CN109725062A - 具有可变顶角的双超声探针 - Google Patents

具有可变顶角的双超声探针 Download PDF

Info

Publication number
CN109725062A
CN109725062A CN201811216274.9A CN201811216274A CN109725062A CN 109725062 A CN109725062 A CN 109725062A CN 201811216274 A CN201811216274 A CN 201811216274A CN 109725062 A CN109725062 A CN 109725062A
Authority
CN
China
Prior art keywords
wedge
double
energy converter
shaped component
right hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811216274.9A
Other languages
English (en)
Other versions
CN109725062B (zh
Inventor
J·威尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Science And Technology U S Co
Original Assignee
Olympus Science And Technology U S Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Science And Technology U S Co filed Critical Olympus Science And Technology U S Co
Publication of CN109725062A publication Critical patent/CN109725062A/zh
Application granted granted Critical
Publication of CN109725062B publication Critical patent/CN109725062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers

Abstract

具有可变顶角的双超声探针。双探针组件包括能够在不同检测应用所需的期望的顶角范围内自由旋转的双换能器。通过将双探针组件附接到具有限定换能器的顶角的上接触表面的楔形组件来限定用于特定应用的顶角。

Description

具有可变顶角的双超声探针
技术领域
本发明涉及超声无损测试与检测(NDT/NDI),并且更具体地涉及用于一发一收式检测(pitch-catch inspection)的具有可变顶角的集成双探针。
背景技术
在图1(现有技术)中示出了一发一收式检测的原理。两个探针102a和102b均以顶角φ倾斜,并分别利用楔形件106a和106b耦合到测试对象36。探针102a和102b被构造成使得探针102a为发射探针,其发射超声波束30,并且探针102b是接收探针,其接收来自测试对象36的测试表面37下方深度D处的缺陷34的超声回波束32。探针102a和102b可以是相控阵探针,在该情况下,可以存在多个发射和接收的超声波束,并且可以使波束聚焦以在深度D处的缺陷34的位置处或附近具有最大的灵敏度。
应注意,尽管图1示出了平面的测试表面37,但是相同的原理适用于为管道或其它圆形或不规则表面的测试对象36。为了检测具有圆形或不规则的测试表面37的测试对象36,楔形件106a和106b的底表面将被定制成符合测试表面37。
如图1所示,探针102a和102b以及楔形件106a和106b为单独的组件。这种配置具有占地面积大的缺点:存在两个单独的探针壳体和多根电缆。通常,单独组件的尺寸不能充分地减小以允许小直径管的一发一收式检测。
另一方面,在本领域中已知在具有固定顶角的单个壳体中包括探针102a和102b两者的集成双探针组件。这种集成探针组件的优点在于,可以利用单根电缆将双探针紧凑地封装在单个壳体中。然而,现有技术中的集成探针组件的主要缺点是它们是昂贵的,并且由于顶角是固定的,因此必须为各个期望的顶角制造不同的集成探针组件。
因此,本领域需要一种集成探针组件,其中顶角在期望的顶角的整个范围内是可变的。
发明内容
因此,本公开的一般目的是提供一种具有两个探针的集成探针组件,其被构造成使得顶角在有用的顶角的整个范围内是完全可调节的。
通过在由定位销支撑的框架内容纳两个压电复合换能器使得框架和换能器可以在期望的顶角范围内自由地旋转来实现该目的。通过将探针组件安装于楔形组件的上接触表面来限定特定检测应用所需的顶角,其中上接触表面限定所需的顶角。
附图说明
图1是示出现有技术的缺陷检测的一发一收模式的示意性图示。
图2是根据本公开的双探针组件的等距视图。
图3是根据本公开的双探针组件的立面截面图。
图4A是根据本公开的双探针组件的截面图,其中探针配置成0°顶角。
图4B是根据本公开的双探针组件的截面图,其中探针配置成10°顶角。
图5A是根据本公开的双探针和楔形组件的截面图,其中探针配置成0°顶角。
图5B是根据本公开的双探针和楔形组件的截面图,其中探针配置成10°顶角。
具体实施方式
图2是双探针和楔形组件1的等距视图,双探针和楔形组件1包括利用螺钉10a和10b(在图2中未示出,参见图5A和图5B)附接到楔形组件6的双探针组件2。楔形组件6包括左侧楔形件6a和右侧楔形件6b,左侧楔形件6a和右侧楔形件6b由防止左侧楔形件6a和右侧楔形件6b之间的声串扰的隔音屏障7隔开。双探针组件2包括容纳在探针壳体12内的左侧压电复合换能器16a和右侧压电复合换能器16b(参见图5A和图5B)。用于与换能器16a和16b的元件电接触的电缆优选被容纳在电缆护套5和电缆轴衬4内。耦合剂入口/出口歧管8a和8b(未示出)提供优选为水的液体耦合剂,以促进双探针和楔形组件1与测试表面37之间的声耦合。
图3是探针组件2的左侧的侧截面图,并且示出了本公开的重要的新颖方面。左侧背衬层14a和左侧压电复合换能器16a容纳在左侧框架18a内。左侧换能器16a具有左侧换能器接触表面21a。左侧框架18a由左后侧定位销20a和左前侧定位销22a可枢转地支撑。定位销20a和22a优选地分别通过左后侧保持夹24a和左前侧保持夹26a保持就位。应注意的是,本公开的一个重要的新颖方面是形状呈大致圆柱形的定位销20a和22a允许框架18a围绕与定位销20a和22a的轴线同轴的轴线自由旋转。
图3中未示出的是探针组件2的右侧的等同特征。右侧背衬层14b和右侧压电复合换能器16b容纳在右侧框架18b内。右侧换能器16b具有右侧换能器接触表面21b。右侧框架18b由右后侧定位销20b和右前侧定位销22b可枢转地支撑。定位销20b和22b优选地分别由右后侧保持夹24b和右前侧保持夹26b保持就位。定位销20b和22b的形状大致呈圆柱形,并且允许框架18b围绕与定位销20b和22b的轴线同轴的轴线自由旋转。
图4A和图4B是双探针组件2在图3所示的A-A方向上的截面图。双探针组件2具有对称中央面28。在图4A中,框架18a和18b示出为旋转到0°的顶角φ。顶角φ是相对于垂直面29测量的,其中垂直面29是垂直于对称中央面28的面。在图4B中,框架18a和18b被示出为旋转到10°的顶角φ。注意,大多数一发一收式检测应用需要0°到10°之间的顶角。还需注意,将用于螺钉10a和10b的通孔包括在框架18a和18b中,使得螺钉10a和10b旋转到与框架18a和18b相同的角度。然而,探针组件2可以被构造成使得螺钉10a和10b不旋转,并且所有这样的构造都在本公开的范围内。
如在图4A和图4B中能够看出的,定位销22a和20a(未示出)允许框架18a自由地旋转,并且定位销22b和20b(未示出)允许框架18b自由地旋转。
图5A和图5B是双探针和楔形组件1在图3所示B-B方向上的截面图。图5A和5B示出了如何通过双探针组件2和楔形组件6之间的接触来设定顶角。在图5A中,楔形组件6包括楔形件6a和6b,楔形件6a和6b具有限定了0°的顶角的上楔形接触表面17a和17b。在图5B中,楔形组件6'包括楔形件6a'和6b',楔形件6a'和6b'具有限定了10°的顶角的上楔形接触表面17a'和17b'。注意,上楔形接触表面17a和17b相对于垂直面29具有0°的倾斜,上楔形接触表面17a'相对于垂直面29具有+10°的倾斜,并且上楔形接触表面17b'相对于垂直面29具有-10°的倾斜。
楔形件6a和6b分别具有下楔形表面19a和19b,并且楔形件6a'和6b'分别具有下楔形表面19a'和19b'。下楔形表面被构造成与测试对象36的测试表面37一致。下楔形表面19a'和19b'可以与下楔形表面19a和19b相同,在这种情况下,相同双探针组件的不同顶角可以被用于检测相同测试对象的不同深度。可选地,下楔形表面19a'和19b'可以与下楔形表面19a和19b不同,在这种情况下,相同双探针组件的不同顶角可以被用于不同的测试对象,例如不同直径的管。
参照图4A、图4B、图5A和图5B,本公开的一个重要方面是框架18a和18b能够围绕它们各自的定位销自由旋转,使得在没有楔形组件6的情况下,双探针组件2不具有限定的顶角。双探针组件2能够以诸如在0°和10°之间的设计允许的任何顶角操作,并且仅在探针组件2附接到楔形组件6时限定特定的顶角,此时顶角由上楔形接触表面17a和17b的倾斜限定。换能器16a的枢转角度由左侧换能器接触表面21a和上楔形接触表面17a之间的接触限定,换能器16b的枢转角度由右侧换能器接触表面21b和上楔形接触表面17b之间的接触限定。为各种情况被动地精准设定顶角φ。
应注意的是,本公开的一个重要的新颖方面是使用圆柱形定位销将换能器16a和16b可枢转地附接到探针壳体12,从而允许旋转自由度,而不是像现有技术中的那样将换能器固定到壳体上。能够有许多方法来实现枢转的接头以实现这种新颖的旋转自由度概念,这些概念都被本教导的范围所教导和涵盖。例如,定位销可以单独使用或成对使用,并且可以使用其它形式的枢转接头附接来实现旋转自由度。
与现有技术相比,本公开的双探针组件2允许增加的灵活性和降低的成本。双探针组件2比楔形组件6更昂贵且更难以制造。因此,本公开的具有可变顶角的双探针组件允许用户通过制造被构造用于不同深度和不同形状的测试对象的楔形组件来定制将单个双探针组件用于多个检测操作。
尽管已经结合本发明的特定实施方式说明了本发明,但能够理解,能够基于本公开的教导想到各种设计,并且所有这些都在本公开的范围内。

Claims (13)

1.一种双探针组件,其包括:
探针壳体;
左侧换能器,其通过至少一个左侧可枢转接合构件可枢转地附接到所述探针壳体;
右侧换能器,其通过至少一个右侧可枢转接合构件可枢转地附接到所述探针壳体,并且,
其中,所述左侧换能器能够围绕左侧旋转轴线自由旋转,所述右侧换能器能够围绕右侧旋转轴线自由旋转。
2.根据权利要求1所述的双探针组件,其特征在于,所述左侧换能器是声换能器,所述右侧换能器是声换能器。
3.根据权利要求1所述的双探针组件,其特征在于,所述至少一个左侧可枢转接合构件是一对左侧圆柱销,所述至少一个右侧可枢转接合构件是一对右侧圆柱销。
4.根据权利要求1所述的双探针组件,其特征在于,所述双探针组件还包括支撑所述左侧换能器的左侧框架和支撑所述右侧换能器的右侧框架。
5.根据权利要求1所述的双探针组件,其特征在于,所述双探针组件还包括电缆,所述电缆被构造成与所述左侧换能器的元件和所述右侧换能器的元件电连接。
6.根据权利要求5所述的双探针组件,其特征在于,所述探针壳体还包括用于所述电缆穿过的电缆孔。
7.一种双探针和楔形组件,其包括附接到楔形组件的双探针组件,其中,
所述双探针和楔形组件具有对称中央面,并且,
所述双探针组件包括:
探针壳体;
左侧换能器,其通过至少一个左侧可枢转接合构件可枢转地附接到所述探针壳体,所述左侧换能器具有左侧换能器接触表面;以及,
右侧换能器,其通过至少一个右侧可枢转接合构件可枢转地附接到所述探针壳体,所述右侧换能器具有右侧换能器接触表面;并且,
其中,所述左侧换能器能够围绕左侧旋转轴线自由旋转,所述右侧换能器能够围绕右侧旋转轴线自由旋转,并且,
所述楔形组件包括:
左侧楔形件,其具有相对于垂直面以左顶角倾斜的左侧楔形接触表面,其中,所述垂直面垂直于所述对称中央面;以及,
右侧楔形件,其具有相对于所述垂直面以右顶角倾斜的右侧楔形接触表面,并且,
其中,所述左侧换能器接触表面与以所述左顶角倾斜的所述左侧楔形接触表面接触,所述右侧换能器接触表面与以所述右顶角倾斜的所述右侧楔形接触表面接触。
8.根据权利要求7所述的双探针和楔形组件,其特征在于,所述左侧换能器是声换能器,所述右侧换能器是声换能器。
9.根据权利要求7所述的双探针和楔形组件,其特征在于,所述至少一个左侧可枢转接合构件是一对左侧圆柱销,所述至少一个右侧可枢转接合构件是一对右侧圆柱销。
10.根据权利要求1所述的双探针和楔形组件,其特征在于,所述双探针和楔形组件还包括支撑所述左侧换能器的左侧框架和支撑所述右侧换能器的右侧框架。
11.根据权利要求7所述的双探针和楔形组件,其特征在于,所述双探针和楔形组件还包括电缆,所述电缆被构造成与所述左侧换能器的元件和所述右侧换能器的元件电连接。
12.根据权利要求11所述的双探针和楔形组件,其特征在于,所述壳体还包括用于所述电缆穿过的电缆孔。
13.根据权利要求7所述的双探针和楔形组件,其特征在于,所述左侧旋转轴线和所述右侧旋转轴线两者均平行于所述对称中央面。
CN201811216274.9A 2017-10-27 2018-10-18 具有可变顶角的双超声探针 Active CN109725062B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/795,869 US11035829B2 (en) 2017-10-27 2017-10-27 Dual ultrasonic probe with variable roof angle
US15/795,869 2017-10-27

Publications (2)

Publication Number Publication Date
CN109725062A true CN109725062A (zh) 2019-05-07
CN109725062B CN109725062B (zh) 2022-07-08

Family

ID=63794396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811216274.9A Active CN109725062B (zh) 2017-10-27 2018-10-18 具有可变顶角的双超声探针

Country Status (3)

Country Link
US (1) US11035829B2 (zh)
EP (1) EP3477296B1 (zh)
CN (1) CN109725062B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035829B2 (en) 2017-10-27 2021-06-15 Olympus America Inc. Dual ultrasonic probe with variable roof angle
JP7023406B1 (ja) * 2021-09-02 2022-02-21 三菱重工パワー検査株式会社 超音波探触子及び超音波探傷方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524895A1 (de) * 2021-03-24 2022-10-15 Ac2T Res Gmbh Vorrichtung zur Bestimmung chemisch-physikalischer Eigenschaften in einem tribologischen System
EP3559654B1 (en) 2016-12-23 2021-10-27 Gecko Robotics, Inc. Inspection robot
US11549918B2 (en) * 2017-10-27 2023-01-10 Olympus America Inc. Ultrasonic scanner with interchangeable wedge and flexible probe
GB201803062D0 (en) * 2018-02-26 2018-04-11 Gb Inspection Systems Ltd Ultrasonic probe
EP3934861A4 (en) 2019-03-08 2022-12-07 Gecko Robotics, Inc. INSPECTION ROBOT
CA3173116A1 (en) 2021-04-20 2022-10-20 Edward A. Bryner Flexible inspection robot
CA3173120A1 (en) * 2021-04-22 2022-10-22 Chase David Systems, methods, and apparatus for ultra-sonic inspection of a surface

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181421A (en) * 1988-01-22 1993-01-26 Board Of Regents Of The University Of Oklahoma Automatic monitoring of composite prepregs
US6247367B1 (en) * 1998-04-16 2001-06-19 California Institute Of Technology Multiplexed ultrasonic system
US6578424B1 (en) * 2000-09-27 2003-06-17 Digital Wave Corporation Hand-held variable angle membrane (VAM) ultrasonic scanning head for the noninvasive detection of corrosion, MIC and foreign objects in pipes
US20060042391A1 (en) * 2003-12-12 2006-03-02 The Boeing Company Remote radius inspection tool for composite joints
CN2874492Y (zh) * 2006-03-29 2007-02-28 宝山钢铁股份有限公司 用于轧辊内应力检测的超声波探头固定装置
US20080148856A1 (en) * 2006-12-22 2008-06-26 The Boeing Company Ultrasonic probe for hollow fuse pin inspection
CN201653984U (zh) * 2009-02-16 2010-11-24 江村 自动连续变角超声波探头
CN202256267U (zh) * 2011-09-30 2012-05-30 武汉钢铁(集团)公司 可调式超声波检测探头盒
CN103201622A (zh) * 2010-10-28 2013-07-10 西门子公司 用于超声波检测头的与检测头位置相关的自动入声角调节
WO2014148659A1 (ko) * 2013-03-21 2014-09-25 알피니언메디칼시스템 주식회사 초음파 트랜스듀서
CN104114104A (zh) * 2011-12-08 2014-10-22 华盛顿大学商业中心 超声探针
KR101480787B1 (ko) * 2013-07-24 2015-01-13 성균관대학교산학협력단 각도 조절 기능을 구비하는 탐상장치
CN106404897A (zh) * 2015-07-31 2017-02-15 奥林巴斯科技美国公司 用于在线杆状管检测的提供恒定提离的探头组件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119102A (en) * 1960-09-06 1964-01-21 Ibm Supporting means for transducer assemblies
GB1482077A (en) * 1973-09-07 1977-08-03 Videoson Ltd Probes for ultrasonic waves
US4165649A (en) * 1975-02-13 1979-08-28 Southwest Research Institute Apparatus and method for ultrasonic inspection of highly attenuative materials
US4454767A (en) * 1980-03-25 1984-06-19 Fuji Electric Co., Ltd. Ultrasonic metering device
US5421200A (en) * 1993-08-26 1995-06-06 General Electric Company Ultrasonic fixture assembly for holding multiple ultrasonic transducers
US6142008A (en) * 1998-06-12 2000-11-07 Abbott Laboratories Air bubble sensor
CA2449477A1 (en) * 2003-11-14 2005-05-14 Eric Lavoie Development of the metar family of feeder inspection tools
EP2568263B1 (de) * 2011-09-12 2018-01-31 Hydrosonic b.v. Portables Ultraschallduchflussmesssystem
US11035829B2 (en) 2017-10-27 2021-06-15 Olympus America Inc. Dual ultrasonic probe with variable roof angle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181421A (en) * 1988-01-22 1993-01-26 Board Of Regents Of The University Of Oklahoma Automatic monitoring of composite prepregs
US6247367B1 (en) * 1998-04-16 2001-06-19 California Institute Of Technology Multiplexed ultrasonic system
US6578424B1 (en) * 2000-09-27 2003-06-17 Digital Wave Corporation Hand-held variable angle membrane (VAM) ultrasonic scanning head for the noninvasive detection of corrosion, MIC and foreign objects in pipes
US20060042391A1 (en) * 2003-12-12 2006-03-02 The Boeing Company Remote radius inspection tool for composite joints
CN2874492Y (zh) * 2006-03-29 2007-02-28 宝山钢铁股份有限公司 用于轧辊内应力检测的超声波探头固定装置
US20080148856A1 (en) * 2006-12-22 2008-06-26 The Boeing Company Ultrasonic probe for hollow fuse pin inspection
CN201653984U (zh) * 2009-02-16 2010-11-24 江村 自动连续变角超声波探头
CN103201622A (zh) * 2010-10-28 2013-07-10 西门子公司 用于超声波检测头的与检测头位置相关的自动入声角调节
CN202256267U (zh) * 2011-09-30 2012-05-30 武汉钢铁(集团)公司 可调式超声波检测探头盒
CN104114104A (zh) * 2011-12-08 2014-10-22 华盛顿大学商业中心 超声探针
WO2014148659A1 (ko) * 2013-03-21 2014-09-25 알피니언메디칼시스템 주식회사 초음파 트랜스듀서
KR101480787B1 (ko) * 2013-07-24 2015-01-13 성균관대학교산학협력단 각도 조절 기능을 구비하는 탐상장치
CN106404897A (zh) * 2015-07-31 2017-02-15 奥林巴斯科技美国公司 用于在线杆状管检测的提供恒定提离的探头组件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035829B2 (en) 2017-10-27 2021-06-15 Olympus America Inc. Dual ultrasonic probe with variable roof angle
JP7023406B1 (ja) * 2021-09-02 2022-02-21 三菱重工パワー検査株式会社 超音波探触子及び超音波探傷方法

Also Published As

Publication number Publication date
CN109725062B (zh) 2022-07-08
US20190128851A1 (en) 2019-05-02
US11035829B2 (en) 2021-06-15
EP3477296B1 (en) 2022-02-16
EP3477296A1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
CN109725062A (zh) 具有可变顶角的双超声探针
EP2060930B1 (en) Ultrasound diagnostic device having transducers facing each other
JP2013188480A (ja) 超音波診断装置用プローブ
CN106073778B (zh) 一种基于柔性探测器的微波热声乳腺成像检测装置和方法
Jin et al. Profile reconstruction and quantitative detection of planar defects with composite-mode total focusing method (CTFM)
Chen et al. Ultrasonic inspection of curved structures with a hemispherical-omnidirectional ultrasonic probe via linear scan SAFT imaging
US9291488B2 (en) Measurement device based on acoustic flow measurement methods in a pump system and method for producing a measurement device
US9869660B2 (en) Systems and methods for viewing data generated by rotational scanning in non-destructive testing
Rodrigues et al. Development of a 2-d array ultrasonic transducer for 3-d imaging of objects immersed in water
Hahamovich et al. Ultrasound detection using acoustic apertures
Mosland et al. Finite element-based diffraction correction for piezoelectric transducers accounting for diffraction at transmission, propagation, and reception
CN107655980A (zh) 页岩原位裂纹分布检测系统
Rich et al. Accuracy of a bistatic scattering substitution technique for calibration of focused receivers
US20100043558A1 (en) Tuned Resonant Apparatus for Non-Destructive Testing or Flaw Analysis
US20240085381A1 (en) Compact, portable phased array scanning housing
Alvarez-Arenas et al. Air-coupled and water immersion sectorized array transducers for industrial and medical endoscopy
Cladé et al. P3q-2 development and evaluation of a 20mhz array for ultrasonic detection of middle ear effusion
Lenz et al. Transducer characterization by sound field measurements
KR101032239B1 (ko) 초음파 트랜스듀서 및 초음파 프로브
Camacho et al. Miniaturized sector array with additive-manufactured mirror for low diameter pipe inspection
Johansen et al. Ultrasonic Well Integrity Logging Using Phased Array Technology
Zeqiri et al. Large-area pyroelectric-based differential detector for medical Ultrasound Computed Tomography
Stromer Evaluation of Soft Material Microstructure through High-frequency Ultrasound
Voelz et al. Capacitive Micromachined Ultrasonic Transducers for Applications in Nondestructive Testing
RU159204U1 (ru) Ультразвуковой блок внутритрубного дефектоскопа для выявления произвольно ориентированных дефектов

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant