CN109722394B - A strain of arsenic-oxidizing Pseudomonas and its application - Google Patents
A strain of arsenic-oxidizing Pseudomonas and its application Download PDFInfo
- Publication number
- CN109722394B CN109722394B CN201910073194.0A CN201910073194A CN109722394B CN 109722394 B CN109722394 B CN 109722394B CN 201910073194 A CN201910073194 A CN 201910073194A CN 109722394 B CN109722394 B CN 109722394B
- Authority
- CN
- China
- Prior art keywords
- pseudomonas
- nitrate
- strain
- oxidizing
- arsenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000589516 Pseudomonas Species 0.000 title claims abstract description 18
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 50
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 50
- 241001391996 Pseudomonas arsenicoxydans Species 0.000 claims abstract description 35
- 239000003673 groundwater Substances 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 238000009629 microbiological culture Methods 0.000 claims description 2
- 238000004321 preservation Methods 0.000 abstract description 6
- 229910052785 arsenic Inorganic materials 0.000 abstract description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract description 5
- 244000005700 microbiome Species 0.000 abstract description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract 1
- 235000003784 poor nutrition Nutrition 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 12
- 241000894006 Bacteria Species 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 7
- 239000002609 medium Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 108020004465 16S ribosomal RNA Proteins 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 229910019931 (NH4)2Fe(SO4)2 Inorganic materials 0.000 description 2
- 241000605222 Acidithiobacillus ferrooxidans Species 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 238000003794 Gram staining Methods 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- AQLMHYSWFMLWBS-UHFFFAOYSA-N arsenite(1-) Chemical compound O[As](O)[O-] AQLMHYSWFMLWBS-UHFFFAOYSA-N 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- 241000588625 Acinetobacter sp. Species 0.000 description 1
- 241000099090 Aquabacterium sp. Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000506874 Delftia sp. Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000119779 Novosphingobium sp. Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241001135759 Sphingomonas sp. Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241001509286 Thiobacillus denitrificans Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 241000227149 Zoogloea sp. Species 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 231100000405 induce cancer Toxicity 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 208000005135 methemoglobinemia Diseases 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- MFBOGIVSZKQAPD-UHFFFAOYSA-M sodium butyrate Chemical compound [Na+].CCCC([O-])=O MFBOGIVSZKQAPD-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
一株砷氧化假单胞菌及其应用,本发明涉及一株砷氧化假单胞菌及其应用。本发明一株砷氧化假单胞菌为Pseudomonas arsenicoxydans Y24‑2,已在中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.16655,保藏日期为2018年10月29日。本发明菌株低温贫营养条件下,进水硝酸盐浓度为20~100mg/L时,可以高效去除地下水中亚硝酸盐,对硝酸盐的去除速率为12.94~93.96mg/L/h。本发明应用于环境微生物技术领域。
An arsenic-oxidizing Pseudomonas strain and its application, the invention relates to an arsenic-oxidizing Pseudomonas strain and its application. A strain of Pseudomonas arsenic oxidizing in the present invention is Pseudomonas arsenicoxydans Y24-2, which has been deposited in the General Microbiology Center of the China Microorganism Culture Collection and Administration Commission with the preservation number of CGMCC No. 16655, and the preservation date is October 29, 2018. Under the condition of low temperature and poor nutrition, when the nitrate concentration of the influent is 20-100 mg/L, the nitrite in the groundwater can be efficiently removed, and the nitrate removal rate is 12.94-93.96 mg/L/h. The invention is applied to the technical field of environmental microorganisms.
Description
技术领域technical field
本发明涉及一株砷氧化假单胞菌及其应用。The present invention relates to a strain of arsenic-oxidizing pseudomonas and its application.
背景技术Background technique
由于农业化肥的施用,硝酸盐通过土壤渗滤作用,进入地下水环境,影响地下水质。由于农业面源污染相对难控制,我国地下水硝酸超标现象较为普遍。如果饮用水中含有过量的硝酸盐容易引起高铁血红蛋白症,甚至会诱发癌症,对人体造成危害。而我国,尤其是北方地区,约有60%的人以地下水为水源,有效去除地下水中的硝酸盐对于保障居民供水安全至关重用。我国从2007年7月起实施的生活饮用水卫生标准(GB5749-2006)也将硝酸盐氮的最高允许浓度限制在10mg/L。Due to the application of agricultural fertilizers, nitrate enters the groundwater environment through soil infiltration and affects groundwater quality. Because agricultural non-point source pollution is relatively difficult to control, the phenomenon of excessive nitric acid in groundwater in my country is relatively common. If the drinking water contains excessive nitrates, it is easy to cause methemoglobinemia, and even induce cancer, causing harm to the human body. In my country, especially in the northern region, about 60% of people use groundwater as their water source. Effectively removing nitrates from groundwater is crucial to ensuring the safety of water supply for residents. my country's drinking water hygiene standards (GB5749-2006) implemented since July 2007 also limit the maximum allowable concentration of nitrate nitrogen to 10mg/L.
目前地下水中硝酸盐的生物处理方法可分为两类:At present, the biological treatment methods of nitrate in groundwater can be divided into two categories:
一种是利用异养反硝化细菌去除地下水中硝酸盐。其原理是是在缺氧条件下(溶解氧为0.5mg/L左右),以有机物(有机碳)为电子供体,还原硝酸盐生成氮气。由于地下水中有机物含量低、且主要以难生物利用的腐殖酸形式存在,原水中的C/N比通常不到1,所以常出现碳源不足的情况。目前普遍采用的解决方法是添加水稻秸秆和玉米芯等缓释碳源,以提高处理工艺的C/N比。One is to use heterotrophic denitrifying bacteria to remove nitrate from groundwater. The principle is that under anoxic conditions (dissolved oxygen is about 0.5 mg/L), organic matter (organic carbon) is used as an electron donor to reduce nitrate to generate nitrogen. Because the organic matter content in groundwater is low and mainly exists in the form of humic acid that is difficult to be bioavailable, the C/N ratio in raw water is usually less than 1, so the carbon source is often insufficient. The currently commonly used solution is to add slow-release carbon sources such as rice straw and corncob to improve the C/N ratio of the treatment process.
另一种是利用自养反硝化细菌去除地下水中硝酸盐。其原理是在专性厌氧的条件下,以CO2、HCO3 -或CO3 2-为碳源,以H2、S或硫化物为电子供体还原硝酸盐生成氮气,如脱氮硫杆菌(Thiobacillus denitrificans)、氧化亚铁硫杆菌(Thiobacillus ferrooxidans)等。尽管这类自养反硝化细菌在去除硝酸盐过程中不需要额外提供有机碳源,但需要严格的厌氧环境,并需要额外提供电子供体(H2或硫化物),不仅在应用过程中工艺难以实现,也相应提高了制水成本。The other is to use autotrophic denitrifying bacteria to remove nitrate from groundwater. The principle is that under obligate anaerobic conditions, CO 2 , HCO 3 - or CO 3 2- is used as carbon source, and H 2 , S or sulfide is used as electron donor to reduce nitrate to generate nitrogen, such as denitrification sulfur Bacillus (Thiobacillus denitrificans), Thiobacillus ferrooxidans (Thiobacillus ferrooxidans) and the like. Although this type of autotrophic denitrifying bacteria does not require an additional organic carbon source during nitrate removal, a strict anaerobic environment is required and an additional electron donor ( H or sulfide) is required, not only during application The process is difficult to achieve, and the cost of water production is also increased accordingly.
近年来,有相关研究试图解决地下水水温低、C/N比低,生物处理困难的问题。周石磊(混合充氧强化水源水库贫营养好氧反硝化菌的脱氮特性及技术应用研究.西安建筑科技大学.博士学位论文2017)在研究过程中,分离获得了13株可在贫营养条件下进行好氧反硝化的细菌,分别为不动杆菌(Acinetobacter sp.)、新鞘脂菌属(Novosphingobium sp.)、水杆菌属(Aquabacterium sp.)、鞘脂单胞菌属(Sphingomonas sp.)、动胶杆菌属(Zoogloea sp.)和代尔夫特菌属(Delftia sp.)。刘勇波等人(刘勇波,曲丹,任何军.一株低温苯胺降解菌的好氧反硝化性能.河南水利与南水北调.2018,5:78-79)也分离获得了适冷性的好氧反硝化细菌AN-1。但以上菌株进行反硝化时,硝酸盐浓度均不超过5mg/L,而微污染地下水中硝酸盐浓度通常为20~150mg/L。In recent years, some related studies have attempted to solve the problems of low groundwater temperature, low C/N ratio and difficult biological treatment. Zhou Shilei (Research on denitrification characteristics and technical application of oligotrophic aerobic denitrifying bacteria in water source reservoirs with mixed oxygenation. Xi'an University of Architecture and Technology. Doctoral dissertation 2017) During the research process, 13 strains that can survive in oligotrophic conditions were isolated and obtained. The bacteria that carry out aerobic denitrification under the condition are Acinetobacter sp., Novosphingobium sp., Aquabacterium sp., Sphingomonas sp. ), Zoogloea sp. and Delftia sp.. Liu Yongbo et al. (Liu Yongbo, Qu Dan, He Jun. Aerobic denitrification performance of a low-temperature aniline-degrading bacteria. Henan Water Conservancy and South-to-North Water Transfer. 2018, 5:78-79) also isolated and obtained aerobic denitrification suitable for cold Bacteria AN-1. However, when the above strains are used for denitrification, the nitrate concentration does not exceed 5 mg/L, while the nitrate concentration in the slightly polluted groundwater is usually 20-150 mg/L.
砷氧化假单胞菌(Pseudomonas arsenicoxydans)最初于2010年报道可以氧化亚砷酸盐(Victor L.Campos等人.Pseudomonas arsenicoxydans sp nov.,an arsenite-oxidizing strain isolated from the Atacama desert.Systematic and AppliedMicrobiology.2010.33:193-197.)。近年来也有关于将砷氧化假单胞菌用于处理亚砷酸盐的研究,但还没有关于砷氧化假单胞菌可用于处理地下水中硝酸盐的报道。Pseudomonas arsenicoxydans was originally reported in 2010 to oxidize arsenite (Victor L. Campos et al. Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert. Systematic and Applied Microbiology. 2010.33:193-197.). In recent years, there have also been studies on the use of arsenic-oxidizing Pseudomonas for the treatment of arsenite, but there is no report that arsenic-oxidizing Pseudomonas can be used for the treatment of nitrate in groundwater.
发明内容SUMMARY OF THE INVENTION
本发明提供了一株砷氧化假单胞菌及其应用。The invention provides a strain of arsenic oxidizing pseudomonas and its application.
本发明一株砷氧化假单胞菌为Pseudomonas arsenicoxydans Y24-2,已在中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.16655,保藏日期为2018年10月29日。A strain of Pseudomonas arsenic oxidizing in the present invention is Pseudomonas arsenicoxydans Y24-2, which has been deposited in the General Microbiology Center of the China Microorganism Culture Collection Administration Committee, with the preservation number of CGMCC No. 16655, and the preservation date is October 29, 2018.
本发明砷氧化假单胞菌为Pseudomonas arsenicoxydans Y24-2用于去除水中污染物。The Pseudomonas arsenic oxidizing bacteria of the present invention is Pseudomonas arsenicoxydans Y24-2, which is used for removing pollutants in water.
本发明砷氧化假单胞菌为Pseudomonas arsenicoxydans Y24-2的筛选方法为:受硝酸盐污染(硝酸盐浓度140mg/L)的低温地下水(水温4℃)100ml,在2~6℃、150rpm/min下富集12~20d,期间不断补充NaNO3和C2H5OH,待菌液的OD600值达到0.5以上后,梯度稀释并接种于固体培养基上,在2~6℃下培养5~7d,选取典型的单一菌落进行纯化培养。将最终获得的纯培养菌株进行硝酸盐还原试验,选取30min内对硝酸盐还原率达到50%以上的菌株。The screening method for Pseudomonas arsenicoxydans Y24-2 in the present invention is: 100ml of low-temperature groundwater (water temperature 4°C) contaminated by nitrate (nitrate concentration 140mg/L), at 2-6°C, 150rpm/min After enrichment for 12-20 days, NaNO 3 and C 2 H 5 OH were continuously supplemented during the period. After the OD 600 value of the bacterial solution reached above 0.5, gradient dilution was performed and inoculated on solid medium, and cultured at 2-6 °C for 5- 7d, select a typical single colony for purification and culture. The finally obtained pure cultured strains were subjected to nitrate reduction test, and the strains whose nitrate reduction rate reached more than 50% within 30 minutes were selected.
提取菌株基因组DNA后进行16S rDNA序列扩增,将获得片段用于测序,与模式菌株Pseudomonas arsenicoxydans CECT 7543T的相似性为99.21%,鉴定为砷氧化假单胞菌为Pseudomonas arsenicoxydans,最终命名为Pseudomonas arsenicoxydans Y24-2。After extracting the genomic DNA of the strain, the 16S rDNA sequence was amplified, and the obtained fragment was used for sequencing. The similarity with the type strain Pseudomonas arsenicoxydans CECT 7543 T was 99.21%. It was identified as Pseudomonas arsenicoxydans, and finally named Pseudomonas arsenicoxydans Y24-2.
本发明Pseudomonas arsenicoxydans Y24-2在6~10℃、C/N比为0~0.5的低温贫营养条件下,进水硝酸盐浓度为20~100mg/L时,砷氧化假单胞菌(Pseudomonasarsenicoxydans)Y24-2可以高效去除地下水中硝酸盐,对硝酸盐的去除速率为12.94~93.96mg/L/h。The Pseudomonas arsenicoxydans Y24-2 of the present invention is 6-10 DEG C, the C/N ratio is 0-0.5 under the low-temperature nutrient-poor condition, when the influent nitrate concentration is 20-100 mg/L, the arsenic-oxidizing Pseudomonas (Pseudomonas arsenicoxydans) Y24-2 can efficiently remove nitrate in groundwater, and the removal rate of nitrate is 12.94~93.96mg/L/h.
本发明Pseudomonas arsenicoxydans Y24-2,已在中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.16655,保藏日期为2018年10月29日。The present invention, Pseudomonas arsenicoxydans Y24-2, has been deposited in the General Microbiology Center of the China Microorganism Culture Collection Management Committee, the deposit number is CGMCC No. 16655, and the deposit date is October 29, 2018.
附图说明Description of drawings
图1为本发明Pseudomonas arsenicoxydans Y24-2的革兰氏染色结果示意图;Fig. 1 is the schematic diagram of the Gram staining result of Pseudomonas arsenicoxydans Y24-2 of the present invention;
图2为本发明Pseudomonas arsenicoxydans Y24-2的菌落示意图。Figure 2 is a schematic diagram of the colony of Pseudomonas arsenicoxydans Y24-2 of the present invention.
具体实施方式Detailed ways
具体实施方式一:本实施方式一株砷氧化假单胞菌为Pseudomonasarsenicoxydans Y24-2,已在中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.16655,保藏日期为2018年10月29日。Specific embodiment 1: A strain of Pseudomonas arsenic oxidizing in this embodiment is Pseudomonasarsenicoxydans Y24-2, which has been deposited in the General Microbiology Center of the China Microbial Culture Collection and Management Committee, with the preservation number of CGMCC No. 16655, and the preservation date is October 2018. 29th.
本实施方式砷氧化假单胞菌为Pseudomonas arsenicoxydans Y24-2的筛选方法为:受硝酸盐污染(硝酸盐浓度140mg/L)的低温地下水(水温4℃)100ml,在2~6℃、150rpm/min下富集12~20d,期间不断补充NaNO3和C2H5OH,待菌液的OD600值达到0.5以上后,梯度稀释并接种于固体培养基上,在2~6℃下培养5~7d,选取典型的单一菌落进行纯化培养。将最终获得的纯培养菌株进行硝酸盐还原试验,选取30min内对硝酸盐还原率达到50%以上的菌株。In this embodiment, the screening method for Pseudomonas arsenicoxydans Y24-2 is as follows: 100ml of low-temperature groundwater (water temperature 4°C) contaminated by nitrate (nitrate concentration 140mg/L), at 2-6°C, 150rpm/L Min to enrich for 12 ~ 20d, during which NaNO 3 and C 2 H 5 OH were continuously supplemented. After the OD 600 value of the bacterial solution reached above 0.5, the gradient was diluted and inoculated on solid medium, and cultured at 2 ~ 6 ℃ for 5 ~7d, select a typical single colony for purification and culture. The finally obtained pure cultured strains were subjected to nitrate reduction test, and the strains whose nitrate reduction rate reached more than 50% within 30 minutes were selected.
提取菌株基因组DNA后进行16S rDNA序列扩增,将获得片段用于测序,与模式菌株Pseudomonas arsenicoxydans CECT 7543T的相似性为99.21%,鉴定为砷氧化假单胞菌为Pseudomonas arsenicoxydans,最终命名为Pseudomonas arsenicoxydans Y24-2。After extracting the genomic DNA of the strain, the 16S rDNA sequence was amplified, and the obtained fragment was used for sequencing. The similarity with the type strain Pseudomonas arsenicoxydans CECT 7543 T was 99.21%. It was identified as Pseudomonas arsenicoxydans, and finally named Pseudomonas arsenicoxydans Y24-2.
本实施方式Pseudomonas arsenicoxydans Y24-2在6~10℃、C/N比为0~0.5的低温贫营养条件下,进水硝酸盐浓度为20~100mg/L时,砷氧化假单胞菌(Pseudomonasarsenicoxydans)Y24-2可以高效去除地下水中亚硝酸盐,对硝酸盐的去除速率为12.94~93.96mg/L/h。In the present embodiment, Pseudomonas arsenicoxydans Y24-2 is at 6-10° C., C/N ratio of 0-0.5 under low temperature and nutrient-poor conditions, and when the nitrate concentration of the influent is 20-100 mg/L, Pseudomonas arsenicoxydans (Pseudomonas arsenicoxydans )Y24-2 can efficiently remove nitrite in groundwater, and the removal rate of nitrate is 12.94~93.96mg/L/h.
具体实施方式二:本实施方式砷氧化假单胞菌在筛选过程中使用的培养基配方为:NaNO3 0.1~0.5g/L,MnSO4 0.01~0.05g/L,(NH4)2Fe(SO4)2·6H2O 0.01~0.10g/L,CaCl2 0.01~0.05g/L,C2H5OH 0.1~2.0mL/L,Na2HPO4 0.3~0.9g/L,MgSO4·7H2O 0.01~0.05g/L,NaCl 0.3~0.9g/L,pH值7.0~7.4。其他与具体实施方式一相同。Embodiment 2: The formulation of the medium used in the screening process of Pseudomonas arsenides in this embodiment is: NaNO 3 0.1-0.5g/L, MnSO 4 0.01-0.05g/L, (NH 4 ) 2 Fe ( SO 4 ) 2 ·6H 2 O 0.01~0.10g/L, CaCl 2 0.01~0.05g/L, C 2 H 5 OH 0.1~2.0mL/L, Na 2 HPO 4 0.3~0.9g/L, MgSO 4 · 7H 2 O 0.01~0.05g/L, NaCl 0.3~0.9g/L, pH value 7.0~7.4. Others are the same as the first embodiment.
若是固体培养基,则上述配方中加入1.8g/L的琼脂。If it is a solid medium, add 1.8g/L agar to the above formula.
具体实施方式三:本实施方式砷氧化假单胞菌为Pseudomonas arsenicoxydansY24-2用于去除水中污染物。Embodiment 3: In this embodiment, Pseudomonas arsenicoxydans is Pseudomonas arsenicoxydansY24-2, which is used to remove pollutants in water.
具体实施方式四:本实施方式与具体实施方式三不同的是:水为微污染低温地下水。其他与具体实施方式三相同。Embodiment 4: The difference between this embodiment and Embodiment 3 is that the water is slightly polluted low-temperature groundwater. Others are the same as the third embodiment.
具体实施方式五:本实施方式与具体实施方式三或四不同的是:所述低温地下水的温度为4~10℃。其他与具体实施方式三或四相同。Embodiment 5: The difference between this embodiment and Embodiment 3 or 4 is that the temperature of the low-temperature groundwater is 4-10°C. Others are the same as the third or fourth embodiment.
具体实施方式六:本实施方式与具体实施方式三至五之一不同的是:所述污染物为硝酸盐。其他与具体实施方式三至五之一相同。Embodiment 6: The difference between this embodiment and one of Embodiments 3 to 5 is that the pollutants are nitrates. Others are the same as one of the third to fifth embodiments.
具体实施方式七:本实施方式砷氧化假单胞菌为Pseudomonas arsenicoxydansY24-2的筛选方法为:受硝酸盐污染(硝酸盐浓度140mg/L)的低温地下水(水温4℃)100ml,在2~6℃、150rpm/min下富集12~20d,期间不断补充NaNO3和C2H5OH,待菌液的OD600值达到0.5以上后,梯度稀释并接种于固体培养基上,在2~6℃下培养5~7d,选取典型的单一菌落进行纯化培养。将最终获得的纯培养菌株进行硝酸盐还原试验,选取30min内对硝酸盐还原率达到50%以上的菌株。Embodiment 7: The screening method for Pseudomonas arsenicoxydansY24-2 in this embodiment is: 100ml of low-temperature groundwater (water temperature 4°C) polluted by nitrate (nitrate concentration 140mg/L), at 2-6 ℃, 150rpm/min enrichment for 12 ~ 20d, during which NaNO 3 and C 2 H 5 OH were continuously supplemented. After the OD 600 value of the bacterial solution reached above 0.5, gradient dilution and inoculation on solid medium were carried out. After 2 ~ 6 Cultivate at ℃ for 5-7 days, and select a typical single colony for purification and culture. The finally obtained pure cultured strains were subjected to nitrate reduction test, and the strains whose nitrate reduction rate reached more than 50% within 30 minutes were selected.
上述过程所使用的培养基为:NaNO3 0.1~0.5g/L,MnSO4 0.01~0.05g/L,(NH4)2Fe(SO4)2·6H2O 0.01~0.10g/L,CaCl2 0.01~0.05g/L,C2H5OH 0.1~2.0mL/L,Na2HPO40.3~0.9g/L,MgSO4·7H2O 0.01~0.05g/L,NaCl 0.3~0.9g/L,pH值7.0~7.4,(固体培养基中加入1.8g/L的琼脂)。The culture medium used in the above process is: NaNO 3 0.1~0.5g/L, MnSO 4 0.01~0.05g/L, (NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O 0.01~0.10g/L, CaCl 2 0.01~0.05g/L, C 2 H 5 OH 0.1~2.0mL/L, Na 2 HPO 4 0.3~0.9g/L, MgSO 4 ·7H 2 O 0.01~0.05g/L, NaCl 0.3~0.9g/ L, pH value 7.0~7.4, (add 1.8g/L agar to solid medium).
菌株Pseudomonas arsenicoxydans Y24-2专性好氧菌、革兰氏染色阴性(如图1所示),菌落凸起,粘稠,呈乳白色(如图2所示);氧化酶和接触酶阳性,生长温度4~37℃,最适pH值为7.5~8.0;不能产生硫化氢和吲哚,可以水解尿素,可以还原硝酸盐;可以以乙醇、乙酸钠、丁酸钠、苯甲酸钠、葡萄糖为碳源进行生长;不能利用柠檬酸、麦芽糖。Strain Pseudomonas arsenicoxydans Y24-2 obligate aerobic bacteria, negative for Gram staining (as shown in Figure 1), colonies raised, viscous, and milky white (as shown in Figure 2); positive for oxidase and contactase, growth The temperature is 4~37℃, the optimum pH value is 7.5~8.0; hydrogen sulfide and indole cannot be produced, urea can be hydrolyzed, and nitrate can be reduced; ethanol, sodium acetate, sodium butyrate, sodium benzoate, and glucose can be used as carbon sources For growth; can not use citric acid, maltose.
具体实施方式六:本实施方式Pseudomonas arsenicoxydans Y24-2的鉴定:Embodiment 6: Identification of Pseudomonas arsenicoxydans Y24-2 in this embodiment:
提取细菌基因组DNA后进行16S rDNA序列扩增,用于扩增的PCR反应引物为通用引物:正向引物5’-CAGAGTTTGATCCTGGCT-3’;反向引物5’-AGGAGGTGATCCAGCCGCA-3’。PCR反应体系如下:20~50ng模板DNA,0.2μL Taq酶,2.5μL 10×Buffer(含Mg2+),1μL dNTP(各2.5mmol/L),0.5μL正向引物,0.5μL反向引物,加入无菌去离子水至25μL。PCR扩增条件:94℃预变性4min,之后94℃变性45s,55℃扩增45s,72℃延伸1min,经过30次循环后,72℃延伸10min,之后4℃终止反应,将获得片段用于测序,基因序列如SEQ ID NO:1所示,GenBank注册号为MH817850,与模式菌株Pseudomonas arsenicoxydans CECT 7543T的相似性为99.21%,鉴定为Pseudomonas arsenicoxydans,最终命名为Pseudomonas arsenicoxydansY24-2。Bacterial genomic DNA was extracted for 16S rDNA sequence amplification. The PCR primers used for amplification were universal primers: forward primer 5'-CAGAGTTTGATCCTGGCT-3'; reverse primer 5'-AGGAGGTGATCCAGCCGCA-3'. The PCR reaction system is as follows: 20~50ng template DNA, 0.2μL Taq enzyme, 2.5μL 10×Buffer (containing Mg 2+ ), 1μL dNTP (2.5mmol/L each), 0.5μL forward primer, 0.5μL reverse primer, Add sterile deionized water to 25 μL. PCR amplification conditions: pre-denaturation at 94°C for 4 min, followed by denaturation at 94°C for 45s, amplification at 55°C for 45s, extension at 72°C for 1min, after 30 cycles, extension at 72°C for 10min, and then termination of the reaction at 4°C, the obtained fragment was used for Sequencing, the gene sequence is shown in SEQ ID NO: 1, the GenBank accession number is MH817850, the similarity with the type strain Pseudomonas arsenicoxydans CECT 7543T is 99.21%, it is identified as Pseudomonas arsenicoxydans, and finally named as Pseudomonas arsenicoxydansY24-2.
对本实施方式的Pseudomonas arsenicoxydans Y24-2在低温贫营养条件下反硝化功能进行验证:The denitrification function of Pseudomonas arsenicoxydans Y24-2 of the present embodiment is verified under low-temperature oligotrophic conditions:
试验1:配制浓度分别为10.0、20.0、40.0、60.0、100.0、150.0、200.0mg/L的硝酸盐溶液,为了模拟地下水水质特征,向硝酸盐溶液中添加了7~10mg/L的MnSO4和5~8mg/L的FeSO4,得到降解溶液,然后将Pseudomonas arsenicoxydans Y24-2菌株培养至107~109个/ml,取50ml在6000g离心10min获得菌体沉淀,用无菌去离子水对菌体沉淀清洗2~3次,将菌体转入50ml降解溶液,用乙醇作为碳源,C/N比为0.5,在pH值为7.0、温度为6℃的低温条件下,降解30min后测定硝酸盐还原速率。Experiment 1: Nitrate solutions with concentrations of 10.0, 20.0, 40.0, 60.0, 100.0, 150.0, and 200.0 mg/L were prepared. In order to simulate the characteristics of groundwater quality, 7-10 mg/L of MnSO 4 and MnSO were added to the nitrate solution. 5 ~ 8mg/L FeSO 4 to obtain a degradation solution, and then the Pseudomonas arsenicoxydans Y24-2 strain was cultured to 10 7 ~ 10 9 /ml, and 50ml was centrifuged at 6000g for 10min to obtain the cell precipitate, and the bacteria were precipitated with sterile deionized water. The bacteria were precipitated and washed for 2 to 3 times, and the bacteria were transferred to 50ml of degradation solution, using ethanol as the carbon source, the C/N ratio was 0.5, and the pH was 7.0 and the temperature was 6 ℃. Nitrate reduction rate.
本试验发现发现随着硝酸浓度提高,硝酸盐还原速率越高,当硝酸盐浓度达到100.0mg/L时,硝酸盐还原速率最高,为89.72mg/L/h。This experiment found that with the increase of nitric acid concentration, the nitrate reduction rate was higher. When the nitrate concentration reached 100.0 mg/L, the nitrate reduction rate was the highest, which was 89.72 mg/L/h.
试验2:配制浓度为100.0mg/L的硝酸盐溶液,为了模拟地下水水质特征,向溶液中添加了7~10mg/L的MnSO4和5~8mg/L的FeSO4,得到降解溶液,然后将Pseudomonasarsenicoxydans Y24-2菌株培养至107~109个/ml,取50ml在6000g离心10min获得菌体沉淀,用无菌去离子水对菌体沉淀清洗2~3次,将菌体转入50ml降解溶液,用乙酸钠作为碳源,C/N比为分别调节至0.5、1、2、4、8、10、15、20,在4~10℃,pH值6~8,80~180rpm(溶解氧大于2~10mg/L)条件下,对硝酸盐还原30min后,后测定硝酸盐还原速率。Experiment 2: A nitrate solution with a concentration of 100.0 mg/L was prepared. In order to simulate the water quality characteristics of groundwater, 7-10 mg/L MnSO 4 and 5-8 mg/L FeSO 4 were added to the solution to obtain a degradation solution. Pseudomonasarsenicoxydans Y24-2 strain was cultured to 10 7 to 10 9 cells/ml, 50 ml was centrifuged at 6000g for 10 min to obtain the cell pellet, washed with sterile deionized water for 2 to 3 times, and the cell was transferred to 50 ml for degradation The solution, using sodium acetate as the carbon source, adjusted the C/N ratio to 0.5, 1, 2, 4, 8, 10, 15, and 20, respectively, at 4 to 10 ° C, pH value of 6 to 8, and 80 to 180 rpm (dissolved). Under the condition of oxygen greater than 2~10mg/L), the nitrate reduction rate was measured after 30min reduction of nitrate.
结果表明在C/N比为0.5时,温度6℃,pH值7.2,180rpm(溶解氧约为9.0mg/L)下,硝酸盐还原速率最高,为91.24mg/L·h。The results show that when the C/N ratio is 0.5, the temperature is 6℃, the pH value is 7.2, and 180rpm (dissolved oxygen is about 9.0mg/L), the nitrate reduction rate is the highest, which is 91.24mg/L·h.
试验3:从不同地下水采样地采取2份实际地下水样,水质如表1所示,从水质情况可知,2份水样的C/N比均低于0.1,属于贫营养环境。Experiment 3: Take two actual groundwater samples from different groundwater sampling sites. The water quality is shown in Table 1. From the water quality, it can be seen that the C/N ratio of the two water samples is lower than 0.1, which is a nutrient-poor environment.
表1地下水样的水质概况Table 1 General situation of water quality of groundwater samples
是将菌株Pseudomonas arsenicoxydans Y24-2培养至107~109个/mL,取50mL菌液在6000g离心10min获得菌体沉淀,用无菌去离子水对菌体沉淀清洗2~3次,将菌体收集,分别转入2份水样中,在4~5℃处理30min和8h后测定水中剩余硝酸盐浓度,并计算硝酸盐的去除率,结果如表2所示。结果表明,经8h处理后,Y24-2可以去除地下水中80%左右的硝酸盐,处理后,硝酸盐可以满足我国《生活饮用水卫生标准》(GB5749-2006)的要求(以地下水为水源时,硝酸盐≤20mg/L)The strain Pseudomonas arsenicoxydans Y24-2 was cultured to 10 7 to 10 9 cells/mL, and 50 mL of bacterial liquid was centrifuged at 6000 g for 10 min to obtain the bacterial precipitation, and the bacterial precipitate was washed 2 to 3 times with sterile deionized water. The samples were collected and transferred to 2 water samples respectively. After treatment at 4-5 °C for 30 min and 8 h, the residual nitrate concentration in the water was measured, and the nitrate removal rate was calculated. The results are shown in Table 2. The results show that after 8h treatment, Y24-2 can remove about 80% of the nitrate in groundwater. After treatment, the nitrate can meet the requirements of my country's "Drinking Water Sanitation Standard" (GB5749-2006) (when groundwater is used as the water source). , nitrate≤20mg/L)
表2Pseudomonas arsenicoxydans Y24-2在30min和8h后对地下水中硝酸盐的去除效果Table 2 The removal effect of Pseudomonas arsenicoxydans Y24-2 on nitrate in groundwater after 30min and 8h
由试验1-3可知,本发明菌株Pseudomonas arsenicoxydans Y24-2在低温贫营养条件下,进水硝酸盐浓度为20~100mg/L时,可以高效去除地下水中亚硝酸盐,对硝酸盐的去除速率为12.94~93.96mg/L/h;经8h处理后,Y24-2可以去除地下水中80%左右的硝酸盐。It can be seen from test 1-3 that the strain Pseudomonas arsenicoxydans Y24-2 of the present invention can efficiently remove nitrite in groundwater under low-temperature and nutrient-poor conditions and when the influent nitrate concentration is 20-100 mg/L, and the removal rate of nitrate is high. It is 12.94~93.96mg/L/h; after 8h treatment, Y24-2 can remove about 80% of nitrate in groundwater.
序列表sequence listing
<110>黑龙江大学<110> Heilongjiang University
<120>一株砷氧化假单胞菌及其应用<120> A strain of arsenic-oxidizing Pseudomonas and its application
<160> 3<160> 3
<210> 1<210> 1
<211> 1385<211> 1385
<212> DNA<212> DNA
<213>砷氧化假单胞菌(Pseudomonas arsenicoxydans)<213> Pseudomonas arsenicoxydans
<400> 1<400> 1
gcagtcgagc ggtagagaga agcttgcttc tcttgagagc ggcggacggg tgagtaatgc 60gcagtcgagc ggtagagaga agcttgcttc tcttgagagc ggcggacggg tgagtaatgc 60
ctaggaatct gcctggtagt gggggataac gctcggaaac ggacgctaat accgcatacg 120ctaggaatct gcctggtagt gggggataac gctcggaaac ggacgctaat accgcatacg 120
tcctacggga gaaagcaggg gaccttcggg ccttgcgcta tcagatgagc ctaggtcgga 180tcctacggga gaaagcaggg gaccttcggg ccttgcgcta tcagatgagc ctaggtcgga 180
ttagctagtt ggtgaggtaa tggctcacca aggcgacgat ccgtaactgg tctgagagga 240ttagctagtt ggtgaggtaa tggctcacca aggcgacgat ccgtaactgg tctgagagga 240
tgatcagtca cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga 300tgatcagtca cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga 300
atattggaca atgggcgaaa gcctgatcca gccatgccgc gtgtgtgaag aaggtcttcg 360atattggaca atgggcgaaa gcctgatcca gccatgccgc gtgtgtgaag aaggtcttcg 360
gattgtaaag cactttaagt tgggaggaag ggcattaacc taatacgtta gtgttttgac 420gattgtaaag cactttaagt tgggaggaag ggcattaacc taatacgtta gtgttttgac 420
gttaccgaca gaataagcac cggctaactc tgtgccagca gccgcggtaa tacagagggt 480gttaccgaca gaataagcac cggctaactc tgtgccagca gccgcggtaa tacagagggt 480
gcaagcgtta atcggaatta ctgggcgtaa agcgcgcgta ggtggttcgt taagttggat 540gcaagcgtta atcggaatta ctgggcgtaa agcgcgcgta ggtggttcgt taagttggat 540
gtgaaatccc cgggctcaac ctgggaactg cattcaaaac tgtcgagcta gagtatggta 600gtgaaatccc cgggctcaac ctgggaactg cattcaaaac tgtcgagcta gagtatggta 600
gagggtggtg gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt 660gagggtggtg gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt 660
ggcgaaggcg accacctgga ctgatactga cactgaggtg cgaaagcgtg gggagcaaac 720ggcgaaggcg accacctgga ctgatactga cactgaggtg cgaaagcgtg gggagcaaac 720
aggattagat accctggtag tccacgccgt aaacgatgtc aactagccgt tgggagcctt 780aggattagat accctggtag tccacgccgt aaacgatgtc aactagccgt tgggagcctt 780
gagctcttag tggcgcagct aacgcattaa gttgaccgcc tggggagtac ggccgcaagg 840gagctcttag tggcgcagct aacgcattaa gttgaccgcc tggggagtac ggccgcaagg 840
ttaaaactca aatgaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg 900ttaaaactca aatgaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg 900
aagcaacgcg aagaacctta ccaggccttg acatccaatg aactttccag agatggattg 960aagcaacgcg aagaacctta ccaggccttg acatccaatg aactttccag agatggattg 960
gtgccttcgg gaacattgag acaggtgctg catggctgtc gtcagctcgt gtcgtgagat 1020gtgccttcgg gaacattgag acaggtgctg catggctgtc gtcagctcgt gtcgtgagat 1020
gttgggttaa gtcccgtaac gagcgcaacc cttgtcctta gttaccagca cgtaatggtg 1080gttggggttaa gtcccgtaac gagcgcaacc cttgtcctta gttaccagca cgtaatggtg 1080
ggcactctaa ggagactgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat 1140ggcactctaa ggagactgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat 1140
catggccctt acggcctggg ctacacacgt gctacaatgg tcggtacaga gggttgccaa 1200catggccctt acggcctggg ctacacacgt gctacaatgg tcggtacaga gggttgccaa 1200
gccgcgaggt ggagctaatc ccagaaaacc gatcgtagtc cggatcgcag tctgcaactc 1260gccgcgaggt ggagctaatc ccagaaaacc gatcgtagtc cggatcgcag tctgcaactc 1260
gactgcgtga agtcggaatc gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc 1320gactgcgtga agtcggaatc gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc 1320
ccgggccttg tacacaccgc ccgtcacacc atgggagtgg gttgctccag aagtagctag 1380ccgggccttg tacacaccgc ccgtcacacc atgggagtgg gttgctccag aagtagctag 1380
tctaa 1385tctaa 1385
<210> 2<210> 2
<211> 18<211> 18
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<220><220>
<223>PCR正向引物核苷酸序列。<223> PCR forward primer nucleotide sequence.
<400> 2<400> 2
CAGAGTTTGATCCTGGCT 18CAGAGTTTGATCCTGGCT 18
<210> 3<210> 3
<211> 19<211> 19
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<220><220>
<223>PCR反向引物核苷酸序列。<223> PCR reverse primer nucleotide sequence.
<400> 3<400> 3
AGGAGGTGATCCAGCCGCA 19AGGAGGTGATCCAGCCGCA 19
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910073194.0A CN109722394B (en) | 2019-01-25 | 2019-01-25 | A strain of arsenic-oxidizing Pseudomonas and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910073194.0A CN109722394B (en) | 2019-01-25 | 2019-01-25 | A strain of arsenic-oxidizing Pseudomonas and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109722394A CN109722394A (en) | 2019-05-07 |
CN109722394B true CN109722394B (en) | 2022-05-17 |
Family
ID=66299908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910073194.0A Active CN109722394B (en) | 2019-01-25 | 2019-01-25 | A strain of arsenic-oxidizing Pseudomonas and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109722394B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112813004B (en) * | 2021-02-09 | 2022-05-10 | 黑龙江大学 | A UV-resistant and anti-oxidative immotile bacteria and its application |
CN112877244B (en) * | 2021-02-09 | 2022-05-17 | 黑龙江大学 | A UV-resistant Acinetobacter and its Application |
CN112760268B (en) * | 2021-02-09 | 2022-11-18 | 黑龙江大学 | Ultraviolet-resistant bacillus and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2865237A1 (en) * | 2012-02-28 | 2013-09-06 | Marrone Bio Innovations, Inc. | Control of phytopathogenic microorganisms with pseudomonas sp. and substances and compositions derived therefrom |
CN103555633A (en) * | 2013-11-08 | 2014-02-05 | 哈尔滨工业大学 | Facultative heterotrophic bacterium for synchronously etabolizing sulfide and nitrate |
KR101558945B1 (en) * | 2015-03-20 | 2015-10-12 | 주식회사 대일이앤씨 | A Novel Microorganism with Superior Petroleum Oil Degradation Activity |
CN109574259A (en) * | 2019-01-25 | 2019-04-05 | 黑龙江大学 | A kind of device and Groundwater Treatment Methodss removing low temperature underground water middle and high concentration nitrate |
CN109626599A (en) * | 2019-01-25 | 2019-04-16 | 黑龙江大学 | It is a kind of for strengthening the composite bacteria agent and its preparation method and application of low temperature low carbon-nitrogen ratio sewage denitrification effect |
CN109665672A (en) * | 2019-01-25 | 2019-04-23 | 黑龙江大学 | A kind of device and Groundwater Treatment Methodss for strengthening total nitrogen in removal low temperature underground water |
CN209411899U (en) * | 2019-01-25 | 2019-09-20 | 黑龙江大学 | A device for removing high-concentration nitrate in low-temperature groundwater |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9414590B2 (en) * | 2009-03-16 | 2016-08-16 | Marrone Bio Innovations, Inc. | Chemical and biological agents for the control of molluscs |
-
2019
- 2019-01-25 CN CN201910073194.0A patent/CN109722394B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2865237A1 (en) * | 2012-02-28 | 2013-09-06 | Marrone Bio Innovations, Inc. | Control of phytopathogenic microorganisms with pseudomonas sp. and substances and compositions derived therefrom |
CN103555633A (en) * | 2013-11-08 | 2014-02-05 | 哈尔滨工业大学 | Facultative heterotrophic bacterium for synchronously etabolizing sulfide and nitrate |
KR101558945B1 (en) * | 2015-03-20 | 2015-10-12 | 주식회사 대일이앤씨 | A Novel Microorganism with Superior Petroleum Oil Degradation Activity |
CN109574259A (en) * | 2019-01-25 | 2019-04-05 | 黑龙江大学 | A kind of device and Groundwater Treatment Methodss removing low temperature underground water middle and high concentration nitrate |
CN109626599A (en) * | 2019-01-25 | 2019-04-16 | 黑龙江大学 | It is a kind of for strengthening the composite bacteria agent and its preparation method and application of low temperature low carbon-nitrogen ratio sewage denitrification effect |
CN109665672A (en) * | 2019-01-25 | 2019-04-23 | 黑龙江大学 | A kind of device and Groundwater Treatment Methodss for strengthening total nitrogen in removal low temperature underground water |
CN209411899U (en) * | 2019-01-25 | 2019-09-20 | 黑龙江大学 | A device for removing high-concentration nitrate in low-temperature groundwater |
Non-Patent Citations (3)
Title |
---|
Arsenite Oxidation by Pseudomonas arsenicoxydans Immobilized on Zeolite and Its Potential Biotechnological Application;Valenzuela, Cristian等;《BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY》;20150531;第94卷(第5期);667-673 * |
Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert;Victor L.Campos等;《Systematic and Applied Microbiology》;20100630;第33卷(第4期);193-197 * |
南极菲尔德斯半岛可培养土壤微生物多样性及理化性质鉴定;刘春影等;《海洋学报》;20160615;第38卷(第6期);69-81 * |
Also Published As
Publication number | Publication date |
---|---|
CN109722394A (en) | 2019-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water | |
CN109517770B (en) | Aerobic facultative autotrophic denitrifying bacterium and application thereof | |
CN100554402C (en) | Have the pseudomonas putida of aerobic denitrification capability and the method for processing waste water thereof | |
CN101665777B (en) | Bacillus cereus with heterotrophic nitrification-aerobic denitrification performance and N thereof2O biological runaway-controlling method | |
CN103074278B (en) | A kind of ammonia oxidizing bacteria and its application | |
CN100537746C (en) | Have the Dell Ford bacterium of aerobic denitrification capability and the method for processing waste water thereof | |
CN109722394B (en) | A strain of arsenic-oxidizing Pseudomonas and its application | |
CN103013872A (en) | Heterotrophic nitrifying and aerobic denitrifying bacterium and culture and application thereof | |
JP2005034783A (en) | Nitrification/denitrification method for removing nh4+ and no3- simultaneously | |
CN109536426B (en) | Psychrophile and application thereof | |
CN105733998A (en) | Efficient denitrifying strain having both heterotrophic nitrification capability and aerobic denitrification capability | |
CN108060101A (en) | Dietzia maris W02-3a and its application in denitrogenation | |
CN101386823B (en) | Special effect anaerobic denitrifying bacterium and waste water processing method using thereof | |
CN100537745C (en) | Have the Comamonas testosteroni of aerobic denitrification capability and the method for processing waste water thereof | |
Park et al. | Total microbial activity and sulfur cycling microbe changes in response to the development of hypoxia in a shallow estuary | |
CN100497596C (en) | Grass spirillum with aerobic denitrification performance and method for processing wastewater | |
CN105925516B (en) | A facultative autotrophic sulfur-oxidizing and denitrifying rhizobia F43b and its application | |
Mizuno et al. | Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors | |
CN103224903B (en) | Low-temperature heterotrophic nitrification bacterium | |
CN104388342B (en) | A kind of short distance nitration bacterium pseudomonad and application | |
CN115820466B (en) | Sulfur autotrophic denitrification strain, bacterial preparation and application thereof | |
CN117143755A (en) | A strain of Pseudomonas stutzeri and its application | |
CN101054241A (en) | Application of flavobacterium omnivorum in treating sewage at low temperature | |
CN109666613B (en) | A facultative autotrophic rhizobia with nitrate-reducing ferrous oxidation function and its application | |
CN117887594B9 (en) | An inorganic electron donor-enhanced aerobic denitrifying Aspergillus sp. DH4 and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |