CN109696436A - 一种利用银纳米材料检测维生素b1的方法 - Google Patents

一种利用银纳米材料检测维生素b1的方法 Download PDF

Info

Publication number
CN109696436A
CN109696436A CN201910052641.4A CN201910052641A CN109696436A CN 109696436 A CN109696436 A CN 109696436A CN 201910052641 A CN201910052641 A CN 201910052641A CN 109696436 A CN109696436 A CN 109696436A
Authority
CN
China
Prior art keywords
solution
vitamin
nano material
silver nano
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910052641.4A
Other languages
English (en)
Other versions
CN109696436B (zh
Inventor
姜翠凤
徒华健
张聪
杨孟达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jinglong Environmental Protection Technology Co ltd
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201910052641.4A priority Critical patent/CN109696436B/zh
Publication of CN109696436A publication Critical patent/CN109696436A/zh
Application granted granted Critical
Publication of CN109696436B publication Critical patent/CN109696436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种利用银纳米材料检测维生素B1的方法,包括以下步骤:步骤1,银粒子的制备:在AgNO3溶液中加入NaBH4溶液,在水浴锅中搅拌,逐滴加入谷胱甘肽溶液,于黑暗中继续搅拌,得到谷胱甘肽‑银纳米材料;步骤2:维生素B1的检测:取步骤1制备的谷胱甘肽‑银纳米材料,加入不同浓度的维生素B1溶液,再加入缓冲溶液,双氧水,3,3',5,5'‑四甲基联苯胺(TMB)溶液,观察溶液颜色变化,测其紫外可见吸收光谱,根据颜色变化及紫外可见吸收光谱的变化对维生素B1的浓度进行测定。本发明利用比色法快速检测维生素B1,不需要使用昂贵的仪器,通过颜色变化及紫外可见吸收光谱的变化即可测定维生素B1的含量。

Description

一种利用银纳米材料检测维生素B1的方法
技术领域
本发明属于维生素检测技术领域,特别涉及一种利用银纳米材料的过氧化物酶样活性检测维生素B1的方法
背景技术
维生素B,也称叶酸,是人体必需的营养成分。维生素B主要有维生素B1,B2,B3,B5,B6,B7,B9,B12等多种。每一种都有其独特的作用。其中维生素B1(又称硫胺素或抗神经炎维生素或抗脚气病维生素),对于消除人体疲劳、帮助消化、促进神经系统的正常发育及治疗脚气等方面具有重要作用。然而,现有检测方法主要集中在对复合维生素B的检测(例如:申请号为201510510713.7的中国专利),尚未有单独检测维生素B1的报道。
申请号为201510510713.7的中国专利,检测复合维生素B中多种组分含量,其中有检测维生素B1,使用的是高效液相色谱法。该种方法需要使用昂贵的仪器,需要专业人员操作,且不适合现场检测。另外,所用流动相乙腈有毒,对于食品等领域的检测大大不利。
为了更广泛的推广维生素B1的检测方法,使用廉价易得的仪器进行快速、简单的检测迫在眉睫。
发明内容
本发明的目的是提供一种利用银纳米材料检测维生素B1的方法,以解决现有的维生素B1检测方法存在的需使用昂贵仪器,操作不便捷的问题。
为实现上述目的,本发明采用的技术方案为:
一种利用银纳米材料检测维生素B1的方法,其特征在于:包括以下步骤:
步骤1,银离子的制备:在AgNO3溶液中加入NaBH4溶液,在水浴锅中搅拌,逐滴加入的谷胱甘肽溶液,于黑暗中继续搅拌,得到谷胱甘肽-银纳米材料;
步骤2:维生素B1的检测:取步骤1制备的谷胱甘肽-银纳米材料,加入不同浓度的维生素B1溶液,再加入醋酸-醋酸钠缓冲溶液,双氧水,3,3',5,5'-四甲基联苯胺(TMB)溶液,观察溶液颜色变化,测其紫外可见吸收光谱,根据颜色变化及紫外可见吸收光谱的变化对维生素B1的浓度进行测定。
所述步骤1中,AgNO3溶液的浓度为0.5-1.5mM,优选为1mM,NaBH4溶液的浓度为0.01g/mL,谷胱甘肽溶液的浓度为1mM;AgNO3溶液、NaBH4溶液、谷胱甘肽溶液的体积比为25:0.2-0.4:0.4-0.6,优选为25:0.3:0.5。
所述步骤1中,在水浴锅中搅拌时的温度为10-40℃,优选为20℃,时间为10min;黑暗中继续搅拌的温度为25℃,时间为2h。
所述步骤1中,逐滴加入的谷胱甘肽溶液的速率为每分钟40-80滴,优选为每分钟40-80滴。
所述步骤2中,不同浓度的维生素B1溶液的浓度为0,0.01,0.05,0.1,0.2,0.4,0.6,1,1.2,2.0nM。
所述步骤2中,谷胱甘肽-银纳米材料、维生素B1溶液、缓冲溶液、双氧水、3,3',5,5'-四甲基联苯胺(TMB)溶液的体积比为8-12:10:10:10:10,优选为10:10:10:10:10。
所述步骤2中,缓冲溶液的pH为3.8-5.6,优选为5.2-5.5。
所述步骤2中,双氧水的浓度为1-10M,优选为10M。
所述步骤2中,3,3',5,5'-四甲基联苯胺(TMB)溶液的浓度为1-20mM,优选为10mM,其中,溶剂为无水乙醇。
有益效果:本发明的一种利用银纳米材料检测维生素B1的方法,利用比色法快速检测维生素B1,不需要使用昂贵的仪器,通过颜色变化及紫外可见吸收光谱的变化即可测定维生素B1的含量。该方法检测维生素B1,样品制备简单,检测过程操作容易,方便非专业人士操作,且具有较高的灵敏度和选择性。
附图说明
图1为加入谷胱甘肽-银纳米材料前后TMB+H2O2体系颜色及吸收光谱变化图;
图2为不同pH的缓冲溶液对体系催化活性的影响;
图3为不同温度对体系催化活性的影响;
图4为不同双氧水浓度对体系催化活性的影响;
图5为加入不同浓度维生素B1后,Ag+TMB+H2O2体系颜色及在652nm处吸收随VB1浓度的变化图;
图6为加入各种不同维生素后在652nm处的吸收值的变化。
具体实施方式
下面结合实施例对本发明做更进一步的解释。
根据下述实施例,可以更好的理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例
步骤1:银粒子的制备:在25mL的AgNO3(浓度为0.5-1.5mM,最优1mM)中加入200-400μL(最优300μL)的NaBH4(浓度为0.01g/mL),在10-40℃(最优为20℃)水浴锅中搅拌10分钟,逐滴(每分钟40-80滴,最优为60滴)加入400-600μL(最优500μL)的谷胱甘肽(GSH)(浓度为1mM),于25℃黑暗中继续搅拌2小时,得到GSH-AgNPs;
步骤2:维生素B1的检测:取80-120μL(最优100μL)所制备的GSH-AgNPs,加入100μL不同浓度的维生素B1溶液(浓度分别为:0,0.01,0.05,0.1,0.2,0.4,0.6,1,1.2,2.0nM),再加入100μL的入醋酸-醋酸钠缓冲溶液(pH 3.8-5.6,优选为5.2-5.5),100μL的双氧水(浓度为1-10M,最优10M),100μL的3,3',5,5'-四甲基联苯胺(TMB)(浓度为1-20mM,最优10mM),观察溶液颜色变化,测其紫外可见吸收光谱。根据颜色变化及紫外可见吸收光谱的变化对维生素B1的浓度进行测定。
图1为加入谷胱甘肽-银纳米材料前后TMB+H2O2体系颜色及吸收光谱变化图。加入银纳米材料后,体系颜色变蓝,在652nm吸收值增高,说明,该纳米材料具有过氧化物酶样活性。
图2为不同pH的醋酸-醋酸钠缓冲溶液对体系催化活性的影响,可以看出,pH为5.5时,催化活性最高。
图3为不同温度对体系催化活性的影响,可以看出,温度为20℃时,催化活性最高。
图4为不同双氧水浓度对体系催化活性的影响,可以看出,双氧水浓度为10M时,催化活性最高。
图5为加入不同浓度维生素B1后,Ag+TMB+H2O2体系颜色及在652nm处吸收随VB1浓度的变化图。随着VB1浓度的增大,颜色变浅,吸收值降低。其中,检测限为:0.01nM,检测范围0-2nM。
图6为加入各种不同维生素后在652nm处的吸收值的变化。只有维生素B1能最大程度抑制银纳米材料的过氧化物酶样活性,所以,该方法可以选择性检测维生素B1。
综上可见,该方法检测维生素B1,样品制备简单,检测过程操作容易,方便非专业人士操作,且具有较高的灵敏度和选择性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种利用银纳米材料检测维生素B1的方法,其特征在于:包括以下步骤:
步骤1,银粒子的制备:在AgNO3溶液中加入NaBH4溶液,在水浴锅中搅拌,逐滴加入的谷胱甘肽溶液,于黑暗中继续搅拌,得到谷胱甘肽-银纳米材料;
步骤2:维生素B1的检测:取步骤1制备的谷胱甘肽-银纳米材料,加入不同浓度的维生素B1溶液,再加入醋酸-醋酸钠缓冲溶液,双氧水,3,3',5,5'-四甲基联苯胺溶液,观察溶液颜色变化,测其紫外可见吸收光谱,根据颜色变化及紫外可见吸收光谱的变化对维生素B1的浓度进行测定。
2.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤1中,AgNO3溶液的浓度为0.5-1.5mM,NaBH4溶液的浓度为0.01g/mL,谷胱甘肽溶液的浓度为1mM;AgNO3溶液、NaBH4溶液、谷胱甘肽溶液的体积比为25:0.2-0.4:0.4-0.6。
3.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤1中,在水浴锅中搅拌时的温度为10-40℃,时间为10min;黑暗中继续搅拌的温度为25℃,时间为2h。
4.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤1中,逐滴加入的谷胱甘肽溶液的速率为每分钟40-80滴。
5.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤2中,不同浓度的维生素B1溶液的浓度为0,0.01,0.05,0.1,0.2,0.4,0.6,1,1.2,2.0nM。
6.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤2中,谷胱甘肽-银纳米材料、维生素B1溶液、缓冲溶液、双氧水、3,3',5,5'-四甲基联苯胺溶液的体积比为8-12:10:10:10:10。
7.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤2中,缓冲溶液的pH为3.8-5.6。
8.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤2中,双氧水的浓度为1-10M。
9.根据权利要求1所述的利用银纳米材料检测维生素B1的方法,其特征在于:所述步骤2中,3,3',5,5'-四甲基联苯胺溶液的浓度为1-20mM,其中,溶剂为无水乙醇。
CN201910052641.4A 2019-01-21 2019-01-21 一种利用银纳米材料检测维生素b1的方法 Active CN109696436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910052641.4A CN109696436B (zh) 2019-01-21 2019-01-21 一种利用银纳米材料检测维生素b1的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910052641.4A CN109696436B (zh) 2019-01-21 2019-01-21 一种利用银纳米材料检测维生素b1的方法

Publications (2)

Publication Number Publication Date
CN109696436A true CN109696436A (zh) 2019-04-30
CN109696436B CN109696436B (zh) 2021-04-06

Family

ID=66234137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910052641.4A Active CN109696436B (zh) 2019-01-21 2019-01-21 一种利用银纳米材料检测维生素b1的方法

Country Status (1)

Country Link
CN (1) CN109696436B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881585A (zh) * 2021-01-12 2021-06-01 赣南师范大学 一种基于纳米酶催化驱动的银源检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881585A (zh) * 2021-01-12 2021-06-01 赣南师范大学 一种基于纳米酶催化驱动的银源检测方法
CN112881585B (zh) * 2021-01-12 2023-03-31 赣南师范大学 一种基于纳米酶催化驱动的银源检测方法

Also Published As

Publication number Publication date
CN109696436B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Li et al. Detection methods of ammonia nitrogen in water: A review
Burkhardt et al. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton
Ruiz-Capillas et al. Application of flow injection analysis for determining sulphites in food and beverages: A review
Del Giorgio et al. Coherent patterns in bacterial growth, growth efficiency, and leucine metabolism along a northeastern Pacific inshore‐offshore transect
Cammack et al. Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism
García-Guzmán et al. Selective methods for polyphenols and sulphur dioxide determination in wines
Amado et al. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: amino acids play a central role
Zhang et al. Comparative analysis of physicochemical characteristics, nutritional and functional components and antioxidant capacity of fifteen kiwifruit (Actinidia) cultivars—comparative analysis of fifteen kiwifruit (Actinidia) cultivars
Yilmaz et al. Determination of trace sulfite by direct and indirect methods using differential pulse polarography
Li et al. Subsurface low dissolved oxygen occurred at fresh-and saline-water intersection of the Pearl River estuary during the summer period
Wang et al. A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction
Martins et al. Fast and reliable analyses of sulphite in fruit juices using a supramolecular amperometric detector encompassing in flow gas diffusion unit
Settheeworrarit et al. Exploiting guava leaf extract as an alternative natural reagent for flow injection determination of iron
Hao et al. Controllable synthesis of yellow emissive carbon dots by mild heating process and their utility as fluorescent test paper for detection of mercury (II) ions assistants by smartphone
CN109142249A (zh) 一种海水硝酸盐浓度测试方法
CN103674919B (zh) 一种基于金纳米花-量子点的超结构传感器及其制备方法和应用
CN105445259B (zh) 基于功能化金纳米粒子快速检测瘦肉精的方法
Yin et al. Determination of sulfite in water samples by flow injection analysis with fluorescence detection
Peng et al. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots
CN109696436A (zh) 一种利用银纳米材料检测维生素b1的方法
Elik et al. A new ultrasound-assisted liquid-liquid microextraction method utilizing a switchable hydrophilicity solvent for spectrophotometric determination of nitrite in food samples
CN110596061A (zh) 基于BPEI-CuNCs荧光探针快速检测铜离子的方法
Gao et al. Silver metallization-triggered liposome-embedded AIE fluorophore for dual-mode detection of biogenic amines to fight food freshness fraud
Santo et al. A new method for quantification of total polyphenol content in medicinal plants based on the reduction of Fe (III)/1, 10-phenanthroline complexes
Kukoc-Modun et al. Flow injection analysis of N-acetyl-l-cysteine based on the reduction of copper (ii)-neocuproine reagent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240423

Address after: 230000 Woye Garden Commercial Building B-1017, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee after: HEFEI JINGLONG ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 224051 middle road of hope Avenue, Yancheng City, Jiangsu Province, No. 1

Patentee before: YANCHENG INSTITUTE OF TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right