CN109708877A - 基于小波模糊识别和图像分析理论的机械故障分析方法 - Google Patents

基于小波模糊识别和图像分析理论的机械故障分析方法 Download PDF

Info

Publication number
CN109708877A
CN109708877A CN201811615615.XA CN201811615615A CN109708877A CN 109708877 A CN109708877 A CN 109708877A CN 201811615615 A CN201811615615 A CN 201811615615A CN 109708877 A CN109708877 A CN 109708877A
Authority
CN
China
Prior art keywords
rotating machinery
dynamic image
fuzzy
degree
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811615615.XA
Other languages
English (en)
Other versions
CN109708877B (zh
Inventor
刘增力
任贵粉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201811615615.XA priority Critical patent/CN109708877B/zh
Publication of CN109708877A publication Critical patent/CN109708877A/zh
Application granted granted Critical
Publication of CN109708877B publication Critical patent/CN109708877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于信号处理技术领域,涉及基于小波模糊识别和图像分析理论的机械故障分析方法,包括首先采集旋转机械的振动信号作为待分析信号,该振动信号为所述旋转机械的不同位置的多组振动信号,然后对所述振动信号作小波包分解,得到组分量:再判断旋转机械是否存在故障,存在故障则为异常状态,若所述旋转机械为异常状态,判断故障类型,并在旋转机械的异常状态下,利用图像传感器获取其动态图像;最后利用图像理论对获取的动态图像进行分析,确定故障发生的位置及故障程度。本发明能够快速实时地对旋转机械故障进行诊断,且能够利用图像的相关分析理论准确的判断机械故障的具体位置。

Description

基于小波模糊识别和图像分析理论的机械故障分析方法
技术领域
本发明属于信号处理技术领域,涉及一种机械故障检测与诊断分析方法,特别是基于小波模糊识别和图像分析理论的机械故障分析方法。
背景技术
旋转机械在电力、化工等行业的生产中占有重要地位。对旋转机械设备进行状态监测和故障诊断对保证设备的安全运行具有重要的现实意义和经济价值。旋转机械的振动信号是设备故障特征信号的载体,绝大部分旋转机械系统的故障都在振动信号中有所反映,通过对旋转机械振动信号的监测是实现对机械故障的诊断的一种行之有效的方法。故障机械的振动信号往往是非平稳信号,而传统的傅立叶变换虽然是一种重要的信号分析方法,但是难以处理非平稳信号,传统的诊断技术已经无法满足当前复杂机械设备的诊断要求。
发明内容
本发明针对现有技术存在的不足,提出一种基于小波模糊识别和图像分析理论的机械故障分析方法,能够快速实时地对旋转机械故障进行诊断,且能够利用图像的相关分析理论准确的判断机械故障的具体位置。
本发明为了实现上述技术目的采用的技术方案是:基于小波模糊识别和图像分析理论的机械故障分析方法,首先采集旋转机械的振动信号作为待分析信号,该振动信号为所述旋转机械的不同位置的多组振动信号,然后对所述振动信号作小波包分解,得到组分量:再判断旋转机械是否存在故障,存在故障则为异常状态,若所述旋转机械为异常状态,判断故障类型,并在旋转机械的异常状态下,利用图像传感器获取其动态图像;最后利用图像理论对获取的动态图像进行分析,确定故障发生的位置及故障程度。
进一步地,所述基于小波模糊识别和图像分析理论的机械故障分析方法包括如下具体步骤:
步骤1:采集旋转机械的振动信号fk(t)作为待分析信号该振动信号fk(t)为所述旋转机械的不同位置的K组振动信号{fk(t),t=1,2…N,k=1,2…K};
步骤2:对所述振动信号fk(t)作小波包分解,得到2jK组分量:其中,j为小波包分解的层数;
步骤3:判断旋转机械是否存在故障,存在故障则为异常状态;
步骤4:若所述旋转机械为异常状态,判断故障类型;
步骤5:在旋转机械的异常状态下,利用图像传感器获取其动态图像;
步骤6:利用图像理论对获取的动态图像进行分析,确定故障发生的位置及故障程度。
进一步地,使用如下方法判断所述步骤3中旋转机械是否存在故障。
(1)计算峰-峰值将所述步骤2的每一个上的峰-峰值记为
其中,k=1,2…K,构成第k个测点上的具有2j个特征的特征集。
(2)计算隶属度在Tk上构造两个模糊集,包括正常模式的Nk和异常模式的Fk,将它们分别定义成矩阵形式:
其中分别表示第k个测点上旋转机械正常和异常对Tk上的特征的隶属度。
(3)计算贴近度(Bk,Nk),如果贴近度(Bk,Nk)≥dk,则认为Bk为正常模式;如果贴近度(Bk,Nk)<dk,则认为Bk为异常模式,其中Bk是第k个测点上旋转机械状态的模糊集,0<dk<1为由统计平均得到的一个贴近度限值;所述贴近度(Bk,Nk)计算方法为:
设X是模糊集,Bk,Nk∈X,则有:其中m=1,2…N。
进一步地,所述步骤4中判断故障类型的方法为:定义在被确定为异常模式的Bk最贴近,则对第k0个测点的振动信号进行j层小波包分解,在的j层小波包分解的2j个子带信号中,以第i0个子带信号的绝对值的峰值个数作论域,并在此前提下,取U=[1,2…L],其中,U为论域,L为论域的取值范围内的某个正整数。
同时,假设所述旋转机械有M种典型故障R1,R2…RM,在U上构造M个模糊集A1,A2…AM,每一模糊集由下面的模糊向量构成:其中,表示第m种典型故障Rm对U上的元素l的隶属度;其中l为U内的某个取值,l的取值范围在1到L之间。
设检测到的峰值个数为l0,如果则l0相对隶属于模糊集Am,由此诊断出该旋转机械的异常由典型故障Rm引起。
进一步地,所述步骤6中利用图像理论对获取的动态图像进行分析的方法为:采用模糊自适应中值滤波方法来去除脉冲噪声,同时保留所述动态图像的细节,然后使用直方图均衡化提高动态图像的对比度,最后对获取的动态图像进行边缘检测,把获得所述边缘检测的结果与正常旋转机械的边缘相比较,找出该旋转机械的故障所在位置并估计故障程度。
进一步地,所述模糊自适应中值滤波方法通过模糊技术来判断所述动态图像中某像素点是否属于噪声点。
进一步地,通过模糊技术判断噪声点的方法为:设X(t)表示把Wij(I)中的像素值按升序排列后处于第t个位置的值,即X(1)≤X(2)≤......≤X(LL),LL=(2Ld+1)2,其中,I表示一幅待滤波的l1×l2数字图片,xij表示坐标(i,j)处的像素值,即I={xij|1≤i≤l1,1≤j≤l2},Wij(I)表示中心位于(i,j)处的滤波窗口,其窗口尺寸为(2Ld+1)×(2Ld+1);定义二值函数:
式中,u是预先定义的常数,并且1≤u≤(LL-1)/2,λij=1。
xij所在的动态图像窗口区域内每个像素与该动态图像中心像素的偏差为:
δi-s,j-t=|xi-s,j-t-xij|,式中,-Ld≤s≤Ld,-Ld≤t≤Ld,0≤δi-s,j-t≤255。把δi-s,j-t的值按升序排列,即Δ(1)≤Δ(2)≤…Δ(LL),其中Δ(1),Δ(2),…Δ(LL)是把δi-s,j-t升序排列后对应的值,令式中,N是预先定义好的常数,N≤(LL+1)/2,根据的大小判断某个像素是否属于噪声。
进一步地,结合模糊技术采用隶属度判断所述动态图像中某像素点是否属于噪声点。
进一步地,所述结合模糊技术采用隶属度的判断方法为:
结合λij提出统计参量ξij定义所述动态图像中像素xij的隶属函数βij其中,W1和W2是预置的常数,若βij=0,则像素xij不是噪声,若βij=1,则像素xij被认为是噪声,若0<βij<1,则βij的值反映了像素xij被噪声污染的程度。
进一步地,在所述对获取的动态图像进行边缘检测的过程中,对该动态图像进行局部加强。
本发明的基于小波模糊识别和图像分析理论的机械故障分析方法,将小波模糊识别算法和图像分析理论运用于旋转机械故障检测与诊断中,引入小波包分解,对小波包分解得到的各组分量计算峰-峰值和各特征的隶属度,进而得到模糊集,最终由统计平均得到一个大于0小于1的贴进度限值,由贴进度限值来判断旋转机械是否存在故障隐患。为了确定旋转机械发生的故障程度和故障所处的具体位置,进而对图像传感器获得的动态图像进行图像分析。
小波变换具有优良的时频局部化特性,可以有效的分析和提取具有奇异性特点的旋转机械故障信号。
本发明与现有技术相比产生的有益效果是:本发明将小波模糊识别和图像分析理论相结合,应用到旋转机械的故障分析与判断,能快速实时地对故障进行诊断,且能够利用图像的相关分析理论对在旋转机械异常状态下图像传感器获得的动态图像进行图像分析,准确判断故障程度和故障所处的具体位置,适用于故障机械的非平稳振动信号,满足复杂机械设备的诊断要求。
附图说明
图1是本发明的机械故障分析方法流程图。
图2是本发明机械故障分析方法中图像分析的理论图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
如图1,利用本发明的基于小波模糊识别和图像分析理论的机械故障分析方法分析旋转齿轮的故障。
首先,利用测振传感器来获取振动信号fk(t)作为待分析信号,所述振动信号fk(t)由置于不同旋转机械位置的K个测振传感器来测定。设旋转齿轮的振动信号由置于不同位置的K个测振传感器来测定,从而得到反映旋转齿轮运转状态的K组振动信号{fk(t),t=1,2…N,k=1,2…K}。
然后,对该对振动信号fk(t)作4层小波包分解,得到24K组分量
再然后,判断旋转齿轮是否存在故障,方法如下。
1、计算峰-峰值将上述的每一个上的峰-峰值记为 其中,k=1,2…K,构成第k个测点上的具有24个特征的特征集。
2、计算隶属度在Tk上构造两个模糊集,包括正常模式的Nk和异常模式的Fk,将它们分别定义成矩阵形式:
其中分别表示第k个测点上旋转机械正常和异常对Tk上的特征的隶属度。
本实施例中,设旋转齿轮的待检信号为{fk(t),t=1,2…n,k=1,2…k},其在Tk(k=1,2,…k)上构成的模糊矩阵为
其中Bk是第k个测点上旋转齿轮状态的模糊集,表示第k个测点上待检信号fk(t)对Tk上的特征的隶属度。
3、计算贴近度(Bk,Nk),根据待检模式Bk与正常模式Nk及异常模式Fk之间贴近度的计算,设X是模糊集,Bk,Nk∈X,则有:其中m=1,2…N。如果贴近度(Bk,Nk)≥dk,则认为Bk为正常模式;如果贴近度(Bk,Nk)<dk,则认为Bk为异常模式,其中Bk是第k个测点上旋转机械状态的模糊集,0<dk<1为由统计平均得到的一个贴近度限值。
再然后,若判断旋转齿轮为异常状态,则判断其故障类型。
假设在被确定为异常模式的Bk中,最贴近。则现在只需考虑第k0个测点的振动信号对第k0个测点的振动信号进行4层小波包分解,在的4层小波包分解的24个子带信号中,以第i0个子带信号的绝对值的峰值个数作论域。
在该子带信号的绝对值的峰值个数作论域的前提下,取U=[1,2…L],其中,U为论域,L为论域的取值范围的某个正整数。这时的峰值主要由旋转齿轮中某个部位的局部缺陷引起的冲击形成。因而峰值的个数与该元件的缺陷频率有密切的关系。但由于种种原因,实际检测到的峰值个数与该缺陷部位的缺陷频率并非一一对应的关系,从而使对旋转齿轮故障的诊断产生一定的模糊性。
设旋转齿轮有M种典型故障R1,R2…RM,于是可在U上构造M个模糊集A1,A2…AM,每一模糊集由下面的模糊向量构成:
其中表示第m种典型故障Rm对U上的元素l的隶属度;l为U内的某个取值,l的取值范围在1到L之间。
设检测到的峰值个数为l0,如果
则根据最大隶属原则,l0相对隶属于模糊集Am。由此诊断出旋转齿轮的异常由典型故障Rm引起。
之后,为了确定旋转齿轮发生的故障程度和故障所处的具体位置,使用图像分析理论进行具体分析。
如图2所示,首先在旋转齿轮处于异常状态下,利用图像传感器获取该异常状态的动态图像。
然后,采用模糊技术与中值滤波相结合的模糊自适应中值滤波方法来去除脉冲噪声,同时保留所述动态图像的细节,然后使用直方图均衡化提高动态图像的对比度,最后对获取的动态图像进行边缘检测,把获得的动态图像的边缘检测的结果与正常的旋转齿轮的边缘相比较,找出旋转齿轮的故障所在位置并估计故障程度。
所述的模糊自适应中值滤波方法通过模糊技术来判断所述动态图像中某像素点是否属于噪声点。
设X(t)表示把Wij(I)中的像素值按升序排列后处于第t个位置的值,即X(1)≤X(2)≤......≤X(LL),LL=(2Ld+1)2。其中,I表示一幅待滤波的l1×l2数字图片,xij表示坐标(i,j)处的像素值,即I={xij|1≤i≤l1,1≤j≤l2},Wij(I)表示中心位于(i,j)处的滤波窗口,其窗口尺寸为(2Ld+1)×(2Ld+1)。
为了判断某个像素点是否是噪声点,定义一个二值函数:
式中,u是一个预先定义好的常数,并且1≤u≤(LL-1)/2,λij=1。
xij所在的动态图像窗口区域内每个像素与该动态图像中心像素的偏差为:
δi-s,j-t=|xi-s,j-t-xij|,
式中,-Ld≤s≤Ld,-Ld≤t≤Ld,显然,0≤δi-s,j-t≤255。
把δi-s,j-t的值按升序排列,即Δ(1)≤Δ(2)≤…Δ(LL),其中Δ(1),Δ(2),…Δ(LL)是把δi-s,j-t升序排列后对应的值。令式中,N是预先定义好的常数。由于δij=|xij-xij|=0,则Δ(1)=0,因此在计算时不考虑Δ(1),因此,取N≤(LL+1)/2。
对于噪声点,的值一般都比较大,而对于非噪声点,的值一般都比较小,因此可以用的大小来判断某个像素是否属于噪声。
进一步地,可结合模糊技术采用隶属度判断当前点是否属于噪声点。
结合λij提出一个新的统计参量ξij根据ξij的大小,可以更好地预测每个像素点是否属于噪声点。
结合λij用隶属度来描述某个像素点是噪声的可能性,根据隶属度计算该像素点进行模糊自适应中值滤波后的值。
定义所述动态图像中像素xij的隶属函数βij式中,W1和W2是两个预置的常数。
若βij=0,则像素xij不是噪声;若βij=1,则像素xij被认为是噪声,若0<βij<1,则βij的值则反映了像素xij被噪声污染的程度。
由每个像素xij可能是噪声的隶属度βij,以及对应的窗口序列Wij(I)的中值mij(I)得到滤波后的新像素值yij,即yij=(1-βij)×xijij×mij(I),式中,mij(I)=media[Wij(I)]。
由上式可以看出,对于非噪声点xijij=0),对它进行模糊自适应中值滤波后,滤波后的结果保持不变yij=,xij而对于确定的噪声点xijij=1),其滤波结果就是窗口序列的中值yij=mij,而对于不能完全肯定是否属于噪声的像素xij(0<βij<1),可以结合隶属度、初值、中值来计算滤波结果。
在另一实施例中,如果在旋转齿轮上粘附着纤细的异物,当进行边缘检测时,可能会被误诊为裂纹,这种情况下要对动态图像进行局部加强,之后再与正常的旋转齿轮的边缘进行对比,保证了检测的准确性。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,仍然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

1.基于小波模糊识别和图像分析理论的机械故障分析方法,其特征在于,首先采集旋转机械的振动信号作为待分析信号,该振动信号为所述旋转机械的不同位置的多组振动信号,然后对所述振动信号作小波包分解,得到组分量:再判断旋转机械是否存在故障,存在故障则为异常状态,若所述旋转机械为异常状态,判断故障类型,并在旋转机械的异常状态下,利用图像传感器获取其动态图像;最后利用图像理论对获取的动态图像进行分析,确定故障发生的位置及故障程度。
2.如权利要求1所述的基于小波模糊识别和图像分析理论的机械故障分析方法,其特征在于,该方法包括如下具体步骤:
步骤1:采集旋转机械的振动信号fk(t)作为待分析信号,该振动信号fk(t)为所述旋转机械的不同位置的K组振动信号{fk(t),t=1,2…N,k=1,2…K};
步骤2:对所述振动信号fk(t)作小波包分解,得到2jK组分量:其中,j为小波包分解的层数;
步骤3:判断旋转机械是否存在故障,存在故障则为异常状态;
步骤4:若所述旋转机械为异常状态,判断故障类型;
步骤5:在旋转机械的异常状态下,利用图像传感器获取其动态图像;
步骤6:利用图像理论对获取的动态图像进行分析,确定故障发生的位置及故障程度。
3.如权利要求2所述的机械故障分析方法,其特征在于,使用如下方法判断所述步骤3中旋转机械是否存在故障,判断方法为:
(1)计算峰-峰值
将所述步骤2的每一个上的峰-峰值记为 其中,k=1,2…K,构成第k个测点上的具有2j个特征的特征集;
(2)计算隶属度
在Tk上构造两个模糊集,包括正常模式的Nk和异常模式的Fk,将它们分别定义成矩阵形式:
其中分别表示第k个测点上旋转机械正常和异常对Tk上的特征的隶属度;
(3)计算贴近度(Bk,Nk),
如果贴近度(Bk,Nk)≥dk,则认为Bk为正常模式;如果贴近度(Bk,Nk)<dk,则认为Bk为异常模式,其中Bk是第k个测点上旋转机械状态的模糊集,0<dk<1为由统计平均得到的一个贴近度限值;所述贴近度(Bk,Nk)计算方法为:
设X是模糊集,Bk,Nk∈X,则有:其中m=1,2…N。
4.如权利要求3所述的机械故障分析方法,其特征在于,所述步骤4中判断故障类型的方法为:定义在被确定为异常模式的Bk最贴近,则对第k0个测点的振动信号进行j层小波包分解,在的j层小波包分解的2j个子带信号中,以第i0个子带信号的绝对值的峰值个数作论域,并在此前提下,取U=[1,2…L],其中,U为论域,L为论域的取值范围内的某个正整数;
同时,假设所述旋转机械有M种典型故障R1,R2…RM,在U上构造M个模糊集A1,A2…AM,每一模糊集由下面的模糊向量构成:其中表示第m种典型故障Rm对U上的元素l的隶属度;其中l为U内的某个取值,l的取值范围在1到L之间;
设检测到的峰值个数为l0,如果则l0相对隶属于模糊集Am,由此诊断出该旋转机械的异常由典型故障Rm引起。
5.如权利要求1或2所述的机械故障分析方法,其特征在于,所述步骤6中利用图像理论对获取的动态图像进行分析的方法为:采用模糊自适应中值滤波方法来去除脉冲噪声,同时保留所述动态图像的细节,然后使用直方图均衡化提高动态图像的对比度,最后对获取的动态图像进行边缘检测,把获得所述边缘检测的结果与正常旋转机械的边缘相比较,找出该旋转机械的故障所在位置并估计故障程度。
6.如权利要求5所述的机械故障分析方法,其特征在于,所述模糊自适应中值滤波方法通过模糊技术来判断所述动态图像中某像素点是否属于噪声点。
7.如权利要求6所述的机械故障分析方法,其特征在于,通过模糊技术判断噪声点的方法为:设X(t)表示把Wij(I)中的像素值按升序排列后处于第t个位置的值,即X(1)≤X(2)≤......≤X(LL),LL=(2Ld+1)2,其中,I表示一幅待滤波的l1×l2数字图片,xij表示坐标(i,j)处的像素值,即I={xij|1≤i≤l1,1≤j≤l2},Wij(I)表示中心位于(i,j)处的滤波窗口,其窗口尺寸为(2Ld+1)×(2Ld+1);定义二值函数:
式中,u是预先定义的常数,并且1≤u≤(LL-1)/2,λij=1;
xij所在的动态图像窗口区域内每个像素与该动态图像中心像素的偏差为:
δi-s,j-t=|xi-s,j-t-xij|,式中,-Ld≤s≤Ld,-Ld≤t≤Ld,0≤δi-s,j-t≤255;把δi-s,j-t的值按升序排列,即Δ(1)≤Δ(2)≤…Δ(LL),其中Δ(1),Δ(2),…Δ(LL)是把δi-s,j-t升序排列后对应的值,令式中,N是预先定义好的常数,N≤(LL+1)/2,根据的大小判断某个像素是否属于噪声。
8.如权利要求7所述的机械故障分析方法,其特征在于,结合模糊技术采用隶属度判断所述动态图像中某像素点是否属于噪声点。
9.如权利要求8所述的机械故障分析方法,其特征在于,所述结合模糊技术采用隶属度的判断方法为:结合λij提出统计参量ξij定义所述动态图像中像素xij的隶属函数βij其中,W1和W2是预置的常数,若βij=0,则像素xij不是噪声,若βij=1,则像素xij被认为是噪声,若0<βij<1,则βij的值反映了像素xij被噪声污染的程度。
10.如权利要求5所述的机械故障分析方法,其特征在于,在所述对获取的动态图像进行边缘检测的过程中,对该动态图像进行局部加强。
CN201811615615.XA 2018-12-27 2018-12-27 基于小波模糊识别和图像分析理论的机械故障分析方法 Active CN109708877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811615615.XA CN109708877B (zh) 2018-12-27 2018-12-27 基于小波模糊识别和图像分析理论的机械故障分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811615615.XA CN109708877B (zh) 2018-12-27 2018-12-27 基于小波模糊识别和图像分析理论的机械故障分析方法

Publications (2)

Publication Number Publication Date
CN109708877A true CN109708877A (zh) 2019-05-03
CN109708877B CN109708877B (zh) 2020-11-24

Family

ID=66258621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811615615.XA Active CN109708877B (zh) 2018-12-27 2018-12-27 基于小波模糊识别和图像分析理论的机械故障分析方法

Country Status (1)

Country Link
CN (1) CN109708877B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174281A (zh) * 2019-06-05 2019-08-27 北京博识创智科技发展有限公司 一种机电设备故障诊断方法及系统
CN110517245A (zh) * 2019-08-20 2019-11-29 北京远舢智能科技有限公司 一种机械设备故障诊断系统
CN111814917A (zh) * 2020-08-28 2020-10-23 成都千嘉科技有限公司 一种存在模糊态的字轮图像数字识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996316A (zh) * 2010-10-26 2011-03-30 江苏大学 一种用于辨别拉深件裂纹的模糊识别方法
CN102175953A (zh) * 2011-02-28 2011-09-07 长沙理工大学 输电线路绝缘子放电在线监测故障定位方法
CN203054566U (zh) * 2013-01-16 2013-07-10 昆明理工大学 一种基于物联网的有机烟田生态环境监测系统
CN103822793A (zh) * 2014-01-20 2014-05-28 北京邮电大学 一种复杂设备声学故障识别定位方法
CN108871760A (zh) * 2018-06-07 2018-11-23 广东石油化工学院 一种高效齿轮故障模式识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996316A (zh) * 2010-10-26 2011-03-30 江苏大学 一种用于辨别拉深件裂纹的模糊识别方法
CN102175953A (zh) * 2011-02-28 2011-09-07 长沙理工大学 输电线路绝缘子放电在线监测故障定位方法
CN203054566U (zh) * 2013-01-16 2013-07-10 昆明理工大学 一种基于物联网的有机烟田生态环境监测系统
CN103822793A (zh) * 2014-01-20 2014-05-28 北京邮电大学 一种复杂设备声学故障识别定位方法
CN108871760A (zh) * 2018-06-07 2018-11-23 广东石油化工学院 一种高效齿轮故障模式识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙芳 等: ""基于小波包与模糊模式识别的齿轮故障诊断方法"", 《控制工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174281A (zh) * 2019-06-05 2019-08-27 北京博识创智科技发展有限公司 一种机电设备故障诊断方法及系统
CN110517245A (zh) * 2019-08-20 2019-11-29 北京远舢智能科技有限公司 一种机械设备故障诊断系统
CN110517245B (zh) * 2019-08-20 2021-09-07 北京远舢智能科技有限公司 一种机械设备故障诊断系统
CN111814917A (zh) * 2020-08-28 2020-10-23 成都千嘉科技有限公司 一种存在模糊态的字轮图像数字识别方法

Also Published As

Publication number Publication date
CN109708877B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
CN104634571B (zh) 一种基于lcd‑mf的滚动轴承故障诊断方法
Zhao et al. Deep convolutional neural network based planet bearing fault classification
CN109708877A (zh) 基于小波模糊识别和图像分析理论的机械故障分析方法
Lei et al. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
CN106338385B (zh) 一种基于奇异谱分解的旋转机械故障诊断方法
CN111521400B (zh) 一种基于edm及谱峭度的轴承早期故障诊断方法
KR102209401B1 (ko) 컨볼루션 신경망을 이용한 기어박스의 결함상태 판별 장치 및 방법
CN112557038A (zh) 多重降噪处理的轴承早期故障诊断方法
CN106777611B (zh) 复杂周转轮系微弱故障识别与性能退化监测系统及方法
CN108195584B (zh) 一种基于准确度谱图的滚动轴承故障诊断方法
CN103940597A (zh) 一种基于广义极值形态滤波的机械故障检测方法
CN103616187A (zh) 一种基于多维度信息融合的故障诊断方法
CN111678699B (zh) 一种面向滚动轴承早期故障监测与诊断方法及系统
Liu et al. An online bearing fault diagnosis technique via improved demodulation spectrum analysis under variable speed conditions
CN114004256A (zh) 基于数字孪生体的制造装备主轴承的故障诊断方法
CN108398265A (zh) 一种滚动轴承在线故障检测方法
CN109406147A (zh) 一种变速工况下的列车轴承轨边声学诊断方法
Al-Atat et al. A systematic methodology for gearbox health assessment and fault classification
Xu et al. Rolling bearing fault feature extraction via improved SSD and a singular-value energy autocorrelation coefficient spectrum
Zhou et al. Signal de-noising in gear pitting fault identification by an improved singular value decomposition method
CN112132069A (zh) 一种基于深度学习的滚动轴承微弱故障智能诊断方法
CN110160778A (zh) 基于序贯假设检验的齿轮箱故障状态识别方法
CN106250937A (zh) 一种基于非相似度指标的故障分类诊断方法
Orkisz et al. Spectrum shape based roller bearing fault detection and identification
CN110967184B (zh) 基于振动信号分布特征识别的变速箱故障检测方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant