CN109695535B - 用于风力涡轮机的转子叶片部件及其制造方法 - Google Patents

用于风力涡轮机的转子叶片部件及其制造方法 Download PDF

Info

Publication number
CN109695535B
CN109695535B CN201811240655.0A CN201811240655A CN109695535B CN 109695535 B CN109695535 B CN 109695535B CN 201811240655 A CN201811240655 A CN 201811240655A CN 109695535 B CN109695535 B CN 109695535B
Authority
CN
China
Prior art keywords
rotor blade
pultruded rods
pultruded
enclosed
blade component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811240655.0A
Other languages
English (en)
Other versions
CN109695535A (zh
Inventor
B·艾伯特
N·K·奥尔索夫
J·T·利文斯顿
S·B·约翰逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power AS
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN109695535A publication Critical patent/CN109695535A/zh
Application granted granted Critical
Publication of CN109695535B publication Critical patent/CN109695535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/682Preformed parts characterised by their structure, e.g. form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/042Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/047Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/067Wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6014Filler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6015Resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/24Manufacture essentially without removing material by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2102Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Composite Materials (AREA)
  • Wind Motors (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本发明公开了用于风力涡轮机的转子叶片部件及其制造方法。更具体地,所述转子叶片部件包括容纳于封闭式主外壳内的多根挤拉成型杆。所述封闭式主外壳包括中空内部、根端和相对的尖部。因此,所述多根挤拉成型杆中的每一根被接纳在所述封闭式主外壳内并经由第一树脂材料固定在其中。此外,多根挤拉成型杆在主外壳内的布置以及多根挤拉成型杆中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性最大化。

Description

用于风力涡轮机的转子叶片部件及其制造方法
技术领域
本公开的主题整体涉及风力涡轮机转子叶片,且更具体地涉及使用挤拉成型杆形成的风力涡轮机转子叶片部件。
背景技术
风力被认为是目前可用的最清洁、最环保的能源之一,并且风力涡轮机在这方面已经获得越来越多的关注。现代风力涡轮机通常包括塔架、发电机、齿轮箱、机舱和一个或多个转子叶片。转子叶片使用已知的翼型原理捕获风的动能,并通过旋转能量传输动能,以转动轴,该轴将转子叶片联接到齿轮箱,或者如果没有使用齿轮箱,则直接将转子叶片联接到发电机。发电机然后将机械能转换为可被部署到公用电网的电能。
风力涡轮机转子叶片一般包括由复合层压材料的两个壳体(shell)半部形成的主体壳体。壳体半部一般使用模制工艺(molding processes)制造,然后沿转子叶片的对应端部联接在一起。一般来讲,主体壳体相对重量轻并且具有多种结构特性(例如,刚度、抗弯性和强度),这些结构特性未被配置成在操作期间承受施加在转子叶片上的弯矩(bendingmoments)和其他负载。此外,风力涡轮机叶片变得越来越长以产生更多电力。因此,叶片必须更硬并因此更重,以便减轻转子上的负载。
为了增大转子叶片的刚度、抗弯性和强度,通常使用接合壳体半部的内表面的一个或多个结构部件(例如,相对的翼梁帽(spar caps),在两者间构造有抗剪腹板(shearweb))来增强主体壳体。翼梁帽可以由包括但不限于玻璃纤维层压复合物和/或碳纤维层压复合物的各种材料构成。然而,由于对干燥和预浸织物的处理以及灌注(infusing)大的层压结构的挑战,此类材料可能是难以控制的、易于出现缺陷的和/或高度劳动密集型的。
因此,翼梁帽也可以由可在较厚部段中产生且较不易受缺陷影响的预制的、预固化的(即,挤拉成型的)复合物构成。另外,在翼梁帽中使用挤拉成型件可以减轻翼梁帽的重量并且还可以增大翼梁帽的强度。因此,挤拉成型复合物可以消除与单独使用干燥织物相关联的各种顾虑和挑战。如本发明所用,术语“挤拉成型复合物”、“挤拉成型件”、“挤拉成型构件”或类似物一般涵盖用树脂材料浸渍(impregnated)并牵拉穿过固定模使得树脂通过增加热量或其他固化方法而固化或发生聚合的增强材料(例如,纤维或者机织股线或编织股线)。因此,制造挤拉成型复合物的工艺的特征通常在于:一种复合材料连续工艺,其产生具有恒定截面积的复合零件。然后可以将多个挤拉成型件接合在一起以形成翼梁帽和/或各种其他转子叶片部件。
因此,使用挤拉成型件形成的翼梁帽通常包括经由树脂材料结合在一起的挤拉成型层。更具体地,翼梁帽一般由在模具中结合在一起的多个堆叠的挤拉成型板形成。
尽管已经实现了在翼梁帽中使用挤拉成型板的益处,但此类板或层的固有特性存在设计挑战。例如,使用板状挤拉成型件来形成弯曲形状的部件。更具体地,许多挤拉成型件具有平坦横截面(例如,是正方形或矩形的),因为此类形状易于制造。尽管使用平坦挤拉成型件可以显著改进转子叶片部件的成本和可生产性,但此类挤拉成型件通常不会铺放到弯曲模具中而在挤拉成型件与模具形状之间没有间隙。由于风力涡轮机叶片从根部到尖部通常是弯曲的,因此形成随着叶片壳体弯曲的挤拉成型层存在挑战。当在同一部件中使用含有不同纤维的板时,模量不匹配可能成为问题。例如,板之间弹性模量的显著差异可能导致板之间出现分层。
通过将挤拉成型件切割成更薄的条带,可以在一定程度上实现与模具的一致性;然而,这增加了挤拉成型工艺的成本、机加工时间和/或将挤拉成型件放入模具中的难度。另外,挤拉成型层的使用造成了对裂纹传播的顾虑。更具体地,挤拉成型层中的裂纹倾向于在相对短的时间内从一端迁移到另一端。
因此,本领域不断寻求使用挤拉成型件制造转子叶片部件(例如,翼梁帽)的新的和改进的方法。
更具体地,使用为部件提供更大的柔韧性使得部件可以粘附到转子叶片的弯曲表面的挤拉成型杆(pultruded rods)来制造转子叶片部件的方法将是有利的。利用挤拉成型杆形成的转子叶片部件中的裂纹倾向于在挤拉成型杆周围以之字形(zig-zag)方式移动,这导致传播寿命(propagation life)更长。
发明内容
本发明的各方面和优点将部分地在以下描述中阐述,或可从所述描述显而易见,或可通过本发明的实践而得知。
在一个方面,本公开涉及一种用于风力涡轮机的转子叶片部件。转子叶片部件包括封闭式主外壳和多根挤拉成型杆。封闭式主外壳(enclosed primary outer casing)限定中空内部。多根挤拉成型杆被接纳在封闭式主外壳的中空内部内并经由第一树脂材料固定在其中。此外,多根挤拉成型杆在封闭式主外壳内的布置以及多根挤拉成型杆中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性最大化。
在一个实施方案中,多根挤拉成型杆可包括约60%至约80%的第一纤维体积分数(volume fraction)。在另一个实施方案中,封闭式主外壳、多根挤拉成型杆和第一树脂材料可一起包括约50%至约70%的第二纤维体积分数。在其他实施方案中,多根挤拉成型杆中的每一根的最大尺寸对应于其直径。此外,多根挤拉成型杆中的每一根的直径可小于封闭式外壳的最大尺寸的约10%。更具体地,在一个实施方案中,多根挤拉成型杆中的每一根的直径可为约0.5毫米(mm)至约40 mm。在又一个实施方案中,封闭式主外壳可由经由第二树脂材料接合在一起的多根纤维构成。
在附加的实施方案中,封闭式主外壳可包括根端和尖端,封闭式主外壳在根端与尖端之间是弯曲的。在一个实施方案中,封闭式主外壳的横截面积可以在根端与尖端之间逐渐减小。仍在又一个实施方案中,封闭式主外壳可以限定在根端与尖端之间变化的壁厚。
在另外的实施方案中,多个封闭的附加的封闭式壳(casing)可以布置在封闭式主外壳内。多根杆的至少一部分被接纳在封闭的附加的封闭式壳的每一个内。在另一个实施方案中,转子叶片部件可以包括填充材料,所述填充材料被接纳在封闭式主外壳内并经由第一树脂材料固定在其内。
在又一个实施方案中,封闭式主外壳可以包括多个空腔,其在转子叶片的翼弦向方向上以并排构型(in a side-by-side configuration)布置。多个空腔中的至少两个包括多根挤拉成型杆的至少一部分,并且多个空腔中的至少一个包括填充材料。在另一个实施方案中,转子叶片部件还可以包括至少一个挤拉成型板。挤拉成型板可以与封闭式主外壳的外部接合并经由第三树脂材料固定在那里。
在另一个方面,本公开涉及一种用于风力涡轮机的转子叶片组件。转子叶片组件包括转子叶片。转子叶片包括在叶片根部与叶片尖部之间延伸的吸力侧、压力侧、前缘和后缘。转子叶片组件还包括至少一个转子叶片部件,其布置在转子叶片内。转子叶片部件包括封闭式主外壳,封闭式主外壳在转子叶片的翼展向方向上从叶片根部朝向述叶片尖部延伸。封闭式主外壳包括至少一个空腔和多根挤拉成型杆。多根挤拉成型杆被接纳在至少一个空腔内并经由第一树脂材料固定在其中。多根挤拉成型杆在封闭式主外壳内的布置以及多根挤拉成型杆中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性(flexibility)最大化。
在附加的实施方案中,多根挤拉成型杆可以包括碳纤维或玻璃纤维中的至少一种。由玻璃纤维形成的挤拉成型杆与由碳纤维形成的挤拉成型杆的比可以沿着翼展向方向变化。
在另一个实施方案中,转子叶片组件可以包括多个封闭的附加的封闭式壳,其布置在主外壳内。多根杆的至少一部分被接纳在封闭的附加的封闭式壳的每一个内。在另一个实施方案中,封闭式主外壳可以包括多个空腔,所述多个空腔在转子叶片的翼弦向方向上以并排构型布置。
在又一个方面,本公开涉及一种制造风力涡轮机的转子叶片部件的方法。该方法包括提供封闭式外壳。另一步骤包括将多根挤拉成型杆在封闭式外壳内布置成多个行和列。多根挤拉成型杆在封闭式外壳内的布置以及多根挤拉成型杆中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性最大化。又一步骤包括将封闭式外壳在其相对的端部处密封。该方法还包括将至少一种树脂材料灌注到封闭式外壳中以将多根挤拉成型杆固定在其中,从而形成转子叶片部件。
在其他实施方案中,转子叶片部件可以包括翼梁帽、抗剪腹板、根环(root ring)或沿边加固增强件中的至少一个。仍在另外的实施方案中,封闭式主外壳可以经由挤拉成型、热成形或灌注中的至少一种形成。
参考以下描述和所附权利要求,本发明的这些和其他特征、方面和优点将变得更好理解。并入于本说明书中且构成本说明书的一部分的附图说明本发明的实施方案,且连同所述描述一起用于解释本发明的原理。
附图说明
本说明书中针对所属领域的技术人员来阐述本发明的完整和启发性公开内容,包括其最佳模式,本说明书参考了附图,在附图中:
图1示出了根据本公开的风力涡轮机的一个实施方案的透视图;
图2示出了图1的转子叶片中的一个的透视图;
图3示出了图2的转子叶片沿着线3-3的剖视图;
图4示出了根据本公开的使用挤拉成型杆形成的挤拉成型翼梁帽的一个实施方案的剖视图;
图5示出了根据本公开的使用挤拉成型杆形成的翼梁帽的一个实施方案的翼展向透视图;
图6示出了图5的翼梁帽沿着剖面线6-6的剖视图;
图7示出了图5的翼梁帽沿着剖面线7-7的另一个剖视图;
图8示出了根据本公开的翼梁帽的一个实施方案的翼弦向视图,具体地示出了具有封闭式主外壳和布置在其中的多个封闭的附加的封闭式壳的翼梁帽,其中多根挤拉成型杆布置在封闭的附加的封闭式壳的每一个内;
图9示出了根据本公开的翼梁帽的一个实施方案,具体地示出了含有布置在封闭式主外壳内的填充材料以及围绕填充材料布置的多根挤拉成型杆的翼梁帽;
图10示出了根据本公开的翼梁帽的一个实施方案的翼弦向视图,具体地示出了具有以并排构型布置的多个空腔的翼梁帽,其中空腔中的两个内含有多根挤拉成型杆并且中间空腔是开放的;
图11示出了根据本公开的翼梁帽的一个实施方案的翼弦向视图,具体地示出了具有以并排构型布置的多个空腔的翼梁帽,其中空腔中的两个内含有多根挤拉成型杆并且中间空腔内含有多根加固杆;
图12示出了根据本公开的翼梁帽的一个实施方案的翼弦向视图,具体地示出了具有以并排构型布置的多个空腔的翼梁帽,其中空腔中的两个内含有多根挤拉成型杆并且中间空腔内含有填充材料;
图13示出了根据本公开的翼梁帽的一个实施方案的翼弦向视图,具体地示出了具有多个挤拉成型板的翼梁帽,所述多个挤拉成型板与填充有多根挤拉成型杆的外壳接合;以及
图14示出了根据本公开的制造转子叶片部件的方法的一个实施方案的流程图。
具体实施方式
现将详细参考本发明的实施方案,在图中说明本发明的实施方案的一个或多个示例。每个实例是为了解释本发明而提供,而非限制本发明。实际上,所属领域的技术人员将清楚,在不脱离本发明的范围或精神的情况下可在本发明中进行各种修改和变化。举例来说,说明或描述为一个实施方案的一部分的特征可与另一实施方案一起使用以产生再一实施方案。因此,希望本发明涵盖此类修改和变化,所述修改和变化处于所附权利要求书及其等效物的范围内。
一般来讲,本主题涉及用于风力涡轮机的改进的挤拉成型转子叶片部件及其制造方法。例如,在一个实施方案中,本发明所述的转子叶片部件可以使用布置在封闭式主外壳中的多根挤拉成型杆形成。封闭式主外壳限定在根端与相对的尖端之间延伸的中空内部。多根挤拉成型杆中的每一根被接纳在封闭式主外壳内并经由第一树脂材料固定在其中。因此,外壳既用作部件模具又用作成品零件的一部分。此外,多根挤拉成型杆在封闭式主外壳内的布置以及挤拉成型杆中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性最大化。
因此,可以通过改变挤拉成型杆的数量、挤拉成型杆的横截面积、挤拉成型杆的纤维体积分数和/或挤拉成型杆的横截面积与封闭式主外壳的中空横截面积的比来调节零件的柔韧性。
本公开提供了现有技术中不存在的许多优点。例如,在翼梁帽和其他转子叶片部件中使用挤拉成型材料可以减少缺陷并增大部件的强度。此外,本公开的通过挤拉成型杆形成的转子叶片部件更具柔韧性(与挤拉成型板相比),并因此更能够符合可以更好地结合到弯曲转子叶片模具中的弯曲空腔。此外,与挤拉成型板相比,本发明的转子叶片部件可以具有更好的裂纹传播特性。另外,利用含有不同纤维的杆的部件可以避免由不同纤维形成的板可能出现的分层(delamination)问题。更具体地,杆的较小形状和几何结构可以防止可能引起分层的极端模量跳跃。
现在参考附图,图1示出了水平轴线风力涡轮机10的透视图。应当理解,风力涡轮机10也可以是垂直轴线风力涡轮机。如示出的实施方案中所示,风力涡轮机10包括塔架12、安装在塔架12上的机舱14以及联接到机舱14的转子轮毂18。塔架12可以由管状钢或其他合适的材料制成。转子轮毂18包括一个或多个转子叶片16,所述转子叶片16联接到轮毂18并从其径向向外延伸。如图所示,转子轮毂18包括三个转子叶片16。然而,在替代实施方案中,转子轮毂18可包括多于或少于三个的转子叶片16。转子叶片16使转子轮毂18旋转,以使动能能够从风转换成可用的机械能,随后转换成电能。具体地,轮毂18可以可旋转地联接到位于机舱14内的发电机(未示出),以产生电能。
参考图2和图3,示出了根据本主题的各方面的图1的转子叶片16中的一个。具体地,图2示出了转子叶片16的透视图,而图3示出了沿着图2所示的剖面线3-3的转子叶片16的剖视图。如图所示,转子叶片16一般来讲包括叶片根部30和叶片尖部32,该叶片根部30被构造成安装或以其他方式固定到风力涡轮机10的轮毂18(图1),该叶片尖部32与叶片根部30相对地设置。转子叶片的主体壳体21一般来讲沿着纵向轴线27在叶片根部30与叶片尖部32之间延伸。主体壳体21一般来讲可以用作转子叶片16的外壳/覆盖物,并且可以诸如通过限定对称的或拱形的翼形横截面来限定基本上符合空气动力学的轮廓。主体壳体21还可以限定在转子叶片16的前缘26与后缘28之间延伸的压力侧34和吸力侧36。此外,转子叶片16还可以具有限定叶片根部30与叶片尖部32之间的总长度的翼展(span)23以及限定前缘26与后缘28之间的总长度的翼弦(chord)25。如通常所理解的,随着转子叶片16从叶片根部30延伸到叶片尖部32,翼弦25的长度可以相对于翼展23变化。
在若干实施方案中,转子叶片16的主体壳体21可以形成为单个一体式部件。另选地,主体壳体21可以由多个壳体部件形成。例如,主体壳体21可以由一般限定转子叶片16的压力侧34的第一壳体半部和一般限定转子叶片16的吸力侧36的第二壳体半部制成,其中此类壳体半部在叶片16的前缘26和后缘28处彼此固定。另外,主体壳体21一般可以由任何合适的材料形成。例如,在一个实施方案中,主体壳体21可完全由诸如碳纤维增强层压复合材料或玻璃纤维增强层压复合材料的层压复合材料形成。另选地,主体壳体21的一个或多个部分可以被构造为分层构造,并且可以包括设置在层压复合材料层之间的芯材料,所述芯材料由轻质材料诸如木材(例如,轻木)、泡沫(例如,挤出聚苯乙烯泡沫)或此类材料的组合形成。
具体地参考图3,转子叶片16还可以包括一个或多个纵向延伸的结构部件,所述结构部件被构造成向转子叶片16提供增大的刚度、抗弯性和/或强度。例如,转子叶片16可以包括一对纵向延伸的翼梁帽20、22,翼梁帽20、22被构造成分别抵靠转子叶片16的压力侧34和吸力侧36的相对的内表面35、37接合。另外,一个或多个抗剪腹板24可设置在翼梁帽20、22之间,以便形成梁状构型。翼梁帽20、22一般来讲可以被设计成在风力涡轮机10的操作期间控制沿大体翼展向方向(平行于转子叶片16的翼展部23的方向)作用于转子叶片16的弯曲应力和/或其他负载。类似地,翼梁帽20、22还可以被设计成承受在风力涡轮机10的操作期间发生的翼展向压缩。
现在参考图4至图7,示出了根据本公开的翼梁帽20的各种视图。具体地,图4示出了固定到转子叶片16的主体壳体21的吸力侧36的翼梁帽20的剖视图。图5示出了根据本公开的翼梁帽20的翼展向透视图。图6示出了图5的翼梁帽20沿着剖面线6-6的剖视图。图7示出了图5的翼梁帽20沿着图5所示的剖面线7-7的剖视图。
更具体地,如图所示,翼梁帽20由封闭式主外壳(enclosed primary outercasing)42构成,所述封闭式主外壳42具有被构造成将多根挤拉成型杆40接纳在其中的中空内部44。此外,如图所示,挤拉成型杆40经由第一树脂材料46固定在主外壳42的中空内部44内。另外,本发明所述的主外壳42可以由经由第二树脂材料47接合在一起的多根纤维构成。此外,具体地如图4所示,中空内部44可以在大体翼展向方向上在根端48与尖端50之间延伸。此外,如图所示,翼梁帽20可以在根端48与尖端50之间弯曲。这样,多根挤拉成型杆40的尺寸设定成向翼梁帽20提供柔韧性,使得翼梁帽20可以符合转子叶片16的曲率。在其他实施方案中,翼梁帽20可以在容纳于外壳42中的挤拉成型杆40的区段中形成。更具体地,翼梁帽20的区段可以使用斜接接头(scarf joints)或用于将多个区段粘附在一起的其他方法接合在一起。
在一些实施方案中,挤拉成型杆40可以包括约60%至约80%的第一纤维体积分数。更具体地,在某些实施方案中,第一纤维体积分数可为约69%。在另外的实施方案中,组合起来的封闭式主外壳42、多根挤拉成型杆40和第一树脂材料一起可以包括约50%至约70%的第二纤维体积分数。更具体地,在某些实施方案中,第二纤维体积分数可为约58%。如本发明所用,纤维体积分数一般来讲定义为纤维束的体积与纤维束和树脂两者的体积的比(按百分比计)。
在其他实施方案中,多根挤拉成型杆中的每一根的最大尺寸对应于其直径。此外,多根杆中的每一根的直径可小于封闭式外壳的最大尺寸的约10%。如本发明所用,封闭式外壳的最大尺寸是外壳在翼弦向方向上的最大尺寸。在一些实施方案中,多根挤拉成型杆中的每一根可以具有范围为约0.5 mm至约40 mm的直径。这样,挤拉成型杆在封闭式主外壳中的布置以及挤拉成型杆40中的每一根的直径(其对应于其最大尺寸)与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性最大化。例如,挤拉成型杆40的直径一般来讲与杆40的纤维体积分数相关。因此,具有较大直径的挤拉成型杆40一般来讲倾向于具有较低的纤维体积分数。相反,具有较小直径的挤拉成型杆40一般来讲倾向于具有较高的纤维体积分数,这在柔韧性方面是有利的。此外,在某些实施方案中,可以利用直径变化的挤拉成型杆40来形成本发明所述的转子叶片部件,以便实现期望的纤维体积分数。
一般来讲,现在参考图5至图7,在某些实施方案中,封闭式主外壳42的中空内部44可以从根端48到尖端50发生变化。例如,如图5所示,封闭式主外壳42的中空内部44可以在根端48与尖端50之间逐渐减小。更确切地,具体如图6和图7所示,中空内部44的更靠近叶片根部30的横截面积58可以大于中空内部44的更靠近叶片尖部32的横截面积58。
另外,具体地如图5至图7所示,封闭式主外壳42的中空内部44可以限定在根端48与尖端50之间变化的壁厚56。更具体地,图6示出了更靠近叶片根部30的壁厚56大于更靠近叶片尖部32的厚度56。在另外的实施方案中,外壳42的壁厚56从根端48到尖端50可以是恒定的。
应当理解,本发明所述的挤拉成型杆40可以使用任何合适的挤拉成型工艺形成。例如,挤拉成型杆40一般由用树脂材料浸渍并牵拉穿过固定模(stationary die)使得树脂材料通过增加热量或其他固化方法而固化或发生聚合的增强材料(例如,纤维或者机织股线或编织股线)形成。例如,在某些实施方案中,加热的模可以包括对应于挤拉成型杆40的期望形状的模具腔,使得模具腔形成已完工零件中所需的形状。类似地,封闭式主外壳42可以使用任何合适的工艺(包括但不限于挤拉成型、热成形或灌注(infusion))来形成。
因此,在各种实施方案中,纤维可以包括但不限于玻璃纤维、纳米纤维、碳纤维、金属纤维、木纤维、竹纤维、聚合物纤维、陶瓷纤维或类似物。另外,纤维材料可以包括短纤维、长纤维或连续纤维。
此外,本发明所述的树脂材料可以包括热塑性材料或热固性材料。如本发明所述的热塑性材料一般涵盖性质可逆的塑性材料或聚合物。例如,热塑性材料通常在加热到一定温度时变得柔韧(pliable)或可模制,而在冷却时硬化。此外,热塑性材料可以包括无定形热塑性材料和/或半结晶热塑性材料。例如,一些无定形热塑性材料一般可以包括但不限于苯乙烯(styrenes)、乙烯基树脂(vinyls)、纤维素、聚酯(acrylics)、丙烯酸树脂(cellulosics)、聚砜和(polysulphones)/或酰亚胺(imides)。更具体地,示例性无定形热塑性材料可以包括聚苯乙烯、丙烯腈-丁二烯-苯乙烯(ABS)、聚甲基丙烯酸甲酯(PMMA)、二醇化聚对苯二甲酸乙二醇酯(PET-G)、聚碳酸酯、聚醋酸乙烯酯、无定形聚酰胺、聚氯乙烯(PVC)、聚偏二氯乙烯、聚氨酯或任何其他合适的无定形热塑性材料。另外,示例性半结晶热塑性材料一般可以包括但不限于聚烯烃、聚酰胺、含氟聚合物、乙基-丙烯酸甲酯(ethyl-methyl acrylate)、聚酯、聚碳酸酯和/或乙缩醛。更具体地,示例性半结晶热塑性材料可以包括聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚丙烯、聚苯硫醚、聚乙烯、聚酰胺(尼龙)、聚醚酮(polyetherketone)或任何其他合适的半结晶热塑性材料。
此外,如本发明所述的热固性材料一般涵盖性质不可逆的塑性材料或聚合物。例如,一旦固化,热固性材料就不能容易地重新模制或返回到液体状态。因此,在初始成形后,热固性材料一般是耐热、耐腐蚀和/或耐蠕变的。示例性热固性材料一般可以包括但不限于一些聚酯(polyesters)、酯、环氧化物或任何其他合适的热固性材料。
因此,根据本公开的某些方面,挤拉成型杆40然后可以在外壳42内接合在一起以形成翼梁帽20。更具体地,挤拉成型杆40可以通过真空灌注、粘合剂、半预浸材料、预浸材料或任何其他合适的接合方法来接合和/或固定在一起。另外,如所提及的,挤拉成型杆40在外壳42中的布置以及挤拉成型杆中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使翼梁帽20的柔韧性最大化。
另外,应当理解,挤拉成型杆40可以具有任何合适的横截面形状。例如,如在图4中可见,挤拉成型杆40的横截面形状可以对应于大体圆形形状。在另外的实施方案中,本领域技术人员应当认识到,挤拉成型杆40的横截面形状可以是任何期望的形状,诸如但不限于正方形、矩形、三角形、八边形、菱形或钢筋形。利用了三角形或矩形挤拉成型杆40的此类实施方案可以分别使用三角形和/或矩形堆积布置(packing arrangement)。应当认识到,任何形状的挤拉成型杆40也可以按三角形和/或矩形堆积布置来组织,并且可以在同一梁柱帽中使用多于一种堆积布置。
具体地参考图6和图7,翼梁帽20可以包括由碳纤维(阴影)和/或玻璃纤维(无阴影)形成的挤拉成型杆40。这样,在某些实施方案中,由玻璃纤维形成的挤拉成型杆40与由碳纤维形成的挤拉成型杆40的比可以沿着翼展向方向变化。例如,如在图6中可见,由玻璃纤维形成的挤拉成型杆40与由碳纤维形成的挤拉成型杆40的比在叶片根部30处较高。相反,如图7所示,由玻璃纤维形成的挤拉成型杆40与由碳纤维形成的挤拉成型杆40的比越靠近叶片尖部32越低。这样,由玻璃纤维形成与由碳纤维形成的挤拉成型杆40的比沿着转子叶片16的翼展的变化允许从叶片根部30到叶片尖部32具有不同的特性。
现在参考图8,示出了根据本公开的由挤拉成型杆40形成的翼梁帽20的另一个实施方案。更具体地,如图所示,示出的翼梁帽20包括多个封闭的附加的封闭式壳142,所述封闭式壳142布置在封闭式主外壳42内。因此,如图所示,附加的封闭式壳142包括附加的中空内部144,所述中空内部144各自被构造成接纳挤拉成型杆40的一部分。例如,如图所示,翼梁帽20包括多个附加的封闭式壳142,其布置成多个行和列(例如,4×8矩阵),其中每个附加的封闭式壳142都含有在其中布置成多个行和列的多根挤拉成型杆40。在另一个实施方案中,封闭式主外壳42可以含有水平和/或垂直加固肋的矩阵,所述加固肋将附加的封闭式壳142中的至少一些分开。
此外,如图所示,附加的封闭式壳142使用附加的树脂材料146来固定在主外壳42的中空内部44内。与主外壳42一样,封闭的附加的封闭式壳142也可以通过挤拉成型、热成型和/或灌注来形成。还应当认识到,一些实施方案的封闭式主外壳42、封闭的附加的封闭式壳142和/或挤拉成型杆40是使用本领域已知的任何合适的方法制造的预固化的预制部件。
现在参考图9,示出了根据本公开的由主外壳42和挤拉成型杆40形成的翼梁帽20的又一个实施方案。更具体地,如图所示,翼梁帽20还包括至少一种填充材料52。例如,如图所示,填充材料52被接纳在中空内部44内的封闭式主外壳42内并通过第一树脂材料46固定在其内。另外,如示出的实施方案中所示,填充材料52居中定位并由挤拉成型杆40围绕。在替代实施方案中,填充材料52可以位于外壳42内的任何合适的位置处。此外,填充材料52可以包括任何合适的材料,包括但不限于高密度泡沫、低密度泡沫、加固肋、流体(例如,空气)或本领域已知的其他类似的材料或流体。在另一个实施方案中,中空内部44可以包括一起地或分开地布置在其中的多种填充材料52。
在另一个实施方案中,填充材料52可以包括水平和/或垂直加固肋的矩阵,所述加固肋被构造成在加固肋之间的空间中的每一个中接纳挤拉成型杆的一部分。例如,垂直和水平加固肋的矩阵可以填充中空内部44,其中第一树脂材料46和挤拉成型杆40填充加固肋之间的空间。
现在参考图10至图12,示出了根据本公开的由主外壳42和挤拉成型杆40形成的转子叶片部件的另外的实施方案。更具体地,如图所示,翼梁帽20可以包括多个中空内部或空腔54(而不仅仅是如图4所示的单个中空内部44)。例如,如图所示,示出的外壳42包括三个空腔54。此外,应当认识到,翼梁帽20可以包括任何数量和/或取向的空腔54。
这样,空腔54中的一个或多个可以用挤拉成型杆40填充。例如,具体地如图10所示,封闭式主外壳42包括多个空腔54,所述多个空腔54在翼弦向方向上以并排构型布置,其中外部空腔54含有挤拉成型杆40。另外,如图所示,中央空腔54包括填充材料52,诸如本发明所述的那些填充材料。具体地,图10示出了中央空腔54是开放空腔(即,空腔54含有空气)的实施方案。此开放空腔54可用作用于电力电缆的管道、用于操作有源和/或无源装置的致动介质(诸如加压空气)的管道、用于防止照明器件受损的引下线管道和/或用于加热转子叶片16的热空气的管道。相反,图11示出了中间空腔54内的填充材料52对应于加固肋的转子叶片部件。在此类实施方案中,加固肋还可以包括布置在其中的附加的填充材料诸如泡沫。另选地,加固肋可以仅填充有空气。在又一个实施方案中,图12示出了中间空腔54内的填充材料52对应于泡沫材料(即,没有加固肋)的转子叶片部件。
现在参考图13,示出了根据本公开的由主外壳42、挤拉成型杆40和挤拉成型板41形成的翼梁帽22的另一个实施方案。更具体地,在该实施方案中,翼梁帽22是如图3所示的粘附到主体壳体21的压力侧34的下部翼梁帽22。如图所示,翼梁帽22还可以包括至少一个挤拉成型板41。至少一个挤拉成型板41可以与主外壳42的外部接合并经由第三树脂材料(未示出)固定在其中。更具体地,挤拉成型板41可以通过真空灌注、粘合剂、半预浸材料、预浸材料或任何其他合适的接合方法来接合和/或固定在一起和/或接合和/或固定到主外壳42。在一些实施方案中,如图13所示,翼梁帽22可以包括接合在一起并与主外壳42的外部接合的多个挤拉成型板41。在不同的实施方案中,挤拉成型板41可以被接纳在主外壳42的中空内部44内并使用第一树脂材料46固定在其内。
本公开还涉及用于制造如本发明所述的转子叶片部件的方法。例如,如图14所示,公开了制造风力涡轮机10的转子叶片部件的方法100的一个实施方案的流程图。如在102处所示,方法100包括提供封闭式外壳42。如在104处所示,方法100包括将多根挤拉成型杆40在外壳42内布置成多个行和列。更具体地,挤拉成型杆40在外壳42内的布置以及挤拉成型杆40中的每一根的最大尺寸与封闭式主外壳的最大尺寸的关系被构造成使转子叶片部件的柔韧性最大化。如在106处所示,方法100还包括将外壳42在其相对的端部处密封。如在108处所示,方法100包括将至少一种树脂材料灌注到外壳42中以将挤拉成型杆40固定在其中,从而形成转子叶片部件。
还应当理解,除翼梁帽之外,还可使用如本发明所述的多根挤拉成型杆40、主外壳42和附加的壳142来构造各种其他转子叶片部件。例如,在某些实施方案中,可使用本发明所述的部件和方法来构造抗剪腹板24、根环、沿边加固增强件或可受益于如本发明所述由挤拉成型零件构造的任何其他转子叶片部件。
本书面描述使用示例来公开本发明,包括最佳模式,并且还使所属领域的技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何所并入的方法。本发明的可获专利的范围由权利要求书界定,且可以包括所属领域的技术人员所想到的其他示例。如果此类其他实例包括并非不同于权利要求书的字面语言的结构要素,或如果它们包括与权利要求书的字面语言无实质差异的等效结构要素,那么它们既定在权利要求范围内。

Claims (19)

1.一种用于风力涡轮机的转子叶片部件,所述转子叶片部件包括:
封闭式主外壳,其限定中空内部;以及
多根挤拉成型杆,其被接纳在所述封闭式主外壳的所述中空内部内并经由第一树脂材料固定在其中,
其中所述多根挤拉成型杆在所述封闭式主外壳内的布置以及所述多根挤拉成型杆中的每一根的最大尺寸与所述封闭式主外壳的最大尺寸的关系被构造成使所述转子叶片部件的柔韧性最大化;
其中所述多根挤拉成型杆中的每一根的最大尺寸对应于其直径,所述多根挤拉成型杆中的每一根的所述直径小于所述封闭式主外壳在翼弦向方向上的最大尺寸的10%。
2.根据权利要求1所述的转子叶片部件,其中所述多根挤拉成型杆中的每一根包括60%至80%的第一纤维体积分数。
3.根据权利要求1所述的转子叶片部件,其中所述封闭式主外壳、所述多根挤拉成型杆和所述第一树脂材料一起包括50%至70%的第二纤维体积分数。
4.根据权利要求1所述的转子叶片部件,其中所述封闭式主外壳由经由第二树脂材料接合在一起的多根纤维构成。
5.根据权利要求1所述的转子叶片部件,其中所述封闭式主外壳包括根端和尖端,所述封闭式主外壳在所述根端与所述尖端之间是弯曲的。
6.根据权利要求5所述的转子叶片部件,其中所述封闭式主外壳的横截面积在所述根端与所述尖端之间逐渐减小。
7.根据权利要求5所述的转子叶片部件,其中所述封闭式主外壳限定在所述根端与所述尖端之间变化的壁厚。
8.根据权利要求1所述的转子叶片部件,其还包括布置在所述封闭式主外壳内的多个封闭的附加的封闭式壳,其中所述多根挤拉成型杆的至少一部分被接纳在所述封闭的附加的封闭式壳的每一个内。
9.根据权利要求1所述的转子叶片部件,其还包括填充材料,所述填充材料被接纳在所述封闭式主外壳内并经由所述第一树脂材料固定在其内。
10.根据权利要求1所述的转子叶片部件,其中所述封闭式主外壳包括多个空腔,所述多个空腔在所述转子叶片的翼弦向方向上以并排构型布置。
11.根据权利要求10所述的转子叶片部件,其中所述多个空腔中的至少两个包括所述多根挤拉成型杆的至少一部分,并且所述多个空腔中的至少一个包括填充材料。
12.根据权利要求1所述的转子叶片部件,其中所述转子叶片部件包括翼梁帽、抗剪腹板、根环或沿边加固增强件中的至少一个。
13.根据权利要求1所述的转子叶片部件,其中所述封闭式主外壳经由挤拉成型、热成形或灌注中的至少一种形成。
14.根据权利要求1所述的转子叶片部件,其还包括至少一个挤拉成型板,其中所述至少一个挤拉成型板与所述封闭式主外壳的外部接合并经由第三树脂材料固定在那里。
15.一种用于风力涡轮机的转子叶片组件,所述转子叶片组件包括:
转子叶片,其包括在叶片根部与叶片尖部之间延伸的吸力侧、压力侧、前缘和后缘;以及
至少一个转子叶片部件,其布置在所述转子叶片内,所述转子叶片部件包括:
封闭式主外壳,其在所述转子叶片的翼展向方向上从所述叶片根部朝向所述叶片尖部延伸,所述封闭式主外壳包括至少一个中空内部;以及
多根挤拉成型杆,其被接纳在所述至少一个中空内部内并经由第一树脂材料固定在其中,
其中所述多根挤拉成型杆在所述封闭式主外壳内的布置以及所述多根挤拉成型杆中的每一根的最大尺寸与所述封闭式主外壳的最大尺寸的关系被构造成使所述转子叶片部件的柔韧性最大化;
其中所述多根挤拉成型杆中的每一根的最大尺寸对应于其直径,所述多根挤拉成型杆中的每一根的所述直径小于所述封闭式主外壳在翼弦向方向上的最大尺寸的10%。
16.根据权利要求15所述的转子叶片组件,其中所述多根挤拉成型杆包括碳纤维和玻璃纤维,其中由玻璃纤维形成的挤拉成型杆与由碳纤维形成的挤拉成型杆的比沿着所述翼展向方向发生变化。
17.根据权利要求15所述的转子叶片组件,其还包括布置在所述封闭式主外壳内的多个封闭的附加的封闭式壳,其中所述多根挤拉成型杆的至少一部分被接纳在所述封闭的附加的封闭式壳的每一个内。
18.根据权利要求15所述的转子叶片组件,其中所述封闭式主外壳包括多个空腔,所述多个空腔在所述转子叶片的翼弦向方向上以并排构型布置。
19.一种制造风力涡轮机的转子叶片部件的方法,所述方法包括:
提供封闭式外壳;
将多根挤拉成型杆在所述封闭式外壳内布置成多个行和列,其中所述多根挤拉成型杆在所述封闭式外壳内的布置以及所述多根挤拉成型杆中的每一根的最大尺寸与所述封闭式外壳的最大尺寸的关系被构造成使所述转子叶片部件的柔韧性最大化;
将所述封闭式外壳在其相对的端部处密封;以及
将至少一种树脂材料灌注到所述封闭式外壳中以将所述多根挤拉成型杆固定在其中,从而形成所述转子叶片部件;
其中所述多根挤拉成型杆中的每一根的最大尺寸对应于其直径,所述多根挤拉成型杆中的每一根的所述直径小于所述封闭式主外壳在翼弦向方向上的最大尺寸的10%。
CN201811240655.0A 2017-10-24 2018-10-23 用于风力涡轮机的转子叶片部件及其制造方法 Active CN109695535B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/791,705 US10677216B2 (en) 2017-10-24 2017-10-24 Wind turbine rotor blade components formed using pultruded rods
US15/791,705 2017-10-24

Publications (2)

Publication Number Publication Date
CN109695535A CN109695535A (zh) 2019-04-30
CN109695535B true CN109695535B (zh) 2022-04-05

Family

ID=63878427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811240655.0A Active CN109695535B (zh) 2017-10-24 2018-10-23 用于风力涡轮机的转子叶片部件及其制造方法

Country Status (4)

Country Link
US (1) US10677216B2 (zh)
EP (1) EP3477097B1 (zh)
CN (1) CN109695535B (zh)
BR (1) BR102018071744B1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212532A1 (en) 2018-05-01 2019-11-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
CN112368134B (zh) * 2018-05-01 2023-05-02 通用电气公司 用于制造用于风力涡轮转子叶片的翼梁帽的方法
DE102018133508A1 (de) * 2018-12-21 2020-06-25 Wobben Properties Gmbh Rotorblattform zur Herstellung eines Rotorblatts und Verfahren
GB202008395D0 (en) * 2020-06-04 2020-07-22 Lm Wind Power As Pultruded fibre-reinforced strip for a reinforced structure, such as a spar cap
CN111608853B (zh) * 2020-07-01 2022-01-21 上海电气风电集团股份有限公司 风机叶片
GB202017398D0 (en) * 2020-11-03 2020-12-16 Blade Dynamics Ltd Hybrid pultrusion plates for a spar cap of a wind turbine blade
CN112895515A (zh) * 2021-01-18 2021-06-04 上海电气风电集团股份有限公司 一种风电叶片拉挤主梁、制作方法及风电叶片
CN115163395B (zh) * 2022-07-04 2023-07-14 常州市新创智能科技有限公司 一种风电叶片主梁节段、主梁及风电叶片

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1415620A (en) 1919-10-20 1922-05-09 Albert W Albrecht Method of making piston rings
US4264278A (en) 1977-10-31 1981-04-28 Oscar Weingart Blade or spar
NL8104019A (nl) 1981-08-28 1983-03-16 Jan Bos Werkwijze voor het vervaardigen van voorwerpen uit gewapende kunststof.
US4915590A (en) 1987-08-24 1990-04-10 Fayette Manufacturing Corporation Wind turbine blade attachment methods
US5026447A (en) 1989-02-10 1991-06-25 Phillips Petroleum Company Method for making variable cross section pultruded thermoplastic composite articles
AT398064B (de) 1992-07-01 1994-09-26 Hoac Austria Flugzeugwerk Wr N Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau
AU668470B2 (en) 1993-07-12 1996-05-02 Seaward International, Inc. Elongated structural member and method and apparatus for making same
US5375324A (en) 1993-07-12 1994-12-27 Flowind Corporation Vertical axis wind turbine with pultruded blades
US5660527A (en) 1995-10-05 1997-08-26 The Wind Turbine Company Wind turbine rotor blade root end
DE19903550C1 (de) 1999-01-29 2000-05-25 Muehlbauer Luftfahrttechn Gmbh Blattwurzel für Propeller- und Rotorblätter
JP2002137307A (ja) 2000-11-02 2002-05-14 Toray Ind Inc 繊維強化樹脂製風車ブレード構造体
DK1746284T4 (da) 2001-07-19 2021-10-18 Vestas Wind Sys As Vindmøllevinge
ES2285123T3 (es) 2002-01-11 2007-11-16 Fiberline A/S Procedimiento para la produccion de un elemento estructural reforzado con fibra.
DE10214340C1 (de) 2002-03-28 2003-11-27 Aerodyn Eng Gmbh Blattanschluß für die Rotorblätter einer Windenergieanlage und Verfahren zu dessen Herstellung
JP2003293935A (ja) 2002-03-29 2003-10-15 Mitsubishi Heavy Ind Ltd 風車翼及び風力発電装置
GB0229094D0 (en) 2002-12-13 2003-01-15 Hexcel Composites Ltd Improvements in or relating to the preparation of fibre-reinforced composites
EP1603736B1 (en) 2003-03-06 2006-08-02 Vestas Wind System A/S Connection between members
EP1486415A1 (en) 2003-06-12 2004-12-15 SSP Technology A/S Wind turbine blade and method of manufacturing a blade root
US7037568B1 (en) 2003-07-15 2006-05-02 Rogers Terry W Joining member for mechanically joining a skin to a supporting rib
DE10336461A1 (de) 2003-08-05 2005-03-03 Aloys Wobben Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage
CN2670606Y (zh) 2003-10-10 2005-01-12 淄博矿业集团有限责任公司许厂煤矿 汽轮机汽封冷却装置
US20050186081A1 (en) 2004-02-24 2005-08-25 Mohamed Mansour H. Wind blade spar cap and method of making
ES2375564T3 (es) 2004-06-30 2012-03-02 Vestas Wind Systems A/S Aspas de turbinas eólicas constituidas por dos secciones separadas.
DK200401225A (da) 2004-08-13 2006-02-14 Lm Glasfiber As Metode til afskæring af laminatlag, eksempelvis et glasfiber- eller kulfiber-laminatlag i en vindmöllevinge
ES2249182B1 (es) 2004-09-14 2007-05-01 Gamesa Eolica S.A. Viga estructural de la pala de un aerogenerador eolico y proceso de fabricacion de la misma.
DK176564B1 (da) 2004-12-29 2008-09-01 Lm Glasfiber As Fiberforstærket samling
US8172538B2 (en) 2004-12-29 2012-05-08 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade shell member with a fastening member and a wind turbine blade with a fastening member
MX2007009390A (es) 2005-02-03 2008-02-14 Vestas Wind Sys As Metodo para fabricar un miembro de forro de paleta de turbina de viento.
DK176541B1 (da) * 2005-09-30 2008-07-28 Lm Glasfiber As Laminat eller en sandwich-konstruktion med formbart kernemateriale
US7438533B2 (en) 2005-12-15 2008-10-21 General Electric Company Wind turbine rotor blade
DK176321B1 (da) 2005-12-28 2007-08-06 Lm Glasfiber As Planering af rodbösninger på vinger til vindenergianlæg
US7351040B2 (en) 2006-01-09 2008-04-01 General Electric Company Methods of making wind turbine rotor blades
US7427189B2 (en) 2006-02-13 2008-09-23 General Electric Company Wind turbine rotor blade
US7758313B2 (en) 2006-02-13 2010-07-20 General Electric Company Carbon-glass-hybrid spar for wind turbine rotorblades
JP4699255B2 (ja) 2006-03-24 2011-06-08 三菱重工業株式会社 風車翼
US7517194B2 (en) 2006-04-30 2009-04-14 General Electric Company Rotor blade for a wind turbine
DK1925436T3 (da) 2006-11-23 2012-09-24 Siemens Ag Fremgangsmåde til fremstilling af et fiberforstærket laminat, anvendelse af laminatet, vindmøllevinge samt vindmølle omfattende laminatet
US7976282B2 (en) 2007-01-26 2011-07-12 General Electric Company Preform spar cap for a wind turbine rotor blade
ATE486214T1 (de) 2007-02-09 2010-11-15 Stx Heavy Ind Co Ltd Rotorblatt für eine windenergieanlage
GB2447964B (en) 2007-03-29 2012-07-18 Gurit Uk Ltd Moulding material
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
DK2217748T3 (da) 2007-11-09 2011-12-19 Vestas Wind Sys As Fremgangsmåde til fremstilling af en vindmøllevinge og anvendelse af en strukturel måtte til forstærkning af en vindmøllevingestruktur
US8337163B2 (en) 2007-12-05 2012-12-25 General Electric Company Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof
CN101462316A (zh) 2007-12-19 2009-06-24 维斯塔斯风力系统有限公司 预成型件的制备方法
EP2235364B1 (en) 2007-12-27 2013-10-23 General Electric Company Flexible wind blade root bulkhead flange
EP2078851A1 (en) 2008-01-14 2009-07-15 Lm Glasfiber A/S Wind turbine blade and hub assembly
DE102008007304A1 (de) 2008-02-02 2009-08-06 Nordex Energy Gmbh Rotorblatt für Windenergieanlagen
US20090196756A1 (en) 2008-02-05 2009-08-06 General Electric Company Wind turbine blades and method for forming same
WO2009111468A1 (en) 2008-03-03 2009-09-11 Abe Karem Wing and blade structure using pultruded composites
US8186960B2 (en) 2008-04-15 2012-05-29 Frontier Pro Services, Llc Repair of rotor blade roots
ES2354848T3 (es) 2008-04-29 2011-03-18 Siemens Aktiengesellschaft Procedimiento para la fabricación de un producto laminado reforzado con fibras y de un material extendido lateralmente que en una primera dirección lateral tiene una mayor rigidez que en una segunda derección lateral.
DE102008021498A1 (de) 2008-04-29 2009-11-05 Repower Systems Ag Verfahren zur Fertigung eines Blattanschlusses eines Rotorblatts, ein Blattanschluss und ein Befestigungselement für einen Blattanschluss
DK2271478T3 (da) 2008-04-30 2013-09-02 Vestas Wind Sys As Konsolideret komposit-præform
WO2009153341A2 (en) 2008-06-20 2009-12-23 Vestas Wind Systems A/S A method of manufacturing a spar for a wind turbine from elements having geometrically well-defined joint surface portions
GB2451192B (en) 2008-07-18 2011-03-09 Vestas Wind Sys As Wind turbine blade
GB0818467D0 (en) 2008-10-08 2008-11-12 Blade Dynamics Ltd An insert for forming an end connection in a uni-axial composite material
DK200801457A (en) 2008-10-20 2009-09-18 Vestas Wind Sys As Method of manufacturing a structural element of a wind turbine
DE102008055771C5 (de) 2008-11-04 2018-06-14 Senvion Gmbh Rotorblattgurt
GB2465167A (en) 2008-11-07 2010-05-12 Vestas Wind Sys As A turbine blade having mounting inserts of different lengths
EP2358998B1 (en) 2008-12-05 2017-09-20 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US7942637B2 (en) 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
CN102325646B (zh) 2009-01-21 2016-12-28 维斯塔斯风力系统集团公司 通过嵌入预固化纤维增强树脂层制造风轮机叶片的方法
CN201376388Y (zh) 2009-01-23 2010-01-06 维斯塔斯风力系统有限公司 预成型件以及包括增强结构的翼梁
US7963747B2 (en) 2009-04-02 2011-06-21 General Electric Company Braided wind turbine blades and method of making same
ES2353325B1 (es) 2009-06-23 2012-01-25 Gamesa Innovation & Technology, S.L Rigidización de la raíz de pala de un aerogenerador.
JP2011032987A (ja) 2009-08-05 2011-02-17 Nitto Denko Corp 風力発電機ブレード用補強シート、風力発電機ブレードの補強構造、風力発電機および風力発電機ブレードの補強方法
EP2283996A1 (en) 2009-08-13 2011-02-16 Siemens Aktiengesellschaft Method and arrangement to produce a wind-turbine-blade
CN102022255A (zh) 2009-09-23 2011-04-20 苏州红枫风电模具有限公司 用于风力涡轮机叶片根部的嵌入件
CN102022254B (zh) 2009-09-23 2014-12-17 固瑞特模具(太仓)有限公司 风轮机叶片及其生产方法
CN101705922B (zh) * 2009-11-30 2011-10-26 天津南车风电叶片工程有限公司 大型复合材料风电叶片及其制备方法
US8066490B2 (en) 2009-12-21 2011-11-29 General Electric Company Wind turbine rotor blade
JP2011137386A (ja) 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd 風車回転翼および風車回転翼の製造方法
US20110135485A1 (en) 2009-12-30 2011-06-09 Jing Wang Spar for a wind turbine rotor blade and method for fabricating the same
EP2752577B1 (en) 2010-01-14 2020-04-01 Senvion GmbH Wind turbine rotor blade components and methods of making same
WO2011113812A1 (en) 2010-03-15 2011-09-22 Vestas Wind Systems A/S Improved wind turbine blade spar
US8192169B2 (en) 2010-04-09 2012-06-05 Frederick W Piasecki Highly reliable, low cost wind turbine rotor blade
GB201007336D0 (en) 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
US8025485B2 (en) 2010-06-17 2011-09-27 General Electric Company Wind turbine blade attachment configuration with flattened bolts
US20120087801A1 (en) 2010-10-12 2012-04-12 General Electric Company Composite components and processes therefor
CN102024518B (zh) 2010-11-01 2012-03-07 山东大学 热塑性树脂基体复合材料导线芯棒及其制备模具和方法
DK2453129T3 (da) 2010-11-11 2014-12-15 Alstom Renewable Technologies Vinge til en vindmølle
CN102022288B (zh) 2010-12-03 2013-02-06 北京可汗之风科技有限公司 一种竹木质风力发电机叶片根部结构设计
EP2476540A1 (en) 2011-01-18 2012-07-18 Siemens Aktiengesellschaft Stiffening sheet for use in a fibre reinforced laminate, fibre reinforced laminate and wind turbine blade, and a method of manufacturing a fibre reinforced laminate
AT510694B1 (de) 2011-01-21 2012-06-15 Hexcel Holding Gmbh Modul zum halten von mindestens einer hülse
JP5439412B2 (ja) 2011-02-18 2014-03-12 三菱重工業株式会社 風車ブレード用の翼根形成ピース並びにこれを用いた風車ブレードの翼根構造、風車ブレード、風車および風車ブレードの製造方法
FR2972503B1 (fr) 2011-03-11 2013-04-12 Epsilon Composite Renfort mecanique pour piece en materiau composite, notamment pour une pale d'eolienne de grandes dimensions
WO2012140039A2 (en) 2011-04-11 2012-10-18 Lm Wind Power A/S Wind turbine blade comprising circumferential retaining means in root regions
US20120027609A1 (en) * 2011-05-17 2012-02-02 Prasad Ogde Wind turbine rotor blade with precured fiber rods and method for producing the same
WO2012161741A2 (en) 2011-05-24 2012-11-29 Edwards Christopher M Wind blade spar caps
EP2532880B1 (en) 2011-06-10 2014-03-05 Siemens Aktiengesellschaft Rotor blade for a wind turbine
DK2532881T3 (en) 2011-06-10 2015-01-12 Siemens Ag A rotor blade for a wind turbine
DE102011051172A1 (de) 2011-06-17 2012-12-20 Lars Kästner Laminiertes Rotorblatt für Windenergieanlagen mit einem Befestigungssystem für Rotorblätter an der Rotornabe
EP2551512B1 (en) 2011-07-27 2014-04-16 Alstom Renovables España, S.L. Wind turbine blade connector assembly
GB201118419D0 (en) 2011-10-25 2011-12-07 Blade Dynamics Ltd A method of making a root end joint of a wind turbine blade and a root segment for such a joint
DK2589796T3 (en) 2011-11-04 2015-10-26 Siemens Ag Preparation of a root portion
GB2497578B (en) 2011-12-16 2015-01-14 Vestas Wind Sys As Wind turbine blades
US9683545B2 (en) 2012-05-31 2017-06-20 Vestas Wind Systems A/S Manufacture of wind turbine blades
EP2682256A1 (en) 2012-07-03 2014-01-08 Fiberline A/S A method of producing an assembly for use in a fibre reinforced structural element
US20150217535A1 (en) 2012-08-23 2015-08-06 Metna Co Prestressed Rod Stiffened Composite Structures
US10875287B2 (en) 2012-09-18 2020-12-29 Vestas Wind Systems A/S Wind turbine blades
DE102012219267A1 (de) 2012-10-22 2014-04-24 Wobben Properties Gmbh Verfahren und Vorrichtung zur Herstellung von Vorformlingen zum Herstellen eines Rotorblattes
DE102012219224B3 (de) 2012-10-22 2014-03-27 Repower Systems Se System und Verfahren zum Herstellen eines Rotorblattgurtes
DE102012219226A1 (de) 2012-10-22 2014-04-24 Repower Systems Se Vorrichtung und Verfahren zur Herstellung eines Rotorblattgurts
EP2922690B1 (en) 2012-11-20 2017-04-19 Vestas Wind Systems A/S Wind turbine blades and method of manufacturing the same
ES2475491B1 (es) 2013-01-10 2015-04-17 Ingeniería Prosix, S.L. Pala de turbina eólica
US20140234114A1 (en) * 2013-02-19 2014-08-21 Karsten Schibsbye Wind turbine blade with asymmetrical spar caps
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
US20140271217A1 (en) * 2013-03-15 2014-09-18 Modular Wind Energy, Inc. Efficient wind turbine blade design and associated manufacturing methods using rectangular spars and segmented shear web
EP2781344B1 (en) 2013-03-21 2019-10-09 GE Renewable Technologies Wind B.V. Method of manufacturing a portion of a wind turbine blade
WO2014147222A2 (en) 2013-03-22 2014-09-25 Hexcel Holding Gmbh Improvements in or relating to fibre reinforced composites
ITMI20130449A1 (it) 2013-03-25 2014-09-26 Wilic Sarl Radice di pala di un aerogeneratore e procedimento per la fabbricazione di una radice di pala di aerogeneratore
EP3019332B1 (en) 2013-07-11 2018-06-27 Vestas Wind Systems A/S Wind turbine blade
US20150023799A1 (en) 2013-07-19 2015-01-22 Kyle K. Wetzel Structural Member with Pultrusions
GB2519566A (en) 2013-10-25 2015-04-29 Vestas Wind Sys As Wind turbine blades
GB2520007A (en) 2013-11-05 2015-05-13 Vestas Wind Sys As Improvements relating to wind turbine rotor blades
GB201320166D0 (en) 2013-11-15 2014-01-01 Vestas Wind Sys As Wind turbine components
LT2875937T (lt) * 2013-11-22 2021-05-10 Vitrulan Composites Oy Vienkryptė armatūra, vienkryptės armatūros gamybos būdas ir jos naudojimas
WO2015096840A1 (en) 2013-12-23 2015-07-02 Vestas Wind Systems A/S Wind turbine blades
CN103817952B (zh) 2014-02-26 2016-09-14 国电联合动力技术有限公司 一种风机叶片根部预埋螺栓套预制件的制作方法
WO2015142904A1 (en) 2014-03-19 2015-09-24 Korecarbon Llc Turbine blade
CN103921457B (zh) 2014-04-28 2016-03-30 连云港中复连众复合材料集团有限公司 一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法
EP2952739A1 (en) 2014-06-05 2015-12-09 Siemens Aktiengesellschaft A root bushing for a blade root of a wind turbine rotor blade, a blade root, a wind turbine rotor blade and a wind turbine
EP2952734B1 (en) 2014-06-05 2021-04-07 Siemens Gamesa Renewable Energy A/S A root bushing for a blade root of a wind turbine rotor blade, a blade root, a wind turbine rotor blade and a wind turbine
KR101590795B1 (ko) 2014-06-19 2016-02-03 삼성중공업 주식회사 풍력 발전기용 블레이드
US20160040651A1 (en) 2014-08-07 2016-02-11 General Electric Company Methods of manufacturing rotor blades of a wind turbine
US9822761B2 (en) * 2014-08-13 2017-11-21 General Electric Company Structural components and methods of manufacturing
US20160146185A1 (en) 2014-11-25 2016-05-26 General Electric Company Methods for manufacturing a spar cap for a wind turbine rotor blade
US20160146184A1 (en) 2014-11-25 2016-05-26 General Electric Company Methods of manufacturing rotor blade components for a wind turbine
US20160160837A1 (en) 2014-12-04 2016-06-09 General Electric Company Pultruded rotor blade components having interlocking edges
US9745956B2 (en) 2014-12-10 2017-08-29 General Electric Company Spar cap for a wind turbine rotor blade
DE102014018498A1 (de) 2014-12-16 2016-06-16 Senvion Gmbh Anordnung pultrudierter Stäbe
WO2016101953A1 (en) 2014-12-23 2016-06-30 Vestas Wind Systems A/S Method, device and system for assessing bonds between components in a wind turbine blade
CN104859160B (zh) 2015-05-29 2018-09-25 连云港中复连众复合材料集团有限公司 适合拉挤工艺的风机叶片根部预埋螺栓套及其制备方法
DE102015007289A1 (de) 2015-06-10 2016-12-15 Senvion Gmbh Rotorblatt, Rotorblattgurt und Verfahren zum Herstellen eines Rotorblattgurts
DE102015007801A1 (de) 2015-06-19 2016-12-22 Senvion Gmbh Verfahren zur Herstellung eines Bauteils eines Rotorblattes einer Windenergieanlage
US10669984B2 (en) 2015-09-22 2020-06-02 General Electric Company Method for manufacturing blade components using pre-cured laminate materials
US10107257B2 (en) * 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
CN105904746B (zh) 2016-06-12 2018-10-16 南京诺尔泰复合材料设备制造有限公司 风力叶片用的热固性碳纤维板制造方法及生产线
CN105881936A (zh) 2016-06-14 2016-08-24 道生天合材料科技(上海)有限公司 提高风电叶片根部拉挤预制件表面度和尺寸一致性的方法

Also Published As

Publication number Publication date
US10677216B2 (en) 2020-06-09
BR102018071744B1 (pt) 2023-09-26
BR102018071744A2 (pt) 2019-06-04
CN109695535A (zh) 2019-04-30
EP3477097B1 (en) 2023-01-04
EP3477097A1 (en) 2019-05-01
US20190120203A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
CN109695535B (zh) 用于风力涡轮机的转子叶片部件及其制造方法
US10987879B2 (en) Methods of manufacturing rotor blade components for a wind turbine
EP3029314B1 (en) Pultruded rotor blade components having interlocking edges
CN106368894B (zh) 用于风力涡轮的转子叶片根部组件
US10828843B2 (en) Shear webs for wind turbine rotor blades and methods for manufacturing same
EP3026260A1 (en) Methods of manufacturing rotor blade components for a wind turbine
US10113532B2 (en) Pre-cured composites for rotor blade components
US10895244B2 (en) Joint interface for wind turbine rotor blade components
CN106368893B (zh) 用于风力涡轮的转子叶片根部组件
EP3026259A1 (en) Methods for manufacturing a spar cap for a wind turbine rotor blade
US10422316B2 (en) Pre-cured rotor blade components having areas of variable stiffness
CN111601703A (zh) 用于制造具有打印网结构的风力涡轮转子叶片板的方法
CN111587178B (zh) 制造具有打印的网格结构的风力涡轮转子叶片面板的方法
EP3032094B1 (en) Spar cap for a wind turbine rotor blade
US11879426B2 (en) Wind turbine rotor blade assembly having a structural trailing edge
US11969959B2 (en) Methods for manufacturing blade components for wind turbine rotor blades
WO2019212554A1 (en) Methods of manufacturing rotor blade components for a wind turbine
CN112384357A (zh) 用于风力涡轮机转子叶片的抗剪腹板及其制造方法
CN117203041A (zh) 形成风力涡轮机转子叶片的方法
CN113165288A (zh) 用于制造用于风力涡轮的转子叶片的叶片节段的结构构件的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240403

Address after: Danish spirit

Patentee after: LM Wind Power A/S

Country or region after: Denmark

Address before: New York, United States

Patentee before: General Electric Co.

Country or region before: U.S.A.

TR01 Transfer of patent right