CN109682762A - 一种基于高光谱的土壤有机质含量估算方法 - Google Patents

一种基于高光谱的土壤有机质含量估算方法 Download PDF

Info

Publication number
CN109682762A
CN109682762A CN201710972022.8A CN201710972022A CN109682762A CN 109682762 A CN109682762 A CN 109682762A CN 201710972022 A CN201710972022 A CN 201710972022A CN 109682762 A CN109682762 A CN 109682762A
Authority
CN
China
Prior art keywords
soil
organic matter
method based
evaluation method
hyperion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710972022.8A
Other languages
English (en)
Inventor
朱桂华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710972022.8A priority Critical patent/CN109682762A/zh
Publication of CN109682762A publication Critical patent/CN109682762A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于高光谱的土壤有机质含量估算方法,该方法首先采集土壤样本,然后测定土壤样本光谱,接着对土壤反射率光谱进行一阶微分和倒数的对数两种变换,最后在提取特征吸收波段的基础上,运用偏最小二乘回归法建立相应的估算模型,从而估算出土壤中的有机质含量。通过基于高光谱的土壤有机质含量估算方法,在保留尽量多的光谱信息并维持光谱原有基本特征的前提下,对于减少数据量,尤其是去除冗余信息起到了很好的作用,能够快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。

Description

一种基于高光谱的土壤有机质含量估算方法
技术领域
本发明涉及土壤有机质含量估算领域,特别发明了一种基于高光谱的土壤有机质含量估算方法。
背景技术
土壤有机质是存在于土壤中所有含碳的有机物质,其含量的多少,是土壤肥力的一个重要指标。通过土壤有机质的高光谱遥感分析,了解土壤的现状,并据此进行农业生产管理,是保证农业高产、优产、高效的重要前提。
对土壤光谱与土壤有机质含量之间关系的研究发现,土壤光谱反射率与有机质含量呈显著负相关。尽管国内外对土壤有机质含量的光谱效应进行了大量的研究工作,但在认识上还存在一定的分歧,主要是由于大多研究基于多种土壤类型,不同的土壤,由于受气候、母质、地形、生物等成土因素不同和成土年龄的差异,以及人类活动的影响,其理化特性具有明显差别。土壤组成物质的多样性以及每种组成物质独特的光谱特性,使得各类土壤光谱具有自己的特点。因此,将研究结果应用到特定土壤时,都可能产生较大误差。
因此,迫切需要研究一种基于高光谱的土壤有机质含量估算方法,来快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
发明内容
发明目的:通过基于高光谱的土壤有机质含量估算方法,能够快速估算土壤中的有机质含量。
技术方案:本发明公开了一种基于高光谱的土壤有机质含量估算方法,该方法包括以下6步骤:
步骤1:采集土壤样本;
步骤2:测定光谱;
步骤3:光谱数据数学变换;
步骤4:提取特征吸收带;
步骤5:光谱重采样;
步骤6:偏最小二乘回归分析,估算土壤中的有机质含量。
进一步的,步骤1中,土壤样本经风干、碾磨、过筛。
进一步的,步骤2中,将每个土样测得的10条反射光谱曲线经算数平均后作为土样的实际反射光谱数据。
进一步的,步骤3中,光谱数据的数学变换方法为,对光谱曲线作一阶微分变换和倒数的对数变换。
进一步的,步骤4中,利用去包络线法对反射率光谱曲线上的特征吸收带进行提取。
进一步的,步骤4中,对特征吸收带的光谱数据以10nm为间隔进行算术平均运算。
与现有技术相比,本发明具有如下有益效果:
通过基于高光谱的土壤有机质含量估算方法,在保留尽量多的光谱信息并维持光谱原有基本特征的前提下,对于减少数据量,尤其是去除冗余信息起到了很好的作用,能够快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
具体实施方式
本实施例采集江西省余江县和泰和县34个红壤土样,土壤样本经风干、碾磨、过20目筛。采用美国ASD公司生产的ASD Field SpecPro型光谱测试仪,光谱范围为350-2500nm,其中350-1000nm光谱采样间隔为1.4nm,在1000-2500范围内光谱采样间隔2nm,重采样间隔为1nm。将每个土样测得的10条反射光谱曲线经算术平均后则为该土样的实际反射光谱数据。对土壤反射率光谱进行一阶微分和倒数的对数两种变换,最后在提取特征吸收波段的基础上,运用偏最小二乘回归法建立相应的估算模型,从而估算出土壤中的有机质含量。经验证,该方法可达到较高精度,因而具有快速估算土壤中有机质含量的潜力。

Claims (6)

1.一种基于高光谱的土壤有机质含量估算方法,其特征在于:包括以下6步骤:
步骤1:采集土壤样本;
步骤2:测定光谱;
步骤3:光谱数据数学变换;
步骤4:提取特征吸收带;
步骤5:光谱重采样;
步骤6:偏最小二乘回归分析,估算土壤中的有机质含量。
2.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤1中,土壤样本经风干、碾磨、过筛。
3.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤2中,将每个土样测得的10条反射光谱曲线经算数平均后作为土样的实际反射光谱数据。
4.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤3中,光谱数据的数学变换方法为,对光谱曲线作一阶微分变换和倒数的对数变换。
5.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤4中,利用去包络线法对反射率光谱曲线上的特征吸收带进行提取。
6.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤4中,对特征吸收带的光谱数据以10nm为间隔进行算术平均运算。
CN201710972022.8A 2017-10-18 2017-10-18 一种基于高光谱的土壤有机质含量估算方法 Pending CN109682762A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710972022.8A CN109682762A (zh) 2017-10-18 2017-10-18 一种基于高光谱的土壤有机质含量估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710972022.8A CN109682762A (zh) 2017-10-18 2017-10-18 一种基于高光谱的土壤有机质含量估算方法

Publications (1)

Publication Number Publication Date
CN109682762A true CN109682762A (zh) 2019-04-26

Family

ID=66183006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710972022.8A Pending CN109682762A (zh) 2017-10-18 2017-10-18 一种基于高光谱的土壤有机质含量估算方法

Country Status (1)

Country Link
CN (1) CN109682762A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358584A (zh) * 2021-06-22 2021-09-07 浙江省农业科学院 一种利用光谱估算土壤有机质含量的方法
CN114509404A (zh) * 2022-02-16 2022-05-17 安徽农业大学 一种高光谱土壤有效硼含量预测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358584A (zh) * 2021-06-22 2021-09-07 浙江省农业科学院 一种利用光谱估算土壤有机质含量的方法
CN113358584B (zh) * 2021-06-22 2024-01-16 浙江省农业科学院 一种利用光谱估算土壤有机质含量的方法
CN114509404A (zh) * 2022-02-16 2022-05-17 安徽农业大学 一种高光谱土壤有效硼含量预测方法

Similar Documents

Publication Publication Date Title
Gibb et al. Phytoplankton pigment chemotaxonomy of the northeastern Atlantic
Song et al. Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model
Carter et al. Freshwater DOM quantity and quality from a two-component model of UV absorbance
Azcarate et al. Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety
Miller et al. Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley
Grinand et al. Prediction of soil organic and inorganic carbon contents at a national scale (France) using mid‐infrared reflectance spectroscopy (MIRS)
Gerhart et al. Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood
Lapierre et al. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon
Xu et al. Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV–Vis spectrometry combined with wavelength selection and partial least squares regression
CN109682762A (zh) 一种基于高光谱的土壤有机质含量估算方法
McDowell et al. Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy
Valverde-Barrantes et al. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest
Ateia et al. The relationship between molecular composition and fluorescence properties of humic substances
CN102830072A (zh) 一种基于近红外光谱鉴别重金属污染水稻叶片的方法
Khajvand et al. Sensitive assay of hexythiazox residue in citrus fruits using gold nanoparticles-catalysed luminol–H2O2 chemiluminescence
Proctor et al. Determining the absorption coefficients of decay pigments in decomposing monocots
Tarighat Orthogonal projection approach and continuous wavelet transform-feed forward neural networks for simultaneous spectrophotometric determination of some heavy metals in diet samples
Li et al. Rapid detection of pesticide residue in apple based on Raman spectroscopy
Ahmad et al. A Comparative study of log volume estimation by using statistical method
Neilen et al. Effects of photochemical and microbiological changes in terrestrial dissolved organic matter on its chemical characteristics and phytotoxicity towards cyanobacteria
CN104502302A (zh) 混油的太赫兹时域波形多参数组合定量分析方法
Ryan et al. Optical properties of dissolved organic matter in throughfall and stemflow vary across tree species and season in a temperate headwater forest
Ide et al. Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests
Krich et al. Functional convergence of biosphere–atmosphere interactions in response to meteorological conditions
CN102880861B (zh) 基于线性预测倒谱系数的高光谱图像分类方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190426

WD01 Invention patent application deemed withdrawn after publication