CN109725049B - 一种力磁场信号采集方法及基于其的在线应力检测方法 - Google Patents

一种力磁场信号采集方法及基于其的在线应力检测方法 Download PDF

Info

Publication number
CN109725049B
CN109725049B CN201811631045.3A CN201811631045A CN109725049B CN 109725049 B CN109725049 B CN 109725049B CN 201811631045 A CN201811631045 A CN 201811631045A CN 109725049 B CN109725049 B CN 109725049B
Authority
CN
China
Prior art keywords
magnetic field
field signal
component
stress
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811631045.3A
Other languages
English (en)
Other versions
CN109725049A (zh
Inventor
李红梅
张富臣
石成相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichang Huateng Pipeline Engineering Co ltd
Original Assignee
Yichang Huateng Pipeline Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yichang Huateng Pipeline Engineering Co ltd filed Critical Yichang Huateng Pipeline Engineering Co ltd
Priority to CN201811631045.3A priority Critical patent/CN109725049B/zh
Publication of CN109725049A publication Critical patent/CN109725049A/zh
Priority to US16/727,755 priority patent/US11519796B2/en
Priority to EP19275154.3A priority patent/EP3674735A1/en
Application granted granted Critical
Publication of CN109725049B publication Critical patent/CN109725049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1223Measuring permeability, i.e. permeameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开了一种力磁场信号采集方法及基于其的在线应力检测方法,用以解决现有技术中因力‑磁效应响应磁场信号影响因素过多而导致采用响应磁场信号对在线应力的定量表征能力准确度较低的技术问题。包括以下步骤:a1、以预定频率和强度的交流磁场对待测构件进行交流磁化,并采集一个周期内的激发磁场信号;a2、将待测构件一个周期内的激发磁场信号减去与待测构件同种材料试件在无应力状态下的激发磁场信号,得到待测构件的力磁场信号;a3、根据事先标定的待测构件所属材质的应力~力磁场信号的定量关联关系,并根据步骤a2中获得的待测构件的力磁场信号,定量评定出待测构件所受应力。与现有技术相比,本发明提高了在线应力测量的准确度和适用范围。

Description

一种力磁场信号采集方法及基于其的在线应力检测方法
技术领域
本发明涉及金属材料的无损检测技术领域,尤其涉及一种金属材料的力磁场信号采集方法及基于其的在线应力检测方法。
背景技术
应力是造成机械结构损伤和破坏的关键因素,构件正在承受的应力(即在线应力)的定量检测及评定不仅对确保结构安全至关重要,还对预估结构寿命、降低结构生产、维护成本发挥重要作用。上个世纪,人们发现应力可以导致铁磁材料磁特性的变化,这种现象被广泛成为力-磁效应。力-磁效应为定量评定应力提供了极具潜力的挖掘空间,催生了一系列的应力磁评定技术。例如磁记忆检测、漏磁场检测、涡流检测及巴克豪森检测等技术,以上技术均通过采集力-磁效应响应磁场信号,并从中寻求能够表征应力的定量检测与评定参数。但由于力-磁效应的响应磁场信号影响因素众多,且只能适应于铁磁材料,因此以上基于力-磁效应响应磁场信号的技术对在线应力的定量表征能力的准确度及适应范围均较低。
发明内容
为解决现有技术中因力-磁效应响应磁场信号影响因素过多而导致采用响应磁场信号对在线应力的定量表征能力准确度较低的技术问题,本发明提供一种力磁场信号采集方法及基于其的在线应力检测方法。
为解决上述技术问题,首先,本发明提供一种力磁场信号采集方法,包括以下步骤:
a1、以预定频率和强度的交流磁场对待测样品进行交流磁化,并采集一个周期内的激发磁场信号;
a2、采用步骤a1中的交流磁场对与待测样品同材质的样品在无应力状态下进行交流磁化;并提取其一个周期内的激发磁场信号;
a3、将待测样品一个周期内的激发磁场信号减去与待测构件同材质的样品在无应力状态下的激发磁场信号,获得待测样品的力磁场信号。
其次,本发明提供一种基于力磁信号采集方法的在线应力检测方法,包括以下步骤:
b1、以预定频率和强度的交流磁场对待测构件进行交流磁化,并采集其力磁场信号;
b2、根据事先标定的待测构件所属材质的应力~力磁场信号的定量关联关系,并根据步骤b1中获得的待测构件的力磁场信号,定量评定出待测构件所受应力。
较佳地,步骤b2中,事先标定的应力~力磁场信号的定量关联关系,由以下步骤确定:
b11、采用与待测构件同材质的材料,制作测试试样;
b12、对测试试样进行不同应力的加载,同时采用与步骤a1相同参数的交流磁场对测试试样进行交流磁化,并采集测试试样在不同应力状态下相对应的力磁场信号;
b13、将测试试样在不同应力状态下的应力值与其相对应的力磁场信号进行匹配,标定出测试试样所属材质的应力~力磁场信号定量关联关系。
在力-磁效应中,金属构件应力的变化会对激发磁场信号产生影响,本发明基于力-磁效应,从激发磁场信号中,提取出力磁场信号,即将测试样品一个周期内的激发磁场信号减去测试试样无应力时的激发磁场信号,用于金属构件在线应力的无损检测与定量评定,包括铁磁构件及铝材等非铁磁构件。
本发明有益效果包括:
与现有技术中基于力-磁效应中的响应磁场信号对在线应力进行定量表征的技术相比,本发明通过采集测试试样不同应力状态下力-磁效应中的激发磁场信号,进而获测试试样不同应力状态下的力磁场信号,标定出测试试样所属材质的应力~力磁场信号定量关联关系,将此定量关系应用于与测试试样同材质构件的在线应力无损定量评定,由于激发磁场信号的影响因素较少,因此本发明的方法提高了准确度及适用范围。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明具体实施例中力磁场与激发磁场的关联关系;
图2为本发明具体实施例中应力~力磁场信号平均值的定量关联关系。
具体实施方式
下面结合附图,用具体实施例对本发明进行详细描述。
本发明具体实施例提供基于力磁场信号采集方法的在线应力检测方法,包括以下两个阶段:
阶段1:关系模型建立及参数测定阶段:包括以下步骤:
b11、采用与待测构件同材质的材料,本具体实施例采用硅钢材质,制作测试试样;
b12、参阅图1所示,对测试试样分别加载20MPa、40MPa、60MPa、80MPa、100MPa、120MPa、140MPa、160MPa、180MPa及200MPa的弹性应力,同时采用频率为300Hz,预定强度的交流磁场对测试试样在上述不同应力状态下进行交流磁化,并采集相对应的力磁场信号;力磁场信号,通过采集测试试样在上述不同应力状态下一个周期内的激发磁场信号H(V);并采集测试试样在无应力状态下一个周期内的激发磁场信号;将测试试样在不同应力状态下一个周期内的激发磁场信号减去测试试样无应力时的激发磁场信号,得到测试试样在不同应力状态下的力磁场信号Hσ(V),进而获得测试试样在不同应力状态下的力磁场-激发磁场关联关系;
b13、参阅图2所示,对测试试样在同一应力状态下的力磁场信号Hσ(V)取平均值Hσ *(V),将测试试样在不同应力状态下的应力值σ与相对应的力磁场信号平均值Hσ *(V)进行匹配,标定出测试试样所属材质的应力-力磁场信号平均值定量关联关系,本具体实施例中为硅钢。
阶段2:待测构件在线应力评定阶段,包括以下步骤:
b1、以与评定阶段相同频率和强度的交流磁场对待测构件进行交流磁化,并采集一个周期内的激发磁场信号;
b2、将待测构件一个周期内的激发磁场信号减去与待测构件同种材质试件在无应力状态下的激发磁场信号,得到待测构件的力磁场信号;
b3、根据阶段1中标定的待测构件所属材质的应力-力磁场信号平均值定量关联关系,并根据步骤a2中获得的待测构件的力磁场信号,定量评定出待测构件所受应力。
综上所述,与现有技术中基于力-磁效应中的响应磁场信号对在线应力进行定量表征的技术相比,本发明实施例通过采集测试试样不同应力状态下力-磁效应中的激发磁场信号,进而获测试试样不同应力状态下的力磁场信号,标定出测试试样所属材质的应力~力磁场信号定量关联关系,将此定量关系应用于与测试试样同材质构件的在线应力无损定量评定,由于激发磁场信号的影响因素较少,因此本发明实施例提高了准确度及适用范围。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (2)

1.一种力磁场信号采集方法,其特征在于,包括以下步骤:
a1、以预定频率和强度的交流磁场对待测样品进行交流磁化,并采集一个周期内的激发磁场信号H(V);
a2、采用步骤a1中的交流磁场对与待测样品同材质的样品在无应力状态下进行交流磁化;并提取其一个周期内的激发磁场信号;
a3、将待测样品一个周期内的激发磁场信号H(V)减去与待测构件同材质的样品在无应力状态下的激发磁场信号,获得待测样品的力磁场信号
Figure DEST_PATH_IMAGE001
2.一种基于如权利要求1所述的力磁场信号采集方法的在线应力检测方法,其特征在于,包括以下步骤:
阶段1:关系模型建立及参数测定阶段:包括以下步骤:
b11、采用与待测构件同材质的材料,制作测试试样;
b12、对测试试样分别加载不同应力σ,同时采用预定频率和强度的交流磁场,对测试试样在上述不同应力σ状态下进行交流磁化,并采集测试试样在不同应力σ状态下相对应的力磁场信号
Figure 538922DEST_PATH_IMAGE001
b13、对测试试样在同一应力状态下的力磁场信号
Figure 618873DEST_PATH_IMAGE001
取平均值
Figure 706915DEST_PATH_IMAGE002
,将测试试样在不同应力状态下的应力值
Figure DEST_PATH_IMAGE003
与相对应的力磁场信号平均值
Figure 505107DEST_PATH_IMAGE002
进行匹配,标定出测试试样所属材质的应力-力磁场信号平均值定量关联关系;
阶段2:待测构件在线应力评定阶段,包括以下步骤:
b21、以与阶段1中相同频率和强度的交流磁场对待测构件进行交流磁化,并采集一个周期内的激发磁场信号;
b22、将待测构件一个周期内的激发磁场信号减去与待测构件同种材质试件在无应力状态下的激发磁场信号,得到待测构件的力磁场信号;
b23、根据阶段1中标定的待测构件所属材质的应力~力磁场信号平均值的定量关联关系,并根据步骤b22中获得的待测构件的力磁场信号,定量评定出待测构件所受应力。
CN201811631045.3A 2018-12-29 2018-12-29 一种力磁场信号采集方法及基于其的在线应力检测方法 Active CN109725049B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811631045.3A CN109725049B (zh) 2018-12-29 2018-12-29 一种力磁场信号采集方法及基于其的在线应力检测方法
US16/727,755 US11519796B2 (en) 2018-12-29 2019-12-26 Stress-induced magnetic field signal acquisition method and stress measurement method based thereon
EP19275154.3A EP3674735A1 (en) 2018-12-29 2019-12-27 Stress-induced magnetic field signal acquisition method and stress measurement method based thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811631045.3A CN109725049B (zh) 2018-12-29 2018-12-29 一种力磁场信号采集方法及基于其的在线应力检测方法

Publications (2)

Publication Number Publication Date
CN109725049A CN109725049A (zh) 2019-05-07
CN109725049B true CN109725049B (zh) 2022-12-13

Family

ID=66296662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811631045.3A Active CN109725049B (zh) 2018-12-29 2018-12-29 一种力磁场信号采集方法及基于其的在线应力检测方法

Country Status (3)

Country Link
US (1) US11519796B2 (zh)
EP (1) EP3674735A1 (zh)
CN (1) CN109725049B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307031B (zh) * 2020-03-16 2020-11-10 西南石油大学 一种埋地管道安全状态监测与预警方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931730A (en) * 1986-02-17 1990-06-05 Dam Patent A/S Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
US6239593B1 (en) * 1998-09-21 2001-05-29 Southwest Research Institute Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
CN103994843A (zh) * 2014-05-30 2014-08-20 西安交通大学 一种航空铝合金构件残余应力检测和评估系统及方法
CN109060206A (zh) * 2018-07-16 2018-12-21 北京科技大学 一种铁磁性材料应力测量装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287873B1 (de) * 1987-04-16 1993-09-29 Siemens Aktiengesellschaft Messverfahren zur Messung und genauen Lokalisierung von Zugeigenspannungen in gehärteten Bereichen von Bauteilen
JP3639908B2 (ja) * 2002-10-09 2005-04-20 国立大学法人岩手大学 強磁性構造材の経年劣化の非破壊測定方法
US8001849B2 (en) * 2009-03-28 2011-08-23 Wensheng Weng Self-compensating magnetoelastic torque sensor system
FR2955659B1 (fr) * 2010-01-22 2012-06-22 Inst Polytechnique Grenoble Procede de detection de la contrainte mecanique subie par une piece en un materiau ferromagnetique
RU2489691C1 (ru) * 2011-12-08 2013-08-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ определения компонентов тензора механических напряжений в изделиях из ферромагнитных материалов
CH706135A2 (de) * 2012-02-23 2013-08-30 Polycontact Ag Verfahren und Messanordnung zur Messung von mechanischen Spannungen in ferromagnetischen Werkstücken.
CN103499404B (zh) * 2013-10-10 2016-01-20 南昌航空大学 铁磁构件交变应力测量装置及其测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931730A (en) * 1986-02-17 1990-06-05 Dam Patent A/S Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
US6239593B1 (en) * 1998-09-21 2001-05-29 Southwest Research Institute Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
CN103994843A (zh) * 2014-05-30 2014-08-20 西安交通大学 一种航空铝合金构件残余应力检测和评估系统及方法
CN109060206A (zh) * 2018-07-16 2018-12-21 北京科技大学 一种铁磁性材料应力测量装置和方法

Also Published As

Publication number Publication date
US11519796B2 (en) 2022-12-06
CN109725049A (zh) 2019-05-07
US20200209076A1 (en) 2020-07-02
EP3674735A1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
TWI530679B (zh) 表面特性檢查裝置及表面特性檢查方法
WO2017010215A1 (ja) 欠陥測定方法、欠陥測定装置、および検査プローブ
CN109444257B (zh) 一种基于频域提离交叉点的脉冲涡流检测装置及方法
CN103954684B (zh) 一种利用漏磁变化率进行无损检测的方法
Espina-Hernandez et al. Rapid estimation of artificial near-side crack dimensions in aluminium using a GMR-based eddy current sensor
CN110108788A (zh) 基于脉冲涡流的管道漏磁内检测集成探头及检测方法
CN109725049B (zh) 一种力磁场信号采集方法及基于其的在线应力检测方法
Tamhane et al. Feature engineering of time-domain signals based on principal component analysis for rebar corrosion assessment using pulse eddy current
CN104297280A (zh) 利用核磁共振技术定量评价岩心洗油效果的方法
CN104833720A (zh) 单一线圈电磁谐振检测金属管道损伤的方法
CN108982657A (zh) 一种基于脉冲涡流的铁磁性材料屈服强度参数估计方法
Zakaria et al. Simulation of magnetic flux leakage (MFL) analysis using FEMM software
CN105116049A (zh) 涡电流检测方法
JP2009036682A (ja) 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法
CN108828058A (zh) 一种基于脉冲漏磁检测区分钢板上、下表面缺陷的方法
CN103293506A (zh) 一种无需检测前试块标定的电导率测量仪器的实现方法
Goda et al. Characterizing of corrosion backside of steel plates using extremely low-frequency eddy current testing with multiple-frequency magnetic-field exposure
Postolache et al. Uniform eddy current probe based on GMR sensor array and image processing for NDT
CN114720552A (zh) 一种识别钢丝绳缺陷的电磁检测方法
Yu et al. Investigation on conductivity invariance in eddy current NDT and its application on magnetic permeability measurement
DE112005000314T5 (de) Zerstörungsfreies Verfahren zum Nachweis von Kriechschäden
JP7541684B2 (ja) 導電性部材の板厚評価システムと方法
CN115219584B (zh) 一种铁磁性材料的金属磁记忆监测与评价方法
CN103968974B (zh) 一种带涂层铁磁性金属工件非破坏应力定量检测方法
JP4192230B2 (ja) 鋳鉄の非破壊評価方法及び装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191202

Address after: 443005 no.57-6, development avenue, high tech Zone, Yichang City, Hubei Province

Applicant after: YICHANG HUATENG PIPELINE ENGINEERING Co.,Ltd.

Address before: 750021 No. 204, Wenchang North Street, Xixia District, the Ningxia Hui Autonomous Region, Yinchuan

Applicant before: BEIFANG MINZU University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant