CN109712160A - 基于广义熵结合改进的狮群算法实现图像阈值分割方法 - Google Patents
基于广义熵结合改进的狮群算法实现图像阈值分割方法 Download PDFInfo
- Publication number
- CN109712160A CN109712160A CN201811596721.8A CN201811596721A CN109712160A CN 109712160 A CN109712160 A CN 109712160A CN 201811596721 A CN201811596721 A CN 201811596721A CN 109712160 A CN109712160 A CN 109712160A
- Authority
- CN
- China
- Prior art keywords
- lion
- group
- lioness
- individual
- follows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000282320 Panthera leo Species 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000011218 segmentation Effects 0.000 title claims abstract description 23
- 235000002256 Diospyros oleifera Nutrition 0.000 claims abstract description 21
- 244000153389 Diospyros oleifera Species 0.000 claims abstract description 21
- 238000003709 image segmentation Methods 0.000 claims abstract description 15
- 238000012952 Resampling Methods 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- 230000008901 benefit Effects 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000006872 improvement Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 235000015170 shellfish Nutrition 0.000 claims 1
- 238000002203 pretreatment Methods 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811596721.8A CN109712160B (zh) | 2018-12-26 | 2018-12-26 | 基于广义熵结合改进的狮群算法实现图像阈值分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811596721.8A CN109712160B (zh) | 2018-12-26 | 2018-12-26 | 基于广义熵结合改进的狮群算法实现图像阈值分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109712160A true CN109712160A (zh) | 2019-05-03 |
CN109712160B CN109712160B (zh) | 2023-05-23 |
Family
ID=66258312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811596721.8A Active CN109712160B (zh) | 2018-12-26 | 2018-12-26 | 基于广义熵结合改进的狮群算法实现图像阈值分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109712160B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112433507A (zh) * | 2019-08-26 | 2021-03-02 | 电子科技大学 | 基于lso-lssvm的五轴数控机床热误差综合建模方法 |
CN112668864A (zh) * | 2020-12-24 | 2021-04-16 | 山东大学 | 一种基于狮群算法的车间生产排产方法及系统 |
CN113050658A (zh) * | 2021-04-12 | 2021-06-29 | 西安科技大学 | 一种基于狮群算法优化的slam算法 |
CN114248152A (zh) * | 2021-12-31 | 2022-03-29 | 江苏洵谷智能科技有限公司 | 一种基于优选特征和狮群优化svm的刀具磨损状态评估方法 |
CN114936577A (zh) * | 2022-05-23 | 2022-08-23 | 大连大学 | 一种基于改进狮群算法的混合图像盲分离方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504681A (zh) * | 2014-11-25 | 2015-04-08 | 桂林电子科技大学 | 一种聚类失真度最小的阈值图像分割方法 |
CN107169983A (zh) * | 2017-04-13 | 2017-09-15 | 西安电子科技大学 | 基于交叉变异人工鱼群算法的多阈值图像分割方法 |
CN108305272A (zh) * | 2018-02-27 | 2018-07-20 | 郑州轻工业学院 | 一种基于alo搜索的突变运动目标跟踪方法 |
CN108805907A (zh) * | 2018-06-05 | 2018-11-13 | 中南大学 | 一种行人姿势多特征智能辨识方法 |
-
2018
- 2018-12-26 CN CN201811596721.8A patent/CN109712160B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504681A (zh) * | 2014-11-25 | 2015-04-08 | 桂林电子科技大学 | 一种聚类失真度最小的阈值图像分割方法 |
CN107169983A (zh) * | 2017-04-13 | 2017-09-15 | 西安电子科技大学 | 基于交叉变异人工鱼群算法的多阈值图像分割方法 |
CN108305272A (zh) * | 2018-02-27 | 2018-07-20 | 郑州轻工业学院 | 一种基于alo搜索的突变运动目标跟踪方法 |
CN108805907A (zh) * | 2018-06-05 | 2018-11-13 | 中南大学 | 一种行人姿势多特征智能辨识方法 |
Non-Patent Citations (5)
Title |
---|
MUKUND B. WAGH: "车载ad-hoc网络最优路由的定量与定性相关性分析", 《中南大学学报(英文版)》 * |
THIAGARAJAN RAMAKRISHNAN等: "Efficient implementation for classifying and segmenting of computed tomography brain tumour images using modified region growing with lion algorithm", 《INT. J. OF BIOMEDICAL ENGINEERING AND TECHNOLOGY》 * |
YUHE LI等: "A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture", 《IEEE TRANSACTIONS ON MEDICAL IMAGING》 * |
刘生建: "一种群体智能算法——狮群算法", 《模式识别与人工智能》 * |
焦瑞芳等: "一种改进的新型广义熵在图像分割中的应用", 《电视技术》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112433507A (zh) * | 2019-08-26 | 2021-03-02 | 电子科技大学 | 基于lso-lssvm的五轴数控机床热误差综合建模方法 |
CN112668864A (zh) * | 2020-12-24 | 2021-04-16 | 山东大学 | 一种基于狮群算法的车间生产排产方法及系统 |
CN112668864B (zh) * | 2020-12-24 | 2022-06-07 | 山东大学 | 一种基于狮群算法的车间生产排产方法及系统 |
CN113050658A (zh) * | 2021-04-12 | 2021-06-29 | 西安科技大学 | 一种基于狮群算法优化的slam算法 |
CN113050658B (zh) * | 2021-04-12 | 2022-11-22 | 西安科技大学 | 一种基于狮群算法优化的slam算法 |
CN114248152A (zh) * | 2021-12-31 | 2022-03-29 | 江苏洵谷智能科技有限公司 | 一种基于优选特征和狮群优化svm的刀具磨损状态评估方法 |
CN114248152B (zh) * | 2021-12-31 | 2024-05-10 | 江苏洵谷智能科技有限公司 | 一种基于优选特征和狮群优化svm的刀具磨损状态评估方法 |
CN114936577A (zh) * | 2022-05-23 | 2022-08-23 | 大连大学 | 一种基于改进狮群算法的混合图像盲分离方法 |
CN114936577B (zh) * | 2022-05-23 | 2024-03-26 | 大连大学 | 一种基于改进狮群算法的混合图像盲分离方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109712160B (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109712160A (zh) | 基于广义熵结合改进的狮群算法实现图像阈值分割方法 | |
Li et al. | Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model | |
Tong et al. | Polynomial fitting algorithm based on neural network | |
CN109741318B (zh) | 基于有效感受野的单阶段多尺度特定目标的实时检测方法 | |
CN109934121A (zh) | 一种基于YOLOv3算法的果园行人检测方法 | |
CN112052886A (zh) | 基于卷积神经网络的人体动作姿态智能估计方法及装置 | |
CN110335290A (zh) | 基于注意力机制的孪生候选区域生成网络目标跟踪方法 | |
CN107392919B (zh) | 基于自适应遗传算法的灰度阈值获取方法、图像分割方法 | |
CN110414349A (zh) | 引入感知模型的孪生卷积神经网络人脸识别算法 | |
CN104778448A (zh) | 一种基于结构自适应卷积神经网络的人脸识别方法 | |
CN112597993B (zh) | 基于补丁检测的对抗防御模型训练方法 | |
CN108921019A (zh) | 一种基于GEI和TripletLoss-DenseNet的步态识别方法 | |
Liu et al. | L3DOC: Lifelong 3D object classification | |
CN113627472A (zh) | 基于分层深度学习模型的智慧园林食叶害虫识别方法 | |
CN111582198A (zh) | 一种遥感图像海陆自动分割方法 | |
CN110334656A (zh) | 基于信源概率加权的多源遥感图像水体提取方法及装置 | |
Sahu et al. | Dynamic routing using inter capsule routing protocol between capsules | |
Wang et al. | Underwater target detection based on reinforcement learning and ant colony optimization | |
Shokouhifar et al. | A hybrid approach for effective feature selection using neural networks and artificial bee colony optimization | |
CN111539985A (zh) | 一种融合多特征的自适应运动目标跟踪方法 | |
CN107507199A (zh) | 一种图像分割方法及系统 | |
CN111144497B (zh) | 基于美学分析的多任务深度网络下的图像显著性预测方法 | |
Li et al. | Research on underwater small target detection algorithm based on improved yolov3 | |
Zheng et al. | Fruit tree disease recognition based on convolutional neural networks | |
CN107563294A (zh) | 一种基于自学习的指静脉特征提取方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190503 Assignee: Guangxi Yanze Information Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980046249 Denomination of invention: Image thresholding segmentation method based on improved lion swarm algorithm combined with generalized entropy Granted publication date: 20230523 License type: Common License Record date: 20231108 Application publication date: 20190503 Assignee: Guangxi Guilin Yunchen Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045796 Denomination of invention: Image thresholding segmentation method based on improved lion swarm algorithm combined with generalized entropy Granted publication date: 20230523 License type: Common License Record date: 20231108 |
|
EE01 | Entry into force of recordation of patent licensing contract |