CN109717905B - 用于弹性成像的探头 - Google Patents

用于弹性成像的探头 Download PDF

Info

Publication number
CN109717905B
CN109717905B CN201910091985.6A CN201910091985A CN109717905B CN 109717905 B CN109717905 B CN 109717905B CN 201910091985 A CN201910091985 A CN 201910091985A CN 109717905 B CN109717905 B CN 109717905B
Authority
CN
China
Prior art keywords
probe
generating device
excitation
excitation generating
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910091985.6A
Other languages
English (en)
Other versions
CN109717905A (zh
Inventor
曹艳平
郑阳
李国洋
徐玮强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201910091985.6A priority Critical patent/CN109717905B/zh
Publication of CN109717905A publication Critical patent/CN109717905A/zh
Application granted granted Critical
Publication of CN109717905B publication Critical patent/CN109717905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本申请涉及一种用于弹性成像的探头,该探头包括:激励产生装置,所述激励产生装置开设有中空结构;扫描装置,设置于所述激励产生装置的中空结构中,用于向所述待测材料发射扫描信号,并接收所述待测材料反射的反馈信号;连接件,分别固定连接激励产生装置和扫描装置。上述用于弹性成像的探头,扫描装置不会随激励产生装置的振动而发生运动,实现了在激励信号强度基本没有损失的情况下避免扫描装置在测量过程中的振动,从而提高了扫描信号采集的稳定性,降低了扫描信号后处理的复杂度,并有效提升了瞬时弹性成像的成功率和测量精度。

Description

用于弹性成像的探头
技术领域
本申请涉及弹性成像技术领域,特别是涉及一种用于弹性成像的探头。
背景技术
肝硬化是人类健康的一大重要威胁,全球每年有上百万人死于肝硬化的相关疾病。肝脏局部纤维化往往是肝硬化的早期征兆。在肝纤维化初期,可以通过多种手段对肝脏病变进行控制,从而遏制其向肝硬化发展。然而,由于肝纤维化初期只发生在肝脏的局部区域,在超声下不会表现出明显征象,纤维化初期难以确诊。近年来,有研究表明,肝纤维化会引起病灶附近肝脏力学性质的显著变化。随着肝纤维化的发展,肝脏会逐渐变硬。因此,无创、无损、快速地对肝脏力学性质进行在体表征成为很多研究者共同努力的目标。
目前,在肝脏力学性质的在体无创测量方面,传统技术通常会采用瞬时弹性成像技术、剪切波弹性成像技术、核磁共振弹性成像技术等手段进行成像。以瞬时弹性成像技术为例,瞬时弹性成像技术是一种通过超声探头(A超)监控机械激励在人体内部引起的弹性波的传播,对人体组织的力学性质进行在体无创定量表征的方法。瞬时弹性成像的基本流程如下:用普通B超观察患者的肋间区域,找到一条适合力学性质测量的轴线。找到后,在体表做好标记。将探头顶在待测者的肋间,手动对组织施加一定压力,使得探头与皮肤表面紧密接触。手动保持探头位置稳定。探头产生位移激励信号,在组织内引起近场机械波的传播。由探头内部的振动元件带动探头端部产生一个完整周期的正弦脉冲,持续时间为20ms。此振动会引起近场机械波以激励点为球心进行传播。探头端部的超声换能器开始对探头轴线下方进行成像,以5000Hz左右的帧频采集回声信号,采用相关算法捕捉探头下方轴线上的质点轴向位移随时间的变化,由时空位移场计算近场机械波波速。将近场机械波波波速代入近场弹性波理论[3],得到组织的力学参数。
然而,传统技术中的瞬时弹性成像技术在获得测量参数时受操作者的操作影响较大,测量的有效深度也比较有限,有大片区域的肝脏在有效诊断区域之外,且传统瞬时弹性成像技术难以原位确认探头下方的组织情况,另外,传统瞬时弹性成像技术的激励系统对成像系统有干扰,综上,这些传统瞬时弹性成像技术的缺陷导致其瞬时弹性成像的测量精度较低。
发明内容
基于此,有必要针对上述传统技术的瞬时弹性成像技术的瞬时弹性成像的测量精度较低技术问题,提供一种用于弹性成像的探头。
一种用于弹性成像的探头,所述探头包括:
激励产生装置,所述激励产生装置开设有中空结构,用于在待测材料表面施加位移激励,使得所述待测材料内部产生近场波;
扫描装置,设置于所述激励产生装置的中空结构中,用于向所述待测材料发射扫描信号,并接收所述待测材料反射的反馈信号;
连接件,分别连接所述激励产生装置和所述扫描装置。
在其中一个实施例中,所述扫描装置包括超声换能器或光声扫描仪。
在其中一个实施例中,至少一个所述超声换能器设置于所述激励产生装置的中空结构中,用于向所述待测材料发射超声波信号,并接收所述待测材料反射的超声回波信号。
在其中一个实施例中,所述激励产生装置为环状结构。
在其中一个实施例中,所述激励产生装置与所述扫描装置之间的间隙为0.001mm-100mm。
在其中一个实施例中,所述探头还包括:
填充物,所述填充物设置于所述扫描装置与所述激励产生装置之间的间隙内。
在其中一个实施例中,所述探头还包括:
致动元件,所述致动元件与所述激励产生装置连接,用于向所述激励产生装置输出位移波形,使得所述激励产生装置发生运动。
在其中一个实施例中,所述探头还包括:
探头外壳,所述探头外壳的内壁与所述连接件连接,用于容纳所述激励产生装置、所述扫描装置、所述连接件、所述填充物以及所述致动元件。
在其中一个实施例中,所述探头还包括:
缓冲装置,所述缓冲装置的一端连接所述连接件,另一端连接所述致动元件,用于抵消或减弱所述激励产生装置的运动对所述探头外壳产生的作用力。
在其中一个实施例中,所述探头还包括:
压力传感器,所述压力传感器分别连接所述连接件和所述扫描装置,用于检测所述扫描装置与所述待测材料之间的压力。
在其中一个实施例中,所述中空结构的截面形状为圆形、椭圆形、矩形、星形、三角形或分布式散点形状。
在其中一个实施例中,所述位移波形包括单正弦波脉冲、谐波、三角波或宽频波。
上述用于弹性成像的探头,包括激励产生装置、扫描装置以及分别连接该激励产生装置和该扫描装置的连接件,该激励产生装置开设有中空结构,该扫描装置设置于激励产生装置的中空结构中,可以理解,该激励产生装置与该扫描装置间隔设置,使得激励产生装置与扫描装置空间分离,即扫描装置与激励产生装置的工作方式没有紧密的耦合关系,这样,扫描装置不会随激励产生装置的振动而发生运动,实现了在激励信号强度基本没有损失的情况下避免扫描装置在测量过程中的振动,从而提高了扫描信号采集的稳定性,降低了扫描信号后处理的复杂度,并有效提升了瞬时弹性成像的成功率和测量精度。
附图说明
图1为一个实施例中用于弹性成像的探头的结构示意图;
图2为一个实施例中方案A(a)和方案B(b)的示意图,两者的简化模型都为轴对称模型,虚线为模型的对称轴;圆形图为探头的正视图,反映探头的几何形状;
图3为一个实施例中不同形状的探头在不同硬度(杨氏模量)的块体材料上激励出的近场波模拟结果,二维图表示激励的中轴线上节点的轴向位移随着激励时间的变化;
图4为一个实施例中采用圆形激励与环形激励所产生的信号幅值的比较,横轴为深度,纵轴为该深度上的位移信号极值(采用了对数刻度);
图5为一个实施例中采用实心激励(方案A)和环形激励(方案B)对三种模量的材料进行表征时,各个深度上的轴向位移信号极值。(a)E=2KPa,(b)E=4KPa,(c)E=27KPa。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,请参阅图1,提供了一种用于弹性成像的探头,该探头包括激励产生装置102、扫描装置104以及分别固定连接该激励产生装置102和该扫描装置104的连接件106,该扫描装置104与该激励产生装置102间隔设置。进一步地,激励产生装置102开设有中空结构,扫描装置104设置于激励产生装置102的中空结构中。其中,该激励产生装置102用于在待测材料表面施加位移激励,使得待测材料内部产生近场波。扫描装置104用于向待测材料发射扫描信号,并接收待测材料反射的反馈信号,该反馈信号携带有近场波在待测材料内部的传播信息。可选地,待测材料可以是生物组织。
具体地,该激励产生102可以是激振头。该扫描装置104与该激励产生装置102间隔设置是指扫描装置104与激励产生装置102之间存在间隙,或可以理解为它们之间没有接触,这样,扫描装置104与激励产生装置102的工作方式没有耦合关系。例如,当操作人员将该探头与待测材料的表面相接触时,激励产生装置102会相对于待测材料的表面产生振动,这时,扫描装置104却不受激励产生装置102的振动影响而发生运动,即扫描装置104始终与待测材料的表面相接触。需要清楚,本实施例对间隙的大小并不做限定,只要激励产生装置102的运动不影响扫描装置104的工作即可。分离式设计使得探头具有更大的灵活性,例如,该探头还可用于非生物组织软材料的表征等。
可选地,扫描装置104与所述激励产生装置102之间的间隙为0.001mm-100mm。在一个实施例中,扫描装置104与所述激励产生装置102之间的间隙为0.001mm。在另一个实施例中,扫描装置104与所述激励产生装置102之间的间隙为100mm。在又一个实施例中,扫描装置104与所述激励产生装置102之间的间隙为0.01mm。可选地,扫描装置104与所述激励产生装置102之间的间隙内可放置填充物,该填充物可有效阻隔激励产生装置102的振动而引起的扫描装置104的运动,保证探头的扫描信号采集的稳定性。
上述用于弹性成像的探头,包括激励产生装置、扫描装置以及分别连接该激励产生装置和该扫描装置的连接件,该激励产生装置开设有中空结构,该扫描装置设置于激励产生装置的中空结构中,可以理解,该激励产生装置与该扫描装置间隔设置,使得激励产生装置与扫描装置空间分离,即扫描装置与激励产生装置的工作方式没有紧密的耦合关系,这样,扫描装置不会随激励产生装置的振动而发生运动,实现了在激励信号强度基本没有损失的情况下避免扫描装置在测量过程中的振动,从而提高了扫描信号采集的稳定性,降低了扫描信号后处理的复杂度,有望提高材料的表征准确度和表征成功率,从而有效提升了瞬时弹性成像的成功率和测量精度,有利于肝纤维化的早期筛查。
另外,激励产生装置102与扫描装置104的分离式设计给了该探头更大的自由度,可使该探头用于软材料的宏观表征,能够通过控制激励头的形状来控制信号聚焦深度,从而有助于解决传统技术在用于材料表征时遇到的近场信号强烈衰减的问题。
进一步地,该探头还包括致动元件108,该致动元件108与激励产生装置102连接,用于向激励产生装置102输出位移波形,使得激励产生装置102发生运动。其中,致动元件108与激励产生装置102构成探头的激励系统。可选地,该致动元件108可以为电致动元件108,也可以为其他能源驱动的致动元件108,本实施例并不做限定。以电致动元件108为例,电致动元件108检测到电信号后,输出设定的位移波形,从而使得激励产生装置102发生振动。可选地,设定的位移波形可以分为多个档位,如不同频率(30-200Hz)的单正弦波脉冲、谐波、三角波、甚至是宽频任意波,本实施例对位移波形的类型以及频率并不做限定,可根据实际需求选择。在本实施例中,由于激励产生装置102与扫描装置104互不干扰,激励系统的输出波形可以更加自由,有助于对待测材料粘弹性的表征以及复杂力学性质的表征。
可选地,在一个实施例中,激振头102通过与待测材料的直接或者间接接触来生成在该待测材料中传播的一个或者多个近场波。该近场波随时间的形状可以是任意的,但是更一般地为冲击型、过渡型或者周期(连续、单色)型。通常会采用机械的方式获得该振动,但是也可以通过辐射压力、通过超声高温或者通过在身体内的振动(心跳、脉搏等)来获得该振动。类似地,也可以借助在身体外部布置的激振头102来获得振动。
可选地,在一个实施例中,激振头102可以为低频振荡器或电机。为通过外力或内力作用使待测材料发生微小形变,通过激振头102发生低频低幅振动,引起向生物组织中传播的剪切波并诱导其发生微小形变。
在一个实施例中,激振头102为低频振荡器。具体地,在低频振荡器中,若剪切波的频率太高,则剪切波衰减太低,若频率太低,则衍射效应太强,这一切都不利于剪切波的传播。若低频振荡器中剪切波振幅太小,则使得传播深度有限,剪切波振幅太大,也会使得人体有不适感,因此在优选的实施例中,低频振荡器所产生的振动频率为10赫兹到1000赫兹,振幅为0.2毫米至2毫米。
可选地,在一个实施例中,上述扫描装置104包括超声换能器或光声扫描仪104。超声换能器的数量可以为一个或多个,多个超声换能器构成超声换能器阵列。可选地,超声换能器阵列可以为线阵超声换能器、凸阵超声换能器或相控阵超声换能器中的任意一种。光声扫描仪104的数量可以为一个或多个,多个光声扫描仪104构成光声扫描仪阵列。可选地,在一个实施例中,该探头还包括扫描装置固定件105,该扫描装置固定件105用于固定扫描装置104。对应地,用于固定超声换能器的固定件称之为超声换能器固定件,用于固定光声扫描仪104的固定件称之为光声扫描仪固定件105。其中,扫描装置104固定于扫描装置固定件105的固定方式不限,可以是扫描装置104嵌套入扫描装置固定件105中,也可以是扫描装置104粘贴在扫描装置固定件105上。
在一个实施例中,上述超声换能器可以是冠状、环形、2D矩阵、线性或者凸条换能器、单元件换能器、三元件换能器或者星型换能器等。
在一个实施例中,上述激励产生装置102开设有中空结构;至少一个超声换能器设置于该激励产生装置102的中空结构中,用于向待测材料发射超声波信号,并接收待测材料反射的超声回波信号,其中,超声回波信号携带有近场波在待测材料内部的传播信息。
具体地,中空结构的截面形状可以是圆形、椭圆形、矩形、星形、三角形或分布式散点形状,还可以是其他不规则的形状,该形状只要可以构成中空结构,都属于本申请保护的范围。其中,分布式散点形状是指由一个又一个分离的点区域构成的形状,扫描仪104例如超声换能器可设置在该点区域中。超声换能器设置在该激励产生装置102的中空结构中,这样,超声换能器与激励产生装置102的工作方式没有耦合关系。优选地,激励产生装置102为环状结构。此处以简单易懂的环状结构的激励产生装置102为例进行说明,当操作人员打开该探头的开关,并施加一定的压力将该探头与待测材料的表面相接触时,此时,环形激励产生装置102也和待测材料的表面相接触,它会在待测材料的表面施加位移激励,即产生振动,从而在待测材料的内部激发出类似于瞬时弹性成像系统激励出的近场波。进而,超声换能器通过向待测材料发射超声波信号,并接收待测材料反射的超声回波信号,这些超声回波信号携带有近场波在待测材料内部的传播信息,包括近场剪切波的波速、频散等信息。
可选地,上述超声换能器可以放置于激励产生装置102的中空结构的中心处,也可以放置于激励产生装置102的中空结构的其他位置,其可以根据实际需求进行放置,本申请并不做限定。
需要清楚,以人或动物为例,超声换能器与人或动物的体表接触,从而获取到生物组织的二维超声图像。通过超声换能器实时获得的二维超声图像进行精确定位,根据实际需要辅助和引导探头进行精确的定位,具体地,二维超声图像中间位置的扫描线所对应的位置即为待检测区域,为实际的临床瞬时弹性成像过程提供了精确定位。
在本实施例中,通过对激励头开设中空结构,该中空结构所释放的空间允许置入扫描装置104或微型B超等成像部件,在实际使用时可以直接用一个探头完成对探头下方肝脏均匀程度的探查,避开大血管等非均匀组织;同时实现了探头在使用时的轴线对中的目的,进而可以对探头的轴线方向实时检测,确保得到的数据更加准确有效。并且,本实施例使用中空结构的激励产生装置102例如环形激励产生装置102,将扫描装置104例如多组超声换能器置于环形的中心,从而使激励与成像相互分离开来,具有无创、快速、操作简单和成本低廉的诸多优点。
在一个实施例中,扫描装置104可以绕设于激励产生装置102的外表面进行设置。其中,激励产生装置102的两个端面之间所围成的外部表面即是该激励产生装置102的外表面。可选地,该激励产生装置102为实心结构。扫描装置104围绕该激励产生装置102的外表面进行设置,并且扫描装置104与激励产生装置102的工作方式没有耦合关系。这样,当激励产生装置102在待测材料的表面施加位移激励,即产生振动,从而在待测材料的内部激发出类似于瞬时弹性成像系统激励出的近场波。进而,扫描装置104例如可以是超声换能器,采用聚焦方式在探头的轴线方向上,向待测材料发射超声波信号,并接收待测材料反射的超声回波信号,这些超声回波信号携带有近场波在待测材料内部的传播信息,包括近场剪切波的波速、频散等信息。
可选地,在一个实施例中,上述扫描仪104可以设置在激振头102的两侧,例如,针对于肋骨区域的成像操作,由于肋骨呈细长的弓形,该探头可以设计成与肋骨形状近似的结构,这样,将扫描仪104沿肋骨延伸方向设置在激振头102的两侧,可以更加有效地、便捷地对肋骨区域进行成像。在一个实施例中,可通过两个定位柱将多个扫描仪104定位在激振头102的两侧。
在一个实施例中,该探头还包括探头外壳110,用于容纳探头的内部结构,包括上述激励产生装置102、扫描装置104、连接件106等。该探头外壳110还可以起到保护探头的内部结构以及方便操作人员进行操作的目的。进一步地,在一个实施例中,上述连接件106与探头外壳110固定连接,使得与连接件106连接的激励产生装置102和扫描装置104与探头外壳110的位置相固定,避免发生脱落。可选地,探头外壳110可以由塑料、金属或石英等材质构成。
进一步地,在一个实施例中,该探头还包括缓冲装置112,该缓冲装置112分别连接致动元件108和连接件106,用于抵消或减弱激励产生装置102运动对探头外壳110产生的作用力。具体地,缓冲装置112负责缓冲,减少激励产生装置102运动对探头外壳110带来的作用力,使得探头外壳110在激励产生装置102运动过程中基本不动。可选地,该缓冲装置112可以是拉伸弹簧、阻尼杆或橡胶条,需要清楚,只要能起到缓冲作用的装置,都属于本申请保护的范围。该缓冲装置112容纳在探头外壳110。
可选地,在一个实施例中,该探头还包括压力传感器114,该压力传感器114分别连接上述连接件106和扫描装置104,用于检测扫描装置104与待测材料之间的压力,使探头与待测材料的表面保持一定的挤压,从而保证两者紧密接触,使得扫描装置104产生的扫描信号能够有效地穿过待测材料的表面。该压力传感器114容纳在探头外壳110。
可选地,在一个实施例中,探头还包括覆盖激振器102和扫描仪104的保护膜(图未示)。该保护膜不仅可以保护探头免受损害,而且通过对待测材料的每个新的操作使用新的保护膜,还能防止待测材料免受任何污染。优选池,该保护膜包括回波凝胶,以确保适当的超声耦合。此外,为了防止污染物从一种待测材料传至另一种待测材料,该保护膜优选是一次性的。
下面将结合实际案例,并通过有限元仿真结果对本申请所述方案与Fibrosan(传统技术)的结果进行对比,从而说明本申请所述方案的优势。
从力学视角来看,Fibroscan方案(下称方案A)和本申请所述方案(下称方案B)所对应的力学简化模型分别如图2(a)和图2(b)所示。采用有限元方法对两者进行建模,待表征的块体材料为半空间无限大均匀块体材料,材料本构关系为线弹性材料,泊松比ν=0.499977,材料密度ρ=1000kg/m3;A情况的激振头截面形状为直径d=9mm的实心圆形;B情况的激振头截面形状为外径d=9mm的圆环形;激振头运动为一个正弦波,正弦波频率50Hz,振动的峰峰值为0.2mm;观察区域为半径L=100mm,高H=100mm的圆柱。
采用商业有限元软件Abaqus对两种情况下近场波的传播过程进行数值仿真,并提取模型对称轴线上的轴向位移分量Uy。作出轴线节点位移Uy随时间变化的时空图如图3所示。从图3中可以明显地看到近场波的波前沿深度方向的运动过程。用直线拟合二维时空图上的每个深度上的位移最小值点,可以得到近场波传播的相速度,代入理论公式E=3ρc2即可反演材料的弹性模量。数值模拟给出的结果如表1所示。可见,采取B方案并不会影响组织弹性性质的反演过程。
表1两种方案下材料杨氏模量的反演结果(单位:KPa)
注:杨氏模量的反演过程如下:(1)在深度25-65mm范围内,在如图3所示的速度时空图上找到每个深度下位移极值对应的时间,作出时间-深度散点图;(2)用直线对时间-深度的散点图进行拟合,拟合斜率即为近场波传播速度V;(3)通过经典公式E=3ρc2反演材料的杨氏模量。
中心挖空会使得激振器向组织内输入的能量变小,有可能会降低信噪比。由于近场波沿着深度方向本身就是强烈衰减的(图4),这种能量损失需要严格控制。为此,需要确定信号的衰减水平与挖空比例的关系。仍然提取在波传播过程中每个深度上的Uy极值,并作出该极值与深度的关系。可见,采取B方案能够在信号强度几乎没有损失的情况下,提供足够的空间给超声换能器组。
以上结果已经说明了环形激励瞬时弹性成像能够在信号相较Fibroscan几乎没有损失的情况下避免超声探头在成像过程中的运动,从而降低信号处理的复杂程度,提高该方法应用于肝纤维化早期筛查的稳定性和成功率。该方法除用于肝纤维化材料以外,还可以用于软材料的表征。在用于软材料表征时,由于不受人体复杂结构限制,环形探头的设计有了更大的空间。下面同样以一个有限元算例来进行描述。
待测材料为无限大的均匀块体,采用图2中(a)(b)方案对材料进行表征。(a)方案的激振器参数:d=9mm;(b)方案的环形激振器参数:dIn=25mm,d=25.4mm(这种参数选取是为了保证两种情况的接触区域大小一致)。激励信号仍为峰-峰值0.2mm的正弦信号。待表征材料的杨氏模量分别取为2KPa、4KPa和27KPa,泊松比仍为0.499977。同样提取有限元计算结果中轴线上的Uy并进行比较,结果如图5所示。可见,在接触区域相同的情况下,采用B方案能够在待测区域较深处获得很强的信号,同时能够规避A超探头在表征过程中的运动,从而提高材料表征的精度和稳定性。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种用于弹性成像的探头,其特征在于,所述探头包括:
激励产生装置,所述激励产生装置为环状结构,用于在待测材料表面施加位移激励,使得所述待测材料内部产生近场波;
扫描装置,所述扫描装置与所述激励产生装置之间的间隙为0.001mm-100mm,设置于所述激励产生装置的环状结构中,用于向所述待测材料发射扫描信号,并接收所述待测材料反射的反馈信号;
连接件,分别连接所述激励产生装置和所述扫描装置;
致动元件,所述致动元件与所述激励产生装置连接,用于向所述激励产生装置输出位移波形,使得所述激励产生装置发生运动;
探头外壳,所述探头外壳的内壁与所述连接件连接,用于容纳所述激励产生装置、所述扫描装置、所述连接件、填充物以及所述致动元件;
缓冲装置,所述缓冲装置的一端连接所述连接件,另一端连接所述致动元件,用于抵消或减弱所述激励产生装置的运动对所述探头外壳产生的作用力。
2.根据权利要求1所述的探头,其特征在于,所述扫描装置包括超声换能器或光声扫描仪。
3.根据权利要求2所述的探头,其特征在于,至少一个所述超声换能器设置于所述激励产生装置的中空结构中,用于向所述待测材料发射超声波信号,并接收所述待测材料反射的超声回波信号。
4.根据权利要求1所述的探头,其特征在于,所述扫描装置绕设于激励产生装置的外表面进行设置。
5.根据权利要求1所述的探头,其特征在于,所述激励产生装置为激振头,所述激振头为低频振荡器或电机。
6.根据权利要求5所述的探头,其特征在于,在所述激振头为低频振荡器的情况下,所述低频振荡器所产生的振动频率为10赫兹到1000赫兹。
7.根据权利要求1所述的探头,其特征在于,所述探头还包括:
填充物,所述填充物设置于所述激励产生装置与所述扫描装置之间的间隙内。
8.根据权利要求1至7任一所述的探头,其特征在于,所述探头还包括:
压力传感器,所述压力传感器分别连接所述连接件和所述扫描装置,用于检测所述扫描装置与所述待测材料之间的压力。
9.根据权利要求1所述的探头,其特征在于,所述环状结构的截面形状为圆形、椭圆形、矩形、星形、三角形或分布式散点形状。
10.根据权利要求1所述的探头,其特征在于,所述位移波形包括单正弦波脉冲、谐波、三角波或宽频波。
CN201910091985.6A 2019-01-30 2019-01-30 用于弹性成像的探头 Active CN109717905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910091985.6A CN109717905B (zh) 2019-01-30 2019-01-30 用于弹性成像的探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910091985.6A CN109717905B (zh) 2019-01-30 2019-01-30 用于弹性成像的探头

Publications (2)

Publication Number Publication Date
CN109717905A CN109717905A (zh) 2019-05-07
CN109717905B true CN109717905B (zh) 2024-02-23

Family

ID=66301215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910091985.6A Active CN109717905B (zh) 2019-01-30 2019-01-30 用于弹性成像的探头

Country Status (1)

Country Link
CN (1) CN109717905B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103720490A (zh) * 2013-12-31 2014-04-16 无锡海斯凯尔医学技术有限公司 一种瞬时弹性检测装置
CN104644209A (zh) * 2013-11-21 2015-05-27 通用电气公司 超声仪及应用于其上的振动装置
CN108095762A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108158610A (zh) * 2018-01-16 2018-06-15 苏州国科昂卓医疗科技有限公司 一种弹性成像方法、装置、设备及超声成像探头
CN209899435U (zh) * 2019-01-30 2020-01-07 清华大学 用于弹性成像的探头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844178B1 (fr) * 2002-09-06 2005-09-09 Dispositif et procede pour la mesure de l'elasticite d'un organe humain ou animal et l'etablissement d'une representation a deux ou trois dimensions de cette elasticite
CA2675920C (en) * 2008-08-20 2015-07-14 Sunnybrook Health Sciences Centre System and method for intracorporeal elastography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104644209A (zh) * 2013-11-21 2015-05-27 通用电气公司 超声仪及应用于其上的振动装置
CN103720490A (zh) * 2013-12-31 2014-04-16 无锡海斯凯尔医学技术有限公司 一种瞬时弹性检测装置
CN108158610A (zh) * 2018-01-16 2018-06-15 苏州国科昂卓医疗科技有限公司 一种弹性成像方法、装置、设备及超声成像探头
CN108095762A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN209899435U (zh) * 2019-01-30 2020-01-07 清华大学 用于弹性成像的探头

Also Published As

Publication number Publication date
CN109717905A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
CN109717904B (zh) 弹性成像系统
US5903516A (en) Acoustic force generator for detection, imaging and information transmission using the beat signal of multiple intersecting sonic beams
Fatemi et al. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound
CN102308207B (zh) 弹性测定设备和方法
US8225666B2 (en) Shear modulus estimation by application of spatially modulated impulse acoustic radiation force approximation
CN105748106B (zh) 超声探头以及具有该超声探头的超声检测设备
CN108652667B (zh) 用于测量粘弹性介质的粘弹性的装置和方法
Aglyamov et al. Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification
CN109730722B (zh) 基于聚焦超声声振信号的弹性成像方法
CN109745077B (zh) 基于聚焦超声声振信号的弹性特性检测方法
Bercoff et al. Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elastography
US20050004463A1 (en) Method and apparatus for shear property characterization from resonance induced by oscillatory radiation force
AU2019228303B2 (en) Hybrid elastography method, probe, and device for hybrid elastography
Barannik et al. Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro
CN109875608B (zh) 弹性成像方法
Liu et al. Viscoelastic property measurement in thin tissue constructs using ultrasound
CN114451916A (zh) 声透结构、弹性检测装置、探头、系统及方法
Kassou et al. Dispersion characteristics of the flexural wave assessed using low frequency (50–150 kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms
CN209899435U (zh) 用于弹性成像的探头
CN109717905B (zh) 用于弹性成像的探头
CN205849470U (zh) 超声探头以及具有该超声探头的超声检测设备
CN209899434U (zh) 弹性成像系统
Schafer Characterization of ultrasound surgical devices
Zhang et al. Vibration mode imaging
Certon et al. Low frequency cMUT technology: Application to measurement of brain movement and assessment of bone quality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant