洗周期。
进一步地,所述进水管(9)设于所述壳体(6)的侧部,所述进水管(9)为渐缩式结构,且与水平面成呈5~15°倾角,以产生旋流初步分离原水与大粒径杂质;所述出水管(12)设于所述壳体(6)的顶部,所述过滤器(5)设于所述壳体(6)中部,以与所述出水管(12)连接。
进一步地,所述过滤器(5)为叠片过滤器,以在弹簧力和压盖内外产生的压紧力作用下形成紧密过滤元件,去除水中小粒径杂质。
进一步地,所述壳体(6)外侧壁上设有多个所述超声波换能器(4),所述超声波换能器(4)沿所述壳体(6)外周壁均布,且沿所述壳体(6)竖向轴线方向阵列设置。
本发明还提供一种超声式过滤方法,包括过滤过程和反冲洗过程,所述过滤过程按如下步骤进行:
A1、原水管接入过滤装置的进水管(9)后,启动控制系统;
A2、控制系统控制进水电磁阀(10)和出水电磁阀(1)开启,排泥电磁阀(8)关闭,原水以旋流形式从进水管(9)进入壳体(6),初步分离原水与大粒径杂质;
A3、壳体(6)中的水在压力推动下,经过过滤器(5)过滤水中小粒径杂质,从出水管(1)中流出,在此过程中,控制系统调控信号发生器(2)、功率放大器(3)和超声波换能器(4)产生设定功率的低功率超声波,减少过滤过程中杂质在壳体(6)中聚集淤积;
所述反冲洗过程按如下步骤进行:
B1、控制系统控制进水电磁阀(10)关闭,出水电磁阀(1)和排泥电磁阀(8)开启,反冲水从出水管(1)进入壳体(6),冲洗过滤器(5)上的杂质;
B2、控制系统调控信号发生器(2)、功率放大器(3)和超声波换能器(4)产生设定功率的高功率超声波,以在反冲洗过程中去除壳体(6)中的淤积杂质。
进一步地,当进水压强检测器(11)和出水压强检测器(13)检测到进、出水管之间的压差超过设定阈值,或者达到反冲洗周期设定器设定的反冲洗周期时,控制系统控制过滤装置从过滤过程切换到反冲洗过程。
进一步地,所述过滤过程产生的超声波的功率为50~150W。
进一步地,所述反冲洗过程产生的超声波的功率为200~400W。
相较于现有技术,本发明的有益效果是:提供了一种能够有效避免杂质在过滤装置内部聚集、淤积的超声式过滤系统及方法,在过滤阶段,采用旋流进水方式,利用离心力及密度差实现原水中大粒径杂质的初步分离,缓解过滤系统的压力,并利用低功率超声波减少杂质聚集、淤积量,在反冲洗阶段,利用高功率超声波和水流的协同作用,致使淤积在过滤器内壁及叠片上的杂质分散、脱落,在反冲洗过程中实现过滤器内部淤积杂质的高效去除,弥补了传统过滤装置清洗不便、自动化程度低等缺点,在有效提升过滤效率、水重复利用率的基础上实现了自动化清洗排污,具有很强的实用性和广阔的应用前景。
附图说明
图1是本发明实施例中过滤装置的结构剖视图。
图2是本发明实施例中过滤装置的结构俯视图。
图3是本发明实施例中过滤方法的工作原理图。
图中,1、出水电磁阀;2、信号发生器;3、功率放大器;4、超声波换能器;5、叠片过滤器;6、壳体;7、排泥管;8、排泥电磁阀;9、进水管;10、进水电磁阀;11、进水压强检测器;12、出水管;13、出水压强检测器。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
本发明提供一种超声式过滤系统及方法,该过滤系统及其相应的过滤方法具有旋流沉砂功能、截留过滤功能、过滤与反冲洗自动切换功能以及反冲洗功能。首先,原水以旋流形式进入过滤装置,利用离心力及密度差实现原水中大粒径悬浮杂质的初步分离,实现旋流沉砂功能;再利用弹簧力和压盖内外产生的压紧力调节叠片状态,去除水中小粒径杂质,实现截留过滤功能;然后,通过控制系统、进出水压强检测器、反冲洗周期设定器和电磁阀的设置,实现过滤与反冲洗模式自动切换功能;同时,通过在过滤装置外部安装超声波换能器,控制系统根据过滤装置不同工作状态的实际需求,自动调节产生不同功率超声波,实现过滤模式下装置内部杂质淤积量减少以及反冲洗模式下装置内部淤积杂质有效去除的双重目的。
本发明的超声式过滤系统,包括过滤装置和控制系统。图1和图2是本发明实施例中过滤装置的结构剖视图和俯视图。如图1、2所示,过滤装置包括壳体(6),壳体(6)上设有进水管(9)、出水管(12)和排泥管(7),进水管(9)设于壳体(6)的侧部,出水管(12)设于壳体(6)的顶部,排泥管(7)设于壳体(6)的底部。壳体(6)中部设有与出水管(12)连接的过滤器(5),进水管(9)、出水管(12)和排泥管(7)上分别设有进水电磁阀(10)、出水电磁阀(1)和排泥电磁阀(8),进水电磁阀(10)、出水电磁阀(1)和排泥电磁阀(8)分别与控制系统的控制信号输出端连接。进水管(9)和出水管(12)上分别设有进水压强检测器(11)和出水压强检测器(13),以检测进、出水管之间的压差,进水压强检测器(11)和出水压强检测器(13)分别与控制系统的检测信号输入端连接。壳体(6)外侧壁上设有多个用于发生超声波的超声波换能器(4),超声波换能器(4)经功率放大器(3)和信号发生器(2)与控制系统连接。在本实施例中,超声波换能器(4)沿壳体(6)外周壁均布,且沿壳体(6)竖向轴线方向阵列设置。控制系统上设有反冲洗周期设定器,以设定反冲洗周期。
进水阶段,为实现原水以旋流形式沿装置内壁下流,达到“旋流除砂”的目的,进水管(9)采用渐缩式结构,且与水平面成呈5~15°倾角,以让进水产生旋流,初步分离原水与大粒径杂质。
过滤阶段,进水电磁阀(10)和出水电磁阀(1)开启,排泥电磁阀(8)闭合。经“旋流除砂”初步处理后的原水在压力作用下通过过滤器(5),进一步截留去除小粒径杂质后从出水管(12)出水。本实施例中,过滤器(5)为叠片过滤器,在弹簧力和压盖内外产生的压紧力作用下形成紧密过滤元件,去除水中小粒径杂质。同时,可以利用叠片松紧状态的调节来调节过滤效果。整个过滤过程,信号发生器(2)、功率放大器(3)和超声波换能器(4)协同工作,产生50~150 W的低功率超声波,以减少过滤过程中杂质的聚集、淤积。
当进水压强检测器(11)和出水压强检测器(13)检测到进、出水管之间的压差超过设定阈值,或者达到设定的反冲洗周期时,控制系统控制过滤装置自动从过滤模式切换到反冲洗模式。
反冲洗阶段,进水电磁阀(10)闭合,出水电磁阀(1)及排泥电磁阀(8)开启。处理后的原水以3~5倍进水流量从出水管(12)进入过滤装置内部,对叠片及装置内壁进行冲洗后由排泥管(7)排出。整个反冲洗过程,信号发生器(2)、功率放大器(3)和超声波换能器(4)协同工作,产生200~400 W的高功率超声波,以实现过滤装置内部淤积杂质的分离、脱落,提高反冲洗效率。
本发明还提供了上述超声式过滤系统对应的过滤方法。原水管接入过滤装置的进水管(9)后,启动控制系统,过滤系统开始工作。图3是过滤方法的工作原理图。如图3所示,本发明的超声式过滤方法包括过滤过程和反冲洗过程,过滤过程按如下步骤进行:
A1、控制系统控制进水电磁阀(10)和出水电磁阀(1)开启,排泥电磁阀(8)关闭,原水以旋流形式从进水管(9)进入壳体(6),利用离心力及密度差实现原水中大粒径悬浮杂质初步分离。
A2、壳体(6)中的水在压力推动下,经过过滤器(5)过滤水中小粒径杂质,从出水管(1)中流出,在此过程中,控制系统调控信号发生器(2)、功率放大器(3)和超声波换能器(4)产生频率为20~40kHz、功率为50~150 W的低功率超声波,减少过滤过程中杂质在壳体(6)中聚集淤积;
当设置的压差和实践参数二者满足其一,在本实施例中,即为进水压强检测器(11)和出水压强检测器(13)检测到进、出水管之间的压差超过0.1MPa,或者达到反冲洗周期设定器设定的反冲洗周期(12h),控制系统控制过滤装置自动从过滤过程切换到反冲洗过程。
反冲洗过程按如下步骤进行:
B1、控制系统控制进水电磁阀(10)关闭,出水电磁阀(1)和排泥电磁阀(8)开启,反冲水从出水管(1)进入壳体(6),冲洗过滤器(5)上的杂质。反冲洗模式下,反冲洗水设定流量为平常进水流量的3~5倍。
B2、控制系统调控信号发生器(2)、功率放大器(3)和超声波换能器(4)产生频率为20~40kHz、功率为200~400 W的高功率超声波,以在反冲洗过程中去除壳体(6)中的淤积杂质。
经优化实验,在本发明的较佳实施例中,进水管设计为渐缩式,且出口直径设计为入口直径的1/2,能够实现原水射流进入装置,以旋流形式沿装置内部流动,达到“旋流沉砂”目的;过滤阶段,采用频率为35 kHz、功率为100 W的超声波能够显著降低杂质淤积量;反冲洗阶段,采用频率为35 kHz、功率为300 W的超声波能够有效分解、脱落淤积杂质,以实现反冲洗阶段淤积杂质的去除。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (10)

1.一种超声式过滤系统,其特征在于,包括过滤装置和控制系统,所述过滤装置包括壳体(6),所述壳体(6)上设有进水管(9)、出水管(12)和排泥管(7),所述进水管(9)为变径结构,以让进水产生旋流,所述壳体(6)内设有与所述出水管(12)连接的过滤器(5),所述进水管(9)、出水管(12)和排泥管(7)上分别设有进水电磁阀(10)、出水电磁阀(1)和排泥电磁阀(8),所述进水电磁阀(10)、出水电磁阀(1)和排泥电磁阀(8)分别与所述控制系统的控制信号输出端连接,所述壳体(6)外侧壁上设有用于发生超声波的超声波换能器(4),所述超声波换能器(4)经功率放大器(3)和信号发生器(2)与所述控制系统连接。
2.根据权利要求1所述的一种超声式过滤系统,其特征在于,所述进水管(9)和出水管(12)上分别设有进水压强检测器(11)和出水压强检测器(13),以检测进、出水管之间的压差,所述进水压强检测器(11)和出水压强检测器(13)分别与所述控制系统的检测信号输入端连接。
3.根据权利要求1所述的一种超声式过滤系统,其特征在于,所述控制系统上设有反冲洗周期设定器,以设定反冲洗周期。
4.根据权利要求1所述的一种超声式过滤系统,其特征在于,所述进水管(9)设于所述壳体(6)的侧部,所述进水管(9)为渐缩式结构,且与水平面成呈5~15°倾角,以产生旋流初步分离原水与大粒径杂质;所述出水管(12)设于所述壳体(6)的顶部,所述过滤器(5)设于所述壳体(6)中部,以与所述出水管(12)连接。
5.根据权利要求1所述的一种超声式过滤系统,其特征在于,所述过滤器(5)为叠片过滤器,以在弹簧力和压盖内外产生的压紧力作用下形成紧密过滤元件,去除水中小粒径杂质。
6.根据权利要求1所述的一种超声式过滤系统,其特征在于,所述壳体(6)外侧壁上设有多个所述超声波换能器(4),所述超声波换能器(4)沿所述壳体(6)外周壁均布,且沿所述壳体(6)竖向轴线方向阵列设置。
7.一种超声式过滤方法,其特征在于,包括过滤过程和反冲洗过程,所述过滤过程按如下步骤进行:
A1、原水管接入过滤装置的进水管(9)后,启动控制系统;
A2、控制系统控制进水电磁阀(10)和出水电磁阀(1)开启,排泥电磁阀(8)关闭,原水以旋流形式从进水管(9)进入壳体(6),初步分离原水与大粒径杂质;
A3、壳体(6)中的水在压力推动下,经过过滤器(5)过滤水中小粒径杂质,从出水管(1)中流出,在此过程中,控制系统调控信号发生器(2)、功率放大器(3)和超声波换能器(4)产生设定功率的低功率超声波,减少过滤过程中杂质在壳体(6)中聚集淤积;
所述反冲洗过程按如下步骤进行:
B1、控制系统控制进水电磁阀(10)关闭,出水电磁阀(1)和排泥电磁阀(8)开启,反冲水从出水管(1)进入壳体(6),冲洗过滤器(5)上的杂质;
B2、控制系统调控信号发生器(2)、功率放大器(3)和超声波换能器(4)产生设定功率的高功率超声波,以在反冲洗过程中去除壳体(6)中的淤积杂质。
8.根据权利要求7所述的一种超声式过滤方法,其特征在于,当进水压强检测器(11)和出水压强检测器(13)检测到进、出水管之间的压差超过设定阈值,或者达到反冲洗周期设定器设定的反冲洗周期时,控制系统控制过滤装置从过滤过程切换到反冲洗过程。
9.根据权利要求7所述的一种超声式过滤方法,其特征在于,所述过滤过程产生的超声波的功率为50~150W。
10.根据权利要求7所述的一种超声式过滤方法,其特征在于,所述反冲洗过程产生的超声波的功率为200~400W。
CN201910204744.8A 2019-03-18 2019-03-18 一种超声式过滤系统及方法 Active CN109731392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910204744.8A CN109731392B (zh) 2019-03-18 2019-03-18 一种超声式过滤系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910204744.8A CN109731392B (zh) 2019-03-18 2019-03-18 一种超声式过滤系统及方法

Publications (2)

Publication Number Publication Date
CN109731392A true CN109731392A (zh) 2019-05-10
CN109731392B CN109731392B (zh) 2024-02-06

Family

ID=66370800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910204744.8A Active CN109731392B (zh) 2019-03-18 2019-03-18 一种超声式过滤系统及方法

Country Status (1)

Country Link
CN (1) CN109731392B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743218A (zh) * 2019-10-16 2020-02-04 河北中创惠浓科技发展有限公司 一种农田智能灌溉控制系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108619A (zh) * 1993-09-22 1995-09-20 藤本重信 水处理方法和水处理装置
CN101402006A (zh) * 2008-11-04 2009-04-08 张海波 超声波过滤器
CN202682899U (zh) * 2012-04-16 2013-01-23 天津市凯源天诚过滤设备有限公司 多功能自动清洗再生过滤系统
CN103463866A (zh) * 2013-09-13 2013-12-25 长沙理工大学 一种自动反冲洗碟片式离心过滤系统
CN107459219A (zh) * 2017-08-24 2017-12-12 天津市水利科学研究院 一种旋流强化过滤的净化结构及其净化方法
CN209997305U (zh) * 2019-03-18 2020-01-31 福州大学 一种超声式过滤装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108619A (zh) * 1993-09-22 1995-09-20 藤本重信 水处理方法和水处理装置
CN101402006A (zh) * 2008-11-04 2009-04-08 张海波 超声波过滤器
CN202682899U (zh) * 2012-04-16 2013-01-23 天津市凯源天诚过滤设备有限公司 多功能自动清洗再生过滤系统
CN103463866A (zh) * 2013-09-13 2013-12-25 长沙理工大学 一种自动反冲洗碟片式离心过滤系统
CN107459219A (zh) * 2017-08-24 2017-12-12 天津市水利科学研究院 一种旋流强化过滤的净化结构及其净化方法
CN209997305U (zh) * 2019-03-18 2020-01-31 福州大学 一种超声式过滤装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743218A (zh) * 2019-10-16 2020-02-04 河北中创惠浓科技发展有限公司 一种农田智能灌溉控制系统及其控制方法
CN110743218B (zh) * 2019-10-16 2022-01-18 河北中创惠浓科技发展有限公司 一种农田智能灌溉控制系统及其控制方法

Also Published As

Publication number Publication date
CN109731392B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN203736964U (zh) 一种免拆洗旋分除砂反洗双联过滤系统
CN202936280U (zh) 一种新型船舶压载水处理装置
CN109731392A (zh) 一种超声式过滤系统及方法
CN102698502A (zh) 一种反冲洗过滤介质的高效节能方法
CN203724855U (zh) 一种具有集污功能的过滤机
CN207297935U (zh) 一种具有过滤装置的闸阀
CN203999002U (zh) 一种辐流式多介质污水处理装置
CN209997305U (zh) 一种超声式过滤装置
CN104667627A (zh) 一种过滤器的过滤机构和不堵塞高精度污水过滤器
CN215949443U (zh) 一种除砂系统
CN108607248A (zh) 一种家庭污水处理装置
CN204281447U (zh) 江水源热泵取水水质处理系统
CN204607719U (zh) 一种陶瓷砖抛光废水处理系统
CN210108814U (zh) 一种分级式水样预处理装置
CN109772005A (zh) 一种旋流式自动刮泥过滤系统及方法
CN209865460U (zh) 一种旋流式自动刮泥过滤装置
CN208667316U (zh) 一种污水处理设备
CN208454686U (zh) 一种处理周期短的市政污水处理装置
CN220223715U (zh) 一种超声波净水装置
CN208980459U (zh) 一种工业污水循环利用装置
CN209423110U (zh) 一种负压高速过滤器
CN106861270A (zh) 双层过滤高效反冲洗排污过滤器及过滤方法
CN110496440A (zh) 一种带超声波清洗结构的电站给水系统反冲洗装置及方法
CN213912494U (zh) 连续流砂过滤系统
CN104402137A (zh) 上流式混凝布滤装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant