CN109714881B - A rubidium-cesium diatomic beam source device - Google Patents

A rubidium-cesium diatomic beam source device Download PDF

Info

Publication number
CN109714881B
CN109714881B CN201811621195.6A CN201811621195A CN109714881B CN 109714881 B CN109714881 B CN 109714881B CN 201811621195 A CN201811621195 A CN 201811621195A CN 109714881 B CN109714881 B CN 109714881B
Authority
CN
China
Prior art keywords
cesium
rubidium
atomic
atom
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811621195.6A
Other languages
Chinese (zh)
Other versions
CN109714881A (en
Inventor
刘杰
孙富宇
马杰
李孝峰
李超
张首刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Time Service Center of CAS
Original Assignee
National Time Service Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Time Service Center of CAS filed Critical National Time Service Center of CAS
Priority to CN201811621195.6A priority Critical patent/CN109714881B/en
Publication of CN109714881A publication Critical patent/CN109714881A/en
Application granted granted Critical
Publication of CN109714881B publication Critical patent/CN109714881B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明公开一种铷铯双原子束源装置,设置铷原子真空密封筒和铯原子真空密封筒,分别产生铷原子和铯原子,铷原子和铯原子分别经铷原子通道和铯原子通道后进入同一金属原子束高准直器,使铷原子和铯经原子的行进路径精确重叠,为铷原子‑微波和铯原子‑微波在同一位置发生相互作用提供了前提,实现提高精密测量的精度,同时还有利于铷铯双原子钟的研制。

Figure 201811621195

The invention discloses a rubidium-cesium double-atom beam source device. A rubidium atom vacuum sealing cylinder and a cesium atom vacuum sealing cylinder are arranged to generate rubidium atoms and cesium atoms respectively, and the rubidium atoms and cesium atoms enter through a rubidium atom channel and a cesium atom channel respectively The high collimator of the same metal atom beam makes the traveling paths of rubidium atoms and cesium atoms overlap precisely, which provides a prerequisite for the interaction of rubidium atom-microwave and cesium atom-microwave at the same position, and improves the precision of precise measurement. It is also beneficial to the development of rubidium-cesium diatomic clocks.

Figure 201811621195

Description

一种铷铯双原子束源装置A rubidium-cesium diatomic beam source device

技术领域technical field

本发明涉原子束领域,特别是涉及一种铷铯双原子束源装置。The invention relates to the field of atomic beams, in particular to a rubidium-cesium double-atom beam source device.

背景技术Background technique

原子束为原子和电磁场提供了无碰撞效应的互作用环境,使得其在基础物理和工程技术上都具有极大应用价值。因此,研制束流方向和速度可控、无碰撞且强度稳定的原子束流装置始终是原子物理以及量子精密测量领域的重要课题之一。众所周知,单原子束产生装置(通常又被简称为原子束炉)已经被科学家广泛研究,最著名的便是已成功用于铯束原子钟上的束流源(或称之为“铯炉”),该铯炉为铯原子和微波、激光之间的相互作用提供了高品质无碰撞原子束,使得铯束原子钟具有显著优于传统气室型原子钟的准确度和稳定度,特别是在长期稳定度方面优势明显。目前国际上商品化束型原子钟主要是美国原惠普公司研制的HP 5071A热铯束原子钟。Atomic beams provide a collision-free interaction environment for atoms and electromagnetic fields, making them of great application value in both fundamental physics and engineering. Therefore, the development of an atomic beam device with controllable beam direction and speed, collision-free and stable intensity has always been one of the important topics in the field of atomic physics and quantum precision measurement. As we all know, single-atom beam generators (often referred to as atomic beam furnaces) have been extensively studied by scientists, the most famous being the beam source (or “cesium furnace”) that has been successfully used in cesium beam atomic clocks , The cesium furnace provides a high-quality collision-free atomic beam for the interaction between cesium atoms, microwaves and lasers, so that the cesium beam atomic clock has significantly better accuracy and stability than traditional gas-chamber atomic clocks, especially in long-term stability. The advantage is obvious. At present, the commercial beam-type atomic clocks in the world are mainly the HP 5071A hot cesium beam atomic clock developed by the former Hewlett-Packard Company in the United States.

束型原子钟能够提供极高水平的标准时间频率信号输出,因此在卫星导航定位、电力网络同步和5G通信基站建设上都有基础性作用,国际上其他主要科研大国,如中国、法国、日本等也都在进行束型原子钟的研制攻关。在这一背景下,进行原子钟核心部件之一——原子束流产生装置的创新开发就显得十分必要和紧迫。The beam-type atomic clock can provide a very high level of standard time and frequency signal output, so it has a basic role in satellite navigation and positioning, power network synchronization and 5G communication base station construction. Other major scientific research countries in the world, such as China, France, Japan, etc. They are also working on the research and development of beam-type atomic clocks. Under this background, it is very necessary and urgent to carry out the innovative development of atomic beam generator, one of the core components of atomic clock.

如前所述,单原子束流产生装置的研制历史已有多年,但相关机构仍在不断改进,推陈出新。在此基础上,近年来国际上出现了双原子系统研究热潮,相比单原子互作用系统,双原子体系为精密测量物理提供了一个潜力巨大的理想平台。比如已报道的通过对铷原子和铯原子跃迁频率比例的高精度测量,可检验爱因斯坦等效原理和基本物理常数的变化等。在这一比较测量实验中,保证铷铯两种原子所处环境的一致性,这可显著降低环境引起的测量不确定度。As mentioned above, the single-atom beam generation device has been developed for many years, but the related institutions are still improving and bringing forth new ones. On this basis, there has been an international upsurge in the research of diatomic systems in recent years. Compared with single-atom interaction systems, diatomic systems provide an ideal platform with great potential for precision measurement physics. For example, it has been reported that through the high-precision measurement of the transition frequency ratio of rubidium atoms and cesium atoms, Einstein's equivalence principle and changes in basic physical constants can be tested. In this comparative measurement experiment, the consistency of the environments of the two atoms of rubidium and cesium is guaranteed, which can significantly reduce the measurement uncertainty caused by the environment.

现有的铷铯双原子跃迁的双模微波腔为铷原子束和铯原子提供了相同的原子-微波互作用区。然而,若要保证铷铯两种原子和微波场相互作用位置精确一致,提高精密测量水平,还要求要有一个能产生铷铯两种原子束,并确保两种原子束行进路径完全一致的双原子束源产生装置。Existing dual-mode microwave cavities for rubidium-cesium diatomic transitions provide the same atom-microwave interaction region for rubidium atomic beams and cesium atoms. However, in order to ensure that the two atoms of rubidium and cesium interact with the microwave field precisely and identically, and to improve the level of precision measurement, it is also required to have a dual beam that can generate two kinds of rubidium and cesium atoms and ensure that the travel paths of the two atomic beams are exactly the same. Atomic beam source generator.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种铷铯双原子束源装置,达到铷原子和铯经原子的行进路径精确重叠的技术效果。The purpose of the present invention is to provide a rubidium-cesium diatomic beam source device, which achieves the technical effect that the travel paths of rubidium atoms and cesium via atoms are precisely overlapped.

为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:

一种铷铯双原子束源装置,所述装置包括双原子束源装置、金属原子束高准直器、铷原子真空密封筒和铯原子真空密封筒,所述铷原子真空密封筒用于产生铷原子束,所述铯原子真空密封筒用于产生铯原子束,所述铷原子真空密封筒与所述双原子束源装置的铷原子通道连接,所述铯原子真空密封筒与所述双原子束源装置的铯原子通道连接,所述铷原子束和所述铯原子束分别通过所述铷原子通道和所述铯原子通道进入位于所述双原子束源装置内部的所述金属原子束高准直器,经所述金属原子束高准直器的准直通道喷出,形成铷铯双原子束。A rubidium-cesium diatomic beam source device, the device comprises a diatomic beam source device, a metal atomic beam high collimator, a rubidium atomic vacuum sealing cylinder and a cesium atomic vacuum sealing cylinder, the rubidium atomic vacuum sealing cylinder is used for generating A rubidium atomic beam, the cesium atom vacuum sealing cylinder is used to generate a cesium atom beam, the rubidium atom vacuum sealing cylinder is connected with the rubidium atom channel of the double atomic beam source device, and the cesium atom vacuum sealing cylinder is connected with the double atomic beam source device. The cesium atomic channel of the atomic beam source device is connected, and the rubidium atomic beam and the cesium atomic beam enter the metal atomic beam located inside the dual atomic beam source device through the rubidium atomic channel and the cesium atomic channel respectively The high collimator is ejected through the collimation channel of the metal atom beam high collimator to form a rubidium-cesium diatomic beam.

可选的,所述铷原子真空密封筒包括铷原子泡和铷蒸汽平衡室,所述铷原子泡和所述铷蒸汽平衡室位于所述铷原子真空密封筒内部,所述铷原子泡设置于所述铷原子真空密封筒的击穿端,所述所述铷蒸汽平衡室设置于所述铷原子真空密封筒的出射端,所述铷原子泡内储存的铷原子被击穿后,加热形成铷原子蒸汽,进入所述铷蒸汽平衡室形成铷原子饱和蒸气压,通过所述铷原子通道进入所述金属原子束高准直器。Optionally, the rubidium atomic vacuum sealed cylinder includes a rubidium atomic bubble and a rubidium vapor balance chamber, the rubidium atomic bubble and the rubidium vapor balance chamber are located inside the rubidium atomic vacuum sealed cylinder, and the rubidium atomic bubble is arranged in the rubidium atomic vacuum sealed cylinder. The breakdown end of the rubidium atom vacuum sealed cylinder, the rubidium vapor balance chamber is arranged at the exit end of the rubidium atom vacuum sealed cylinder, and after the rubidium atoms stored in the rubidium atom bubble are broken down, heated to form The rubidium atomic vapor enters the rubidium vapor equilibrium chamber to form a saturated rubidium atomic vapor pressure, and enters the metal atom beam high collimator through the rubidium atomic channel.

可选的,所述铷原子真空密封筒还包括第一致密海绵镍筒和铷原子泡加热装置,所述第一致密海绵镍筒紧贴于所述铷原子真空密封筒的内壁,用于吸附被击穿的铷原子,所述铷原子泡加热装置缠绕在所述铷原子真空密封筒外侧,用于所述铷原子泡的单独加热和温控。Optionally, the rubidium atomic vacuum sealing cylinder further includes a first dense sponge nickel cylinder and a rubidium atomic bubble heating device, the first dense sponge nickel cylinder is closely attached to the inner wall of the rubidium atomic vacuum sealing cylinder, and is In order to adsorb the broken down rubidium atoms, the rubidium atomic bubble heating device is wound on the outside of the rubidium atom vacuum sealed cylinder, and is used for the independent heating and temperature control of the rubidium atomic bubble.

可选的,所述铷蒸汽平衡室外侧设有第一压缩弹簧,对所述铷原子泡施加压力,用于使所述铷原子泡与所述铷原子真空密封筒的击穿端设置的铷原子泡击穿电极紧密接触。Optionally, a first compression spring is provided on the outside of the rubidium vapor balance chamber, which applies pressure to the rubidium atomic bubble, so as to make the rubidium atomic bubble and the rubidium atomic vacuum sealed at the breakdown end of the rubidium atomic bubble. The atomic bubbles break down the electrodes in close contact.

可选的,所述铯原子真空密封筒包括铯原子泡和铯蒸汽平衡室,所述铯原子泡和所述铯蒸汽平衡室位于所述铯原子真空密封筒内部,所述铯原子泡设置于所述铯原子真空密封筒的击穿端,所述所述铯蒸汽平衡室设置于所述铯原子真空密封筒的出射端,所述铯原子泡内储存的铯原子被击穿后,加热形成铯原子蒸汽,进入所述铯蒸汽平衡室形成铯原子饱和蒸气压,通过所述铯原子通道进入所述金属原子束高准直器。Optionally, the cesium atomic vacuum sealed cylinder includes a cesium atomic bubble and a cesium vapor balance chamber, the cesium atomic bubble and the cesium vapor balance chamber are located inside the cesium atomic vacuum sealed cylinder, and the cesium atomic bubble is arranged in the cesium atomic vacuum sealed cylinder. The breakdown end of the cesium atom vacuum sealed cylinder, the cesium vapor balance chamber is arranged at the exit end of the cesium atom vacuum sealed cylinder, and after the cesium atoms stored in the cesium atom bubble are broken down, heated to form The cesium atom vapor enters the cesium vapor equilibrium chamber to form a cesium atom saturated vapor pressure, and enters the metal atom beam high collimator through the cesium atom channel.

可选的,所述铯原子真空密封筒还包括第二致密海绵镍筒和铯原子泡加热装置,所述第二致密海绵镍筒紧贴于所述铯原子真空密封筒的内壁,用于吸附被击穿的铯原子,所述铯原子泡加热装置缠绕在所述铯原子真空密封筒外侧,用于所述铯原子泡的单独加热和温控。Optionally, the cesium atomic vacuum sealed cylinder further includes a second dense sponge nickel cylinder and a cesium atomic bubble heating device, the second dense sponge nickel cylinder is closely attached to the inner wall of the cesium atomic vacuum sealed cylinder for adsorption. The broken down cesium atom, the cesium atom bubble heating device is wound on the outside of the cesium atom vacuum sealing cylinder, and is used for the separate heating and temperature control of the cesium atom bubble.

可选的,所述铯蒸汽平衡室外侧套设有第二压缩弹簧,对所述铯原子泡施加压力,用于使所述铯原子泡与所述铯原子真空密封筒的击穿端设置的铯原子泡击穿电极紧密接触。Optionally, a second compression spring is set on the outer side of the cesium vapor balance chamber to apply pressure to the cesium atomic bubble, so as to make the cesium atomic bubble and the breakdown end of the cesium atomic vacuum sealing tube set. Cesium atomic bubbles break down the electrodes in close contact.

可选的,所述金属原子束高准直器包括多个平片、多个波浪片和挤压块,两个所述平片之间依次设置所述平片和所述波浪片,使所述平片与所述波浪片间隔叠加装配,所述挤压快将所装配好的所述平片与所述波浪片挤压成一个整体,组成所述准直通道。Optionally, the metal atom beam high collimator includes a plurality of flat sheets, a plurality of corrugated sheets, and a pressing block, and the flat sheets and the corrugated sheets are sequentially arranged between the two flat sheets, so that all the The flat sheet and the wave sheet are stacked and assembled at intervals, and the assembled flat sheet and the wave sheet are extruded into a whole by the extrusion process to form the collimation channel.

可选的,所述双原子束源装置包括两个安装孔,用于安装使所述金属原子束高准直器保温的加热管。Optionally, the dual-atom beam source device includes two installation holes for installing a heating tube that keeps the metal atom beam high collimator warm.

可选的,所述双原子束源装置还包括定位孔和定位销,所述定位销插入所述定位孔,用于将所述双原子束源装置和所述金属原子束高准直器精密装配。Optionally, the dual-atom beam source device further includes a positioning hole and a positioning pin, and the positioning pin is inserted into the positioning hole for precisely aligning the dual-atom beam source device and the metal atomic beam high collimator. assembly.

根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明设置铷原子真空密封筒和铯原子真空密封筒,分别产生铷原子和铯原子,铷原子和铯原子分别经铷原子通道和铯原子通道后进入同一金属原子束高准直器,使铷原子和铯经原子的行进路径精确重叠,为铷原子-微波和铯原子-微波在同一位置发生相互作用提供了前提,实现提高精密测量的精度,同时还有利于铷铯双原子钟的研制。According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects: the present invention sets a rubidium atomic vacuum sealing cylinder and a cesium atomic vacuum sealing cylinder to generate rubidium atoms and cesium atoms respectively, and the rubidium atoms and cesium atoms pass through the rubidium atomic channel respectively It enters the same metal atom beam high collimator after passing through the channel with cesium atoms, so that the travel paths of rubidium atoms and cesium passing atoms are precisely overlapped, which provides a prerequisite for the interaction of rubidium atom-microwave and cesium atom-microwave at the same position, and improves the The precision of precise measurement is also beneficial to the development of rubidium-cesium diatomic clocks.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明实施例提供的铷铯双原子束源装置的结构示意图;1 is a schematic structural diagram of a rubidium-cesium diatomic beam source device provided by an embodiment of the present invention;

图2为本发明实施例提供的金属原子束高准直器的结构示意图。FIG. 2 is a schematic structural diagram of a metal atom beam high collimator provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明的目的是提供一种铷铯双原子束源装置,实现使铷原子和铯经原子的行进路径精确重叠的技术效果。The purpose of the present invention is to provide a rubidium-cesium diatomic beam source device to achieve the technical effect of accurately overlapping the travel paths of rubidium atoms and cesium via atoms.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

实施例Example

如图1所示,铷铯双原子束源装置包括,双原子束源装置1,金属原子束高准直器3、铷原子真空密封筒11和铯原子真空密封筒18,铷原子真空密封筒11,铷原子真空密封筒11用于产生铷原子束,铯原子真空密封筒18用于产生铯原子束,铷原子真空密封筒11与双原子束源装置1的铷原子通道5连接,铯原子真空密封筒18与双原子束源装置1的铯原子通道6连接,铷原子束和铯原子束分别通过铷原子通道5和铯原子通道6进入位于双原子束源装置1内部的金属原子束高准直器3,经金属原子束高准直器的准直通道喷出,形成铷铯双原子束。As shown in Figure 1, the rubidium-cesium diatomic beam source device includes a diatomic beam source device 1, a metal atomic beam high collimator 3, a rubidium atomic vacuum sealing cylinder 11 and a cesium atomic vacuum sealing cylinder 18, and a rubidium atomic vacuum sealing cylinder 11. The rubidium atomic vacuum sealing cylinder 11 is used to generate a rubidium atomic beam, the cesium atomic vacuum sealing cylinder 18 is used to generate a cesium atomic beam, and the rubidium atomic vacuum sealing cylinder 11 is connected with the rubidium atomic channel 5 of the dual atomic beam source device 1, and the cesium atomic The vacuum sealed cylinder 18 is connected with the cesium atomic channel 6 of the dual atomic beam source device 1, and the rubidium atomic beam and the cesium atomic beam enter the metal atomic beam height inside the dual atomic beam source device 1 through the rubidium atomic channel 5 and the cesium atomic channel 6 respectively. The collimator 3 is ejected through the collimation channel of the metal atomic beam high collimator to form a rubidium-cesium diatomic beam.

铷铯两种原子从各自的原子泡发出之后进入同一金属原子束高准直器3喷出,使铷原子束和铯原子束的行进路径精确重叠,为铷原子-微波和铯原子-微波在同一位置发生相互作用提供了前提,实现提高精密测量的精度,同时还有利于铷铯双原子钟的研制。The two kinds of atoms of rubidium and cesium are emitted from their respective atomic bubbles and then enter the same metal atom beam high collimator 3 to be ejected, so that the travel paths of the rubidium atomic beam and the cesium atomic beam are precisely overlapped, which is the rubidium atom-microwave and the cesium atom-microwave at the same time. The interaction at the same position provides a prerequisite for improving the precision of precise measurement, and is also conducive to the development of rubidium-cesium diatomic clocks.

铷原子真空密封筒11包括铷原子泡9和铷蒸汽平衡室7,铷原子泡9和铷蒸汽平衡室7位于铷原子真空密封筒11内部,铷原子泡9设置于铷原子真空密封筒11的击穿端,铷蒸汽平衡室7设置于铷原子真空密封筒11的出射端,铷原子泡9内储存的铷原子被击穿后,加热形成铷原子蒸汽,进入铷蒸汽平衡室7形成铷原子饱和蒸气压,通过铷原子通道5进入金属原子束高准直器3。The rubidium atomic vacuum sealed cylinder 11 includes a rubidium atomic bubble 9 and a rubidium vapor balance chamber 7, the rubidium atomic bubble 9 and the rubidium vapor balance chamber 7 are located inside the rubidium atomic vacuum sealed cylinder 11, and the rubidium atomic bubble 9 is arranged in the rubidium atomic vacuum sealed cylinder 11. At the breakdown end, the rubidium vapor balance chamber 7 is arranged at the exit end of the rubidium atom vacuum sealed cylinder 11. After the rubidium atoms stored in the rubidium atomic bubble 9 are broken down, they are heated to form rubidium atomic vapor, and enter the rubidium vapor balance chamber 7 to form rubidium atoms. The saturated vapor pressure enters the metal atom beam high collimator 3 through the rubidium atomic channel 5 .

铷原子真空密封筒11还包括第一致密海绵镍筒10和铷原子泡加热装置13,第一致密海绵镍筒10紧贴于铷原子真空密封筒11的内壁,用于吸附被击穿的铷原子,铷原子泡加热装置13缠绕在铷原子真空密封筒11外侧,用于铷原子泡9的单独加热和温控。The rubidium atomic vacuum sealing cylinder 11 also includes a first dense sponge nickel cylinder 10 and a rubidium atomic bubble heating device 13. The first dense sponge nickel cylinder 10 is closely attached to the inner wall of the rubidium atomic vacuum sealing cylinder 11 for adsorption and breakdown. The rubidium atom, the rubidium atom bubble heating device 13 is wound on the outside of the rubidium atom vacuum sealed cylinder 11, and is used for the independent heating and temperature control of the rubidium atom bubble 9.

第一致密海绵镍筒10紧贴铷原子真空密封筒11设置,一方面防止金属原子扩散,一方面防止在加热的时候,铷原子和铯原子相互渗透。铷原子泡加热装置13紧密缠绕在铷原子真空密封筒11,用机械方式固定,通过对铷原子泡加热装置13精确地功率控制,从而可以控制铷原子泡9的温度。The first dense sponge nickel cylinder 10 is arranged close to the rubidium atom vacuum sealing cylinder 11, on the one hand to prevent metal atoms from diffusing, and on the other hand to prevent rubidium atoms and cesium atoms from permeating each other during heating. The rubidium atomic bubble heating device 13 is tightly wound around the rubidium atomic vacuum sealed cylinder 11 and fixed by mechanical means. By precisely controlling the power of the rubidium atomic bubble heating device 13 , the temperature of the rubidium atomic bubble 9 can be controlled.

铷蒸汽平衡室7外侧套设有第一压缩弹簧8,对铷原子泡9施加压力,用于使铷原子泡9与铷原子真空密封筒11的击穿端设置的铷原子泡击穿电极12紧密接触。The outer side of the rubidium vapor balance chamber 7 is sleeved with a first compression spring 8, which exerts pressure on the rubidium atomic bubble 9, and is used to make the rubidium atomic bubble 9 and the rubidium atomic bubble arranged at the breakdown end of the rubidium atomic vacuum sealing cylinder 11 to penetrate the electrode 12. Close contact.

铷蒸汽平衡室7与双原子束源装置1连接,还与铷原子泡击穿电极12连接,形成了从金属原子真空储存、击穿到最终喷出原子束的整体结构。The rubidium vapor balance chamber 7 is connected to the double-atom beam source device 1, and is also connected to the rubidium atomic bubble breakdown electrode 12, forming an overall structure from vacuum storage of metal atoms, breakdown to final atomic beam ejection.

第一压缩弹簧8装配好之后,压缩对铷原子泡9的弹力使铷原子泡9的击穿盖与铷原子泡击穿电极12紧密接触,防止因接触不紧密导致的击穿失败。After the first compression spring 8 is assembled, the elastic force of the compression on the rubidium atomic bubble 9 makes the breakdown cover of the rubidium atomic bubble 9 in close contact with the rubidium atomic bubble breakdown electrode 12 to prevent the breakdown failure caused by the loose contact.

铯原子真空密封筒18包括铯原子泡16和铯蒸汽平衡室14,铯原子泡16和铯蒸汽平衡室14位于铯原子真空密封筒18内部,铯原子泡16设置于铯原子真空密封筒18的击穿端,铯蒸汽平衡室14设置于铯原子真空密封筒18的出射端,铯原子泡16内储存的铯原子被击穿后,加热形成铯原子蒸汽,进入铯蒸汽平衡室14形成铯原子饱和蒸气压,通过铯原子通道6进入金属原子束高准直器3。The cesium atomic vacuum seal cylinder 18 includes a cesium atomic bubble 16 and a cesium vapor balance chamber 14 , the cesium atomic bubble 16 and the cesium vapor balance chamber 14 are located inside the cesium atomic vacuum sealable cylinder 18 , and the cesium atomic bubble 16 is arranged in the cesium atomic vacuum sealed cylinder 18 . At the breakdown end, the cesium vapor balance chamber 14 is arranged at the exit end of the cesium atom vacuum sealed cylinder 18. After the cesium atoms stored in the cesium atomic bubble 16 are broken down, they are heated to form cesium atom vapor, and enter the cesium vapor balance chamber 14 to form cesium atoms. The saturated vapor pressure enters the metal atomic beam high collimator 3 through the cesium atomic channel 6 .

铯原子真空密封筒18还包括第二致密海绵镍筒17和铯原子泡加热装置19,第二致密海绵镍筒17紧贴于铯原子真空密封筒11的内壁,用于吸附被击穿的铯原子,铯原子泡加热装置19缠绕在铯原子真空密封筒11外侧,用于铯原子泡16的单独加热和温控。The cesium atomic vacuum sealing cylinder 18 also includes a second dense sponge nickel cylinder 17 and a cesium atomic bubble heating device 19. The second dense sponge nickel cylinder 17 is closely attached to the inner wall of the cesium atomic vacuum sealing cylinder 11 for adsorbing the broken down cesium Atoms, the cesium atomic bubble heating device 19 is wound around the outside of the cesium atomic vacuum sealed cylinder 11 , and is used for individual heating and temperature control of the cesium atomic bubbles 16 .

第二致密海绵镍筒17紧贴铯原子真空密封筒18设置,一方面防止金属原子扩散,一方面防止在加热的时候,铯原子和铯原子相互渗透。铯原子泡加热装置19紧密缠绕在铯原子真空密封筒18,用机械方式固定,通过对铯原子泡加热装置19精确地功率控制,从而可以控制铯原子泡16的温度。The second dense sponge nickel cylinder 17 is arranged close to the cesium atom vacuum sealing cylinder 18, which prevents metal atoms from diffusing on the one hand, and prevents cesium atoms from interpenetrating with cesium atoms during heating on the other hand. The cesium atomic bubble heating device 19 is tightly wound on the cesium atomic vacuum sealed cylinder 18 and fixed by mechanical means.

铯蒸汽平衡室14外侧套设有第二压缩弹簧15,对铯原子泡16施加压力,用于使铯原子泡16与铯原子真空密封筒18的击穿端设置的铯原子泡击穿电极紧密20接触。A second compression spring 15 is set on the outer side of the cesium vapor balance chamber 14 to exert pressure on the cesium atomic bubble 16, so as to make the cesium atomic bubble 16 and the cesium atomic bubble breakdown electrode provided at the breakdown end of the cesium atomic vacuum sealing cylinder 18 tightly close. 20 contacts.

铯蒸汽平衡室14与双原子束源装置1连接,还与铯原子泡击穿电极20连接,形成了从金属原子真空储存、击穿到最终喷出原子束的整体结构。The cesium vapor balance chamber 14 is connected to the double-atom beam source device 1, and also connected to the cesium atomic bubble breakdown electrode 20, forming an overall structure from vacuum storage of metal atoms, breakdown to final ejection of atomic beams.

第二压缩弹簧15装配好之后,压缩对铯原子泡16的弹力使铯原子泡16的击穿盖与铯原子泡击穿电极20紧密接触,防止因接触不紧密导致的击穿失败。After the second compression spring 15 is assembled, it compresses the elastic force of the cesium atomic bubble 16 so that the breakdown cover of the cesium atomic bubble 16 is in close contact with the cesium atomic bubble breakdown electrode 20, so as to prevent the breakdown failure caused by the loose contact.

双原子束源装置1包括两个安装孔4,用于安装使金属原子束高准直器3保温的加热管,为金属原子束高准直器3提供热源。The dual-atom beam source device 1 includes two installation holes 4 for installing a heating tube that keeps the metal atomic beam high-collimator 3 warm, and provides a heat source for the metal atomic beam high-collimator 3 .

双原子束源装置1还包括定位孔和定位销2,定位销2插入定位孔,用于将双原子束源装置1和金属原子束高准直器3精密装配。The dual-atom beam source device 1 further includes a positioning hole and a positioning pin 2, and the positioning pin 2 is inserted into the positioning hole for precise assembly of the dual-atom beam source device 1 and the metal atomic beam high collimator 3.

如图2所述,金属原子束高准直器3包括8个平片304、7个波浪片305和挤压块306,两个平片304之间依次设置平片304和波浪片305,平片304和波浪片305间隔装配,挤压块306将装配好的平片304和波浪片305挤压成一个整体,组成准直通道。金属原子饱和蒸汽压足够高时,会从初始准直口307进入准直通道,经过准直通道二次加压后在终结准直口以一定的速度喷出,形成高准直的、发散角小的金属原子束。As shown in FIG. 2 , the metal atom beam high collimator 3 includes 8 flat sheets 304 , 7 wave sheets 305 and pressing blocks 306 . The sheet 304 and the wave sheet 305 are assembled at intervals, and the pressing block 306 squeezes the assembled flat sheet 304 and the wave sheet 305 into a whole to form a collimating channel. When the saturated vapor pressure of metal atoms is high enough, they will enter the collimation channel from the initial collimation port 307, and after the secondary pressure of the collimation channel, they will be ejected at a certain speed at the final collimation port, forming a highly collimated and divergent angle. A beam of small metal atoms.

制作平片304与波浪片305的材料是厚度为0.02mm316不锈钢箔,平片304是由特制的精密单冲模具制成,波浪片305先经过特制的精密单冲模具制成比平片304尺寸稍大的平片,然后在由可靠的拉伸模具挤压而成。The material for making the flat sheet 304 and the corrugated sheet 305 is 316 stainless steel foil with a thickness of 0.02mm. The flat sheet 304 is made of a special precision single punching die. The wave sheet 305 is first made by a special precision single punching die. Slightly larger flat sheets are then extruded by reliable drawing dies.

金属原子束高准直器3还包括无氧铜限位片302和定位销303,无氧铜限位片302被定位销303精确的固定在金属原子束高准直器3上。The metal atom beam high collimator 3 further includes an oxygen-free copper limit piece 302 and a positioning pin 303 , and the oxygen-free copper limit piece 302 is precisely fixed on the metal atom beam high collimator 3 by the positioning pin 303 .

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The principles and implementations of the present invention are described herein using specific examples. The descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.

Claims (10)

1.一种铷铯双原子束源装置,其特征在于,所述装置包括双原子束源装置、金属原子束高准直器、铷原子真空密封筒和铯原子真空密封筒,所述铷原子真空密封筒用于产生铷原子束,所述铯原子真空密封筒用于产生铯原子束,所述铷原子真空密封筒与所述双原子束源装置的铷原子通道连接,所述铯原子真空密封筒与所述双原子束源装置的铯原子通道连接,所述铷原子束和所述铯原子束分别通过所述铷原子通道和所述铯原子通道进入位于所述双原子束源装置内部的所述金属原子束高准直器,经所述金属原子束高准直器的准直通道喷出,形成铷铯双原子束。1. a rubidium-cesium diatomic beam source device, it is characterized in that, described device comprises diatomic beam source device, metal atomic beam high collimator, rubidium atom vacuum sealing tube and cesium atom vacuum sealing tube, described rubidium atom The vacuum sealing cylinder is used for generating a rubidium atom beam, the cesium atom vacuum sealing cylinder is used for generating a cesium atom beam, the rubidium atom vacuum sealing cylinder is connected with the rubidium atom channel of the dual atom beam source device, and the cesium atom vacuum The sealing cylinder is connected to the cesium atom channel of the dual atomic beam source device, and the rubidium atom beam and the cesium atom beam enter the inside of the dual atom beam source device through the rubidium atom channel and the cesium atom channel respectively The metal atom beam high collimator is sprayed out through the collimation channel of the metal atom beam high collimator to form a rubidium cesium diatomic beam. 2.根据权利要求1所述的铷铯双原子束源装置,其特征在于,所述铷原子真空密封筒包括铷原子泡和铷蒸汽平衡室,所述铷原子泡和所述铷蒸汽平衡室位于所述铷原子真空密封筒内部,所述铷原子泡设置于所述铷原子真空密封筒的击穿端,所述铷蒸汽平衡室设置于所述铷原子真空密封筒的出射端,所述铷原子泡内储存的铷原子被击穿后,加热形成铷原子蒸汽,进入所述铷蒸汽平衡室形成铷原子饱和蒸气压,通过所述铷原子通道进入所述金属原子束高准直器。2 . The rubidium-cesium diatomic beam source device according to claim 1 , wherein the rubidium atomic vacuum sealed cylinder comprises a rubidium atomic bubble and a rubidium vapor balance chamber, the rubidium atomic bubble and the rubidium vapor balance chamber. 3 . is located inside the rubidium atomic vacuum sealed cylinder, the rubidium atomic bubble is arranged at the breakdown end of the rubidium atomic vacuum sealed cylinder, the rubidium vapor balance chamber is arranged at the exit end of the rubidium atomic vacuum sealed cylinder, the After the rubidium atoms stored in the rubidium atomic bubble are broken down, they are heated to form rubidium atomic vapor, enter the rubidium vapor equilibrium chamber to form the rubidium atomic saturated vapor pressure, and enter the metal atom beam high collimator through the rubidium atomic channel. 3.根据权利要求2所述的铷铯双原子束源装置,其特征在于,所述铷原子真空密封筒还包括第一致密海绵镍筒和铷原子泡加热装置,所述第一致密海绵镍筒紧贴于所述铷原子真空密封筒的内壁,用于吸附被击穿的铷原子,所述铷原子泡加热装置缠绕在所述铷原子真空密封筒外侧,用于所述铷原子泡的单独加热和温控。3. The rubidium-cesium diatomic beam source device according to claim 2, wherein the rubidium atomic vacuum sealed cylinder further comprises a first dense sponge nickel cylinder and a rubidium atomic bubble heating device. The sponge nickel cylinder is closely attached to the inner wall of the rubidium atom vacuum sealing cylinder for adsorbing the broken down rubidium atoms, and the rubidium atom bubble heating device is wound around the outside of the rubidium atom vacuum sealing cylinder and is used for the rubidium atom Individual heating and temperature control of the bubbles. 4.根据权利要求2所述的铷铯双原子束源装置,其特征在于,所述铷蒸汽平衡室外侧套设有第一压缩弹簧,对所述铷原子泡施加压力,用于使所述铷原子泡与所述铷原子真空密封筒的击穿端设置的铷原子泡击穿电极紧密接触。4 . The rubidium-cesium diatomic beam source device according to claim 2 , wherein a first compression spring is sleeved on the outside of the rubidium vapor balance chamber to exert pressure on the rubidium atomic bubble, so as to make the rubidium atomic bubble. 5 . The rubidium atomic bubble is in close contact with the rubidium atomic bubble breakdown electrode provided at the breakdown end of the rubidium atomic vacuum sealing cylinder. 5.根据权利要求1所述的铷铯双原子束源装置,其特征在于,所述铯原子真空密封筒包括铯原子泡和铯蒸汽平衡室,所述铯原子泡和所述铯蒸汽平衡室位于所述铯原子真空密封筒内部,所述铯原子泡设置于所述铯原子真空密封筒的击穿端,所述铯蒸汽平衡室设置于所述铯原子真空密封筒的出射端,所述铯原子泡内储存的铯原子被击穿后,加热形成铯原子蒸汽,进入所述铯蒸汽平衡室形成铯原子饱和蒸气压,通过所述铯原子通道进入所述金属原子束高准直器。5 . The rubidium-cesium diatomic beam source device according to claim 1 , wherein the cesium atomic vacuum sealed cylinder comprises a cesium atomic bubble and a cesium vapor balance chamber, the cesium atomic bubble and the cesium vapor balance chamber. 6 . is located inside the cesium atomic vacuum sealed cylinder, the cesium atomic bubble is arranged at the breakdown end of the cesium atomic vacuum sealed cylinder, the cesium vapor balance chamber is arranged at the exit end of the cesium atomic vacuum sealed cylinder, the After the cesium atoms stored in the cesium atomic bubble are broken down, they are heated to form cesium atomic vapor, enter the cesium vapor equilibrium chamber to form a cesium atomic saturated vapor pressure, and enter the metal atom beam high collimator through the cesium atomic channel. 6.根据权利要求5所述的铷铯双原子束源装置,其特征在于,所述铯原子真空密封筒还包括第二致密海绵镍筒和铯原子泡加热装置,所述第二致密海绵镍筒紧贴于所述铯原子真空密封筒的内壁,用于吸附被击穿的铯原子,所述铯原子泡加热装置缠绕在所述铯原子真空密封筒外侧,用于所述铯原子泡的单独加热和温控。6. The rubidium-cesium diatomic beam source device according to claim 5, wherein the cesium atomic vacuum sealed cylinder further comprises a second dense sponge nickel cylinder and a cesium atomic bubble heating device, the second dense nickel sponge The cylinder is closely attached to the inner wall of the cesium atom vacuum sealing cylinder for adsorbing the broken down cesium atoms, and the cesium atom bubble heating device is wound on the outside of the cesium atom vacuum sealing cylinder, and is used for Individually heated and temperature controlled. 7.根据权利要求5所述的铷铯双原子束源装置,其特征在于,所述铯蒸汽平衡室外侧套设有第二压缩弹簧,对所述铯原子泡施加压力,用于使所述铯原子泡与所述铯原子真空密封筒的击穿端设置的铯原子泡击穿电极紧密接触。7 . The rubidium-cesium diatomic beam source device according to claim 5 , wherein a second compression spring is sleeved on the outside of the cesium vapor balance chamber to apply pressure to the cesium atomic bubble, so as to make the The cesium atomic bubble is in close contact with the cesium atomic bubble breakdown electrode provided at the breakdown end of the cesium atomic vacuum sealed cylinder. 8.根据权利要求1所述的铷铯双原子束源装置,其特征在于,所述金属原子束高准直器包括多个平片、多个波浪片和挤压块,两个所述平片之间依次设置所述平片和所述波浪片,使所述平片与所述波浪片间隔叠加装配,所述挤压块将所装配好的所述平片与所述波浪片挤压成一个整体,组成所述准直通道。8 . The rubidium-cesium diatomic beam source device according to claim 1 , wherein the metal atom beam high collimator comprises a plurality of flat sheets, a plurality of wave sheets and extruded blocks, two of the flat sheets The flat sheet and the corrugated sheet are arranged in sequence between the sheets, so that the flat sheet and the corrugated sheet are stacked and assembled at intervals, and the pressing block squeezes the assembled flat sheet and the corrugated sheet into a whole to form the collimation channel. 9.根据权利要求1所述的铷铯双原子束源装置,其特征在于,所述双原子束源装置包括两个安装孔,用于安装使所述金属原子束高准直器保温的加热管。9 . The rubidium-cesium diatomic beam source device according to claim 1 , wherein the diatomic beam source device comprises two mounting holes for installing a heating device that keeps the metal atom beam high collimator warm. 10 . Tube. 10.根据权利要求1所述的铷铯双原子束源装置,其特征在于,所述双原子束源装置还包括定位孔和定位销,所述定位销插入所述定位孔,用于将所述双原子束源装置和所述金属原子束高准直器精密装配。10 . The rubidium-cesium diatomic beam source device according to claim 1 , wherein the diatomic beam source device further comprises a positioning hole and a positioning pin, the positioning pin being inserted into the positioning hole for positioning the The dual atom beam source device and the metal atom beam high collimator are precisely assembled.
CN201811621195.6A 2018-12-28 2018-12-28 A rubidium-cesium diatomic beam source device Active CN109714881B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811621195.6A CN109714881B (en) 2018-12-28 2018-12-28 A rubidium-cesium diatomic beam source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811621195.6A CN109714881B (en) 2018-12-28 2018-12-28 A rubidium-cesium diatomic beam source device

Publications (2)

Publication Number Publication Date
CN109714881A CN109714881A (en) 2019-05-03
CN109714881B true CN109714881B (en) 2020-12-04

Family

ID=66257937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811621195.6A Active CN109714881B (en) 2018-12-28 2018-12-28 A rubidium-cesium diatomic beam source device

Country Status (1)

Country Link
CN (1) CN109714881B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967962B (en) * 2019-11-26 2021-04-06 北京无线电计量测试研究所 Electric shock penetrating system and method for cesium oven
CN115079552B (en) * 2022-07-15 2024-03-29 中国科学院国家授时中心 A dual-atomic clock and a Ramsey cavity shared by two atoms

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071019B2 (en) * 2008-10-31 2011-12-06 Honeywell International Inc. Methods for introduction of a reactive material into a vacuum chamber
US8530853B2 (en) * 2011-07-22 2013-09-10 The United States of America, as represented by the Secretary of Commerce, NIST Charged particle source from a photoionized cold atom beam
CN105430864B (en) * 2015-11-12 2017-12-12 华中科技大学 A kind of atomic generator
CN105376923B (en) * 2015-11-12 2018-03-09 华中科技大学 A kind of atomic generator that can improve atomic beam density
CN106068054A (en) * 2016-05-24 2016-11-02 中国人民解放军装备学院 A kind of fluid-cooled gas Metastable atomic beam stream generation apparatus
CN206432049U (en) * 2017-01-20 2017-08-22 中国电子科技集团公司第十二研究所 Atomic beam collimation device for atomic clock
CN108710284B (en) * 2018-07-27 2024-05-07 北京无线电计量测试研究所 Cesium stove system for microchannel plate test

Also Published As

Publication number Publication date
CN109714881A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
CN109714881B (en) A rubidium-cesium diatomic beam source device
Lindl et al. Review of the national ignition campaign 2009-2012
US4042848A (en) Hypocycloidal pinch device
Morozov Introduction to plasma dynamics
Arenz et al. First transmission of electrons and ions through the KATRIN beamline
Walker et al. Investigation of GeV-scale electron acceleration in a gas-filled capillary discharge waveguide
RU2603013C1 (en) Vacuum neutron tube
Burdakov et al. Multiple-mirror trap: a path from Budker magnetic mirrors to linear fusion reactor
GB890372A (en) Vacuum panel insulation
RU2451433C1 (en) Gas-filled neutron tube
Debayle et al. Electron heating by intense short-pulse lasers propagating through near-critical plasmas
Amaro et al. Optimal laser focusing for positron production in laser–electron scattering
Lécz et al. Laser-induced extreme magnetic field in nanorod targets
Hada et al. Ultrafast X‐ray sources for time‐resolved measurements
US2983834A (en) Neutron discharge tube
US2576601A (en) Method of accelerating ions
RU132240U1 (en) PULSE NEUTRON GENERATOR
GB1414150A (en) Production of ozone
Borisov et al. Prototype of a high-power, high-energy industrial XeCl laser
US1657574A (en) Method and apparatus for converting electric power
Karamatskos et al. Time-resolving the UV-initiated photodissociation dynamics of OCS
Unzicker et al. Electron choreography at the attosecond time scale
Liu et al. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster
Pšikal Ion acceleration in small-size targets by ultra-intense short laser pulses (simulation and theory)
RU195753U1 (en) Inertial Ion Vacuum Neutron Tube

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant