CN109709786B - 一种超分辨率数字全息成像系统和成像方法 - Google Patents

一种超分辨率数字全息成像系统和成像方法 Download PDF

Info

Publication number
CN109709786B
CN109709786B CN201910136421.XA CN201910136421A CN109709786B CN 109709786 B CN109709786 B CN 109709786B CN 201910136421 A CN201910136421 A CN 201910136421A CN 109709786 B CN109709786 B CN 109709786B
Authority
CN
China
Prior art keywords
light
spectrum
image
frequency
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910136421.XA
Other languages
English (en)
Other versions
CN109709786A (zh
Inventor
金川
何渝
唐燕
魏宏斌
赵立新
胡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201910136421.XA priority Critical patent/CN109709786B/zh
Publication of CN109709786A publication Critical patent/CN109709786A/zh
Application granted granted Critical
Publication of CN109709786B publication Critical patent/CN109709786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种超分辨率数字全息成像系统和成像方法,该成像系统是在传统的马赫‑曾德尔全息光路前加入一块透射式空间光调制器(SLM),通过在SLM中生成不同方向的条纹图,从而产生不同方向的结构光,图像传感器采集到一系列结构光照明形成的全息图。该成像方法在计算机中对每一幅全息图进行傅里叶变换,并将这一系列全息图进行空间频域上的叠加,再解调其高频信息,最后使用数字全息的经典重建算法,实现对物体更高分辨率的成像。本发明为提升数字全息成像系统分辨率提供了新的解决思路。

Description

一种超分辨率数字全息成像系统和成像方法
技术领域
本发明涉及数字全息成像技术领域,具体为一种超分辨率数字全息成像系统和成像方法。
背景技术
数字全息是将计算机技术和全息术相结合,利用图像传感器来替换原有的全息干板来记录全息图,并在计算机中对全息图进行处理。其不受光学系统的限制,直接记录干涉全息图,然后通过计算处理即可获得被测物体的结构信息,其纵向分辨率能达到亚纳米级别。数字全息显微技术不仅有其他光学测量技术的高精度、非接触等特点,而且系统简单,无需对被测物成像,无需扫描,所有滤波处理都通过计算机完成,具有较强的鲁棒性。因此数字全息显微技术被广泛应用于MEMS微结构应力观测、微结构动态参数及微生物的动态观察、粒子场的实时变换检测等。但是受现有图像传感器分辨率和尺寸的限制,数字全息的横向分辨率有待提高。
发明内容
本发明的目的是在不改变现有数字全息系统结构的基础上,通过结合结构光照明技术,提升数字全息成像的横向分辨率。提出一种超分辨率数字全息成像系统和成像方法,在常规的数字全息成像光路前加入一个透射式空间光调制器,将原有的成像系统的均匀光照明改造为结构光照明,让物体更高的空间频率进入图像传感器,然后,在计算机中对每一幅全息图进行傅里叶变换,并将这一系列全息图进行空间频域上的叠加,再进行解调高频信息的过程,最后使用数字全息的经典重建算法,实现对物体更高分辨率的成像。
本发明采用的技术方案为:一种超分辨率数字全息成像系统,激光器1同轴方向上依次放置衰减片2,扩束镜3产生较大的光束,再通过透射式SLM 4生成结构光,后被第一分光平片5分为两束能量相同的光波;其中一束经过第一反射镜6反射后透射经过第二分光平片10平行出射在待测物体11表面,待测物体11表面反射光经过第二分光平片10反射后,进入图像传感器12作为物光;另一束经第一分光平片5反射作为参考光,经过第二反射镜7反射后,通过显微物镜8形成聚焦光束,后出射于显微物镜8焦平面上的针孔9,近而形成球面光波,再通过第二分光平片10,进入图像传感器12,与物光干涉后产生含有物体信息的干涉条纹被图像传感器12接收,然后通过算法解调出原始高频信息,重建物光波。
其中,透射式SLM放置于分光光路之前。
其中,图像传感器12包括面阵彩色相机、线阵彩色相机、面阵黑白相机和线阵黑白相机,其类型包括CMOS和CCD。
其中,第二分光平片10可调,即适用于离轴全息和同轴全息。
其中,重建算法可以为菲涅尔变换法、卷积法、角谱法和小波变换法等常用重建方式。
其中,为了获取图像各个方向上超分辨,至少需要三幅不同方向的条纹图,条纹图的方向和数量不定。
其中,成像方法包括以下步骤:
步骤1)、收集不同方向条纹图对应的全息图,对其进行傅里叶变换,在频域中提取全息图的原始像。
步骤2)、融合几幅全息图原始像的频谱。
步骤3)、对融合后的频谱进行频谱搬移、频谱拼接等解调过程。
步骤4)、使用常用的重建算法完成物光重建。
本发明的有益效果为:
1)在普通的数字全息系统的分光光路之前加入一块透射式SLM,使更多的物光高频信息进入到图像传感器中。
2)本发明的成像方法结合结构光照明的解调算法和数字全息的重建算法,经过频谱拼接、频谱搬移等步骤使高频信息得以恢复,因此重建的图像具有较高的分辨率。
3)本发明与现有的数字全息技术兼容,具有较强的可拓展性。
附图说明
图1为一种超分辨率数字全息成像系统示意图;
图2为透射式SLM生成的不同方向的条纹图其中,图2(1)为θ=0°,图2(2)为θ=60°,图2(3)为θ=120°;
图3为原始像频谱混叠图;
图4为成像方法的频率解调算法示意图,其中,图4(1)为频谱获取,图4(2)为提取高频,图4(3)为频谱搬移,图4(4)为频谱拼接;
图1中附图标记含义为:1为激光器,2为衰减片,3为扩束镜,4为透射式SLM,5为第一分光平片,6为第一反射镜,7为第二反射镜,8为显微物镜,9为针孔,10为第二分光平片,11为待测物体,12为图像传感器。
具体实施方式
下面结合附图对本发明做详细说明。
如图1所示,图1为一种超分辨率数字全息成像系统示意图;如图所见,本这套成像系统包括:激光器1同轴方向上依次放置衰减片2,扩束镜3产生较大的光束,再通过透射式SLM 4生成结构光,后被第一分光平片5分为两束能量相同的光波;其中一束经过第一反射镜6反射后透射经过第二分光平片10平行出射在待测物体11表面,待测物体11表面反射光经过第二分光平片10反射后,进入图像传感器12作为物光;另一束经第一分光平片5反射作为参考光,经过第二反射镜7反射后,通过显微物镜8形成聚焦光束,后出射于显微物镜8焦平面上的针孔9,近而形成球面光波,再依次通过第二分光平片10,进入图像传感器12,后与物光干涉后产生含有物体信息的干涉条纹被图像传感器12接收,计算机通过算法解调出原始高频信息,重建物光波。光路中各光学元件与激光束垂直并中心保持在光轴上。
以上光路中的激光器使用的是波长为632.8nm的He-Ne激光器,扩束镜对光斑产生3倍的扩束效果,透射式SLM中依次产生图2所示的3幅条纹图用于扩展不同方向的系统数值孔径,从而使物体各个方向的高频信息得以进入图像传感器。
通过上述的超分辨率数字全息成像系统得到的全息图使用特定成像方法进行物光重建,该方法有以下步骤:
1)在透射式SLM上依次显示的图2的条纹图,其条纹周期为30μm,条纹角度分别为0°、60°、120°,图像传感器收集得到3幅相应的条纹图对应的全息图Ei(x,y,0)(i=1,2,3)。
2)对每一幅全息图进行傅里叶变换,得到其空间频域:
Figure BDA0001977061770000031
上式中
Figure BDA0001977061770000032
代表Ei(x,y,0)的频谱,u和v分别是x和y方向上的空间频率。频谱上有3个亮斑,分别代表共轭像、零级像和原始像的频谱,为了获取不受干扰的物光波,使用窗函数对这个频谱中的原始像进行提取,并把这个原始像的频谱平移到整个频谱的中心位置,得到的图像频谱表示为
Figure BDA0001977061770000033
3)因为受到了结构光的调制,可以发现每幅原始像频谱中心亮点的周围都有两个中心对称的亮点,且每幅图的中心对称的亮点位置不同,将这3幅处理过的图像频谱叠加在一起,如图3所示,形成了一幅完整的频谱混叠图。
4)对得到的频谱混叠图进行解调,解调过程如图4所示,首先,通过建立3个方程,将高频信息和低频信息分离开来,然后将错位的高频信息通过傅里叶变换的平移特性移到正确的位置,最后再将处于正确位置的高频信息和低频信息叠加再一起,使全息图的频谱达到整体拓宽的效果,解调后的频谱表示为
Figure BDA0001977061770000041
5)对频谱进行角谱传播计算:
Figure BDA0001977061770000042
上式中的z0代表待测物体到图像传感器之间的距离,得到全息图传播到z=z0时的频谱。
6)最后对这个频谱进行逆傅里叶变换,得到物光波的复振幅:
Figure BDA0001977061770000043
通过这个复振幅就能求得待测物体的强度信息I(x,y)和相位信息φ(x,y):
I(x,y)=|Ei(x,y,z)|2 (4)
Figure BDA0001977061770000044
相位信息和物体的高度之间又存在一个映射关系,所以通过这个映射关系就可以获取待测物体的高度信息,实现对物体的三维成像。

Claims (1)

1.一种超分辨率数字全息成像方法,利用超分辨率数字全息成像系统,激光器(1)同轴方向上依次放置衰减片(2),扩束镜(3)产生较大的光束,再通过透射式SLM(4)生成结构光,后被第一分光平片(5)分为两束能量相同的光波;其中一束经过第一反射镜(6)反射后透射经过第二分光平片(10)平行出射在待测物体(11)表面,待测物体(11)表面反射光经过第二分光平片(10)反射后,进入图像传感器(12)作为物光;另一束经第一分光平片(5)反射作为参考光,经过第二反射镜(7)反射后,通过显微物镜(8)形成聚焦光束,后出射于显微物镜(8)焦平面上的针孔(9),近而形成球面光波,再通过第二分光平片(10),进入图像传感器(12),与物光干涉后产生含有物体信息的干涉条纹被图像传感器(12)接收,然后通过算法解调出原始高频信息,重建物光波,透射式SLM放置于分光光路之前,图像传感器(12)包括面阵彩色相机、线阵彩色相机、面阵黑白相机或线阵黑白相机,其类型包括CMOS和CCD,第二分光平片(10)可调,即适用于离轴全息和同轴全息,重建算法为菲涅尔变换法、卷积法、角谱法和小波变换法重建方式,为了获取图像各个方向上超分辨,至少需要3幅不同方向的条纹图,其特征在于:成像方法包括以下步骤:
1)在透射式SLM上依次显示条纹图,其条纹周期为30μm,条纹角度分别为0°、60°、120°,图像传感器收集得到3幅相应的条纹图对应的全息图Ei(x,y,0)(i=1,2,3);
2)对每一幅全息图进行傅里叶变换,得到其空间频域:
Figure FDA0002524708890000011
上式中
Figure FDA0002524708890000012
代表Ei(x,y,0)的频谱,u和v分别是x和y方向上的空间频率,频谱上有3个亮斑,分别代表共轭像、零级像和原始像的频谱,为了获取不受干扰的物光波,使用窗函数对这个频谱中的原始像进行提取,并把这个原始像的频谱平移到整个频谱的中心位置,得到的图像频谱表示为
Figure FDA0002524708890000013
3)因为受到了结构光的调制,可以发现每幅原始像频谱中心亮点的周围都有两个中心对称的亮点,且每幅图的中心对称的亮点位置不同,将这3幅处理过的图像频谱叠加在一起,形成了一幅完整的频谱混叠图;
4)对得到的频谱混叠图进行解调,首先,通过建立3个方程,将高频信息和低频信息分离开来,然后将错位的高频信息通过傅里叶变换的平移特性移到正确的位置,最后再将处于正确位置的高频信息和低频信息叠加再一起,使全息图的频谱达到整体拓宽的效果,解调后的频谱表示为
Figure FDA0002524708890000021
5)对频谱进行角谱传播计算:
Figure FDA0002524708890000022
上式中的z0代表待测物体到图像传感器之间的距离,得到全息图传播到z=z0时的频谱;
6)最后对这个频谱进行逆傅里叶变换,得到物光波的复振幅:
Figure FDA0002524708890000023
通过这个复振幅就能求得待测物体的强度信息I(x,y)和相位信息φ(x,y):
I(x,y)=|Ei(x,y,z)|2 (4)
Figure FDA0002524708890000024
相位信息和物体的高度之间又存在一个映射关系,所以通过这个映射关系就可以获取待测物体的高度信息,实现对物体的三维成像。
CN201910136421.XA 2019-02-25 2019-02-25 一种超分辨率数字全息成像系统和成像方法 Active CN109709786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910136421.XA CN109709786B (zh) 2019-02-25 2019-02-25 一种超分辨率数字全息成像系统和成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910136421.XA CN109709786B (zh) 2019-02-25 2019-02-25 一种超分辨率数字全息成像系统和成像方法

Publications (2)

Publication Number Publication Date
CN109709786A CN109709786A (zh) 2019-05-03
CN109709786B true CN109709786B (zh) 2020-08-25

Family

ID=66264990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910136421.XA Active CN109709786B (zh) 2019-02-25 2019-02-25 一种超分辨率数字全息成像系统和成像方法

Country Status (1)

Country Link
CN (1) CN109709786B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058393B (zh) * 2019-05-08 2020-08-28 西安电子科技大学 一种基于结构光照明的相位显微成像装置和方法
CN110631501B (zh) * 2019-10-16 2021-09-21 山东大学 一种定量测量海洋钙化生物外壳微形变的装置及方法
CN111198169A (zh) * 2019-11-08 2020-05-26 桂林电子科技大学 微结构光纤高分辨率三维折射率测试方法
CN111458858A (zh) * 2020-04-13 2020-07-28 北京理工大学 一种超分辨率同轴数字全息显微成像系统与方法
CN111459004B (zh) * 2020-04-14 2021-09-14 清华大学 双光路合成孔径全息图拼接方法
CN112630987B (zh) * 2020-12-01 2022-09-23 清华大学深圳国际研究生院 一种快速超分辨压缩数字全息显微成像系统及方法
CN112596362B (zh) * 2020-12-18 2022-07-26 昆明理工大学 一种全场超分辨率的数字全息装置及成像方法
CN115083247B (zh) * 2022-04-13 2023-09-01 合肥工业大学 一种全息图频谱分离方法和全息图频谱分离实验系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525821B1 (en) * 1997-06-11 2003-02-25 Ut-Battelle, L.L.C. Acquisition and replay systems for direct-to-digital holography and holovision
CN1151410C (zh) * 2001-11-07 2004-05-26 苏州苏大维格数码光学有限公司 数码三维与光变图像的制作方法及激光照排系统
KR102248266B1 (ko) * 2013-06-06 2021-05-04 시리얼 테크놀로지즈 에스.에이. 홀로그램 데이터를 계산하기 위한 장치 및 방법
CN103941568B (zh) * 2014-03-21 2016-06-22 北京工业大学 多维自动超分辨率数字全息成像装置及方法
CN104567659A (zh) * 2014-12-22 2015-04-29 南京师范大学 一种基于涡旋光照明的暗场数字全息显微装置及其方法
CN107367919B (zh) * 2017-09-01 2019-09-24 清华大学深圳研究生院 一种数字全息成像系统及方法
CN207797998U (zh) * 2018-01-16 2018-08-31 许之敏 一种具有新型延时系统的数字全息显微系统

Also Published As

Publication number Publication date
CN109709786A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN109709786B (zh) 一种超分辨率数字全息成像系统和成像方法
US11644791B2 (en) Holographic imaging device and data processing method therefor
EP3065001B1 (en) Holographic microscope and data processing method for high-resolution hologram image
US7127109B1 (en) Digital interference holographic microscope and methods
EP2565725A1 (en) Method and apparatus for the exact reconstruction of the object wave in off-axis digital holography
CN108614405B (zh) 一种基于环形光差频扫描实现边缘提取的全息方法
CN111121675B (zh) 一种用于微球表面显微干涉测量的视场扩展方法
CN107885070B (zh) 一种基于slm的非相干数字全息单次曝光成像方法与系统
JP7231946B2 (ja) 表面形状計測装置および表面形状計測方法
CN112823316B (zh) 全息摄像装置以及全息摄像方法
CN104457611A (zh) 双波长剪切干涉数字全息显微测量装置及其方法
CN105973164A (zh) 一种基于像素偏振片阵列的数字全息显微方法
CN107462150A (zh) 基于一维周期光栅和点衍射的双视场数字全息检测装置与方法
Das et al. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter
CN103335592B (zh) 双洛埃镜数字全息显微测量方法
CN110864817B (zh) 基于单像素探测器的非干涉定量相位成像方法
Ibrahim Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation
CN107421437A (zh) 基于二维相位光栅和点衍射的三视场数字全息检测装置与方法
CN113009801B (zh) 高速多方向线共焦数字全息三维显微成像方法及装置
CN214095898U (zh) 一种基于偏振同步相移的轻离轴翻转干涉数字全息检测装置
Pedrini et al. Spatial filtering in digital holographic microscopy
CN112596362B (zh) 一种全场超分辨率的数字全息装置及成像方法
WO2001023965A1 (en) Digital interference holographic microscope and methods
Jiang et al. Depth resolved imaging by digital holography via sample-shifting
Lai et al. Low-frequency moiré fringes synthesize by mutual correlation for resolution enhancement in structured illumination digital holographic microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant