CN109682762A - 一种基于高光谱的土壤有机质含量估算方法 - Google Patents
一种基于高光谱的土壤有机质含量估算方法 Download PDFInfo
- Publication number
- CN109682762A CN109682762A CN201710972022.8A CN201710972022A CN109682762A CN 109682762 A CN109682762 A CN 109682762A CN 201710972022 A CN201710972022 A CN 201710972022A CN 109682762 A CN109682762 A CN 109682762A
- Authority
- CN
- China
- Prior art keywords
- soil
- organic matter
- method based
- evaluation method
- hyperion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于高光谱的土壤有机质含量估算方法,该方法首先采集土壤样本,然后测定土壤样本光谱,接着对土壤反射率光谱进行一阶微分和倒数的对数两种变换,最后在提取特征吸收波段的基础上,运用偏最小二乘回归法建立相应的估算模型,从而估算出土壤中的有机质含量。通过基于高光谱的土壤有机质含量估算方法,在保留尽量多的光谱信息并维持光谱原有基本特征的前提下,对于减少数据量,尤其是去除冗余信息起到了很好的作用,能够快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
Description
技术领域
本发明涉及土壤有机质含量估算领域,特别发明了一种基于高光谱的土壤有机质含量估算方法。
背景技术
土壤有机质是存在于土壤中所有含碳的有机物质,其含量的多少,是土壤肥力的一个重要指标。通过土壤有机质的高光谱遥感分析,了解土壤的现状,并据此进行农业生产管理,是保证农业高产、优产、高效的重要前提。
对土壤光谱与土壤有机质含量之间关系的研究发现,土壤光谱反射率与有机质含量呈显著负相关。尽管国内外对土壤有机质含量的光谱效应进行了大量的研究工作,但在认识上还存在一定的分歧,主要是由于大多研究基于多种土壤类型,不同的土壤,由于受气候、母质、地形、生物等成土因素不同和成土年龄的差异,以及人类活动的影响,其理化特性具有明显差别。土壤组成物质的多样性以及每种组成物质独特的光谱特性,使得各类土壤光谱具有自己的特点。因此,将研究结果应用到特定土壤时,都可能产生较大误差。
因此,迫切需要研究一种基于高光谱的土壤有机质含量估算方法,来快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
发明内容
发明目的:通过基于高光谱的土壤有机质含量估算方法,能够快速估算土壤中的有机质含量。
技术方案:本发明公开了一种基于高光谱的土壤有机质含量估算方法,该方法包括以下6步骤:
步骤1:采集土壤样本;
步骤2:测定光谱;
步骤3:光谱数据数学变换;
步骤4:提取特征吸收带;
步骤5:光谱重采样;
步骤6:偏最小二乘回归分析,估算土壤中的有机质含量。
进一步的,步骤1中,土壤样本经风干、碾磨、过筛。
进一步的,步骤2中,将每个土样测得的10条反射光谱曲线经算数平均后作为土样的实际反射光谱数据。
进一步的,步骤3中,光谱数据的数学变换方法为,对光谱曲线作一阶微分变换和倒数的对数变换。
进一步的,步骤4中,利用去包络线法对反射率光谱曲线上的特征吸收带进行提取。
进一步的,步骤4中,对特征吸收带的光谱数据以10nm为间隔进行算术平均运算。
与现有技术相比,本发明具有如下有益效果:
通过基于高光谱的土壤有机质含量估算方法,在保留尽量多的光谱信息并维持光谱原有基本特征的前提下,对于减少数据量,尤其是去除冗余信息起到了很好的作用,能够快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
具体实施方式
本实施例采集江西省余江县和泰和县34个红壤土样,土壤样本经风干、碾磨、过20目筛。采用美国ASD公司生产的ASD Field SpecPro型光谱测试仪,光谱范围为350-2500nm,其中350-1000nm光谱采样间隔为1.4nm,在1000-2500范围内光谱采样间隔2nm,重采样间隔为1nm。将每个土样测得的10条反射光谱曲线经算术平均后则为该土样的实际反射光谱数据。对土壤反射率光谱进行一阶微分和倒数的对数两种变换,最后在提取特征吸收波段的基础上,运用偏最小二乘回归法建立相应的估算模型,从而估算出土壤中的有机质含量。经验证,该方法可达到较高精度,因而具有快速估算土壤中有机质含量的潜力。
Claims (6)
1.一种基于高光谱的土壤有机质含量估算方法,其特征在于:包括以下6步骤:
步骤1:采集土壤样本;
步骤2:测定光谱;
步骤3:光谱数据数学变换;
步骤4:提取特征吸收带;
步骤5:光谱重采样;
步骤6:偏最小二乘回归分析,估算土壤中的有机质含量。
2.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤1中,土壤样本经风干、碾磨、过筛。
3.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤2中,将每个土样测得的10条反射光谱曲线经算数平均后作为土样的实际反射光谱数据。
4.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤3中,光谱数据的数学变换方法为,对光谱曲线作一阶微分变换和倒数的对数变换。
5.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤4中,利用去包络线法对反射率光谱曲线上的特征吸收带进行提取。
6.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤4中,对特征吸收带的光谱数据以10nm为间隔进行算术平均运算。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710972022.8A CN109682762A (zh) | 2017-10-18 | 2017-10-18 | 一种基于高光谱的土壤有机质含量估算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710972022.8A CN109682762A (zh) | 2017-10-18 | 2017-10-18 | 一种基于高光谱的土壤有机质含量估算方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109682762A true CN109682762A (zh) | 2019-04-26 |
Family
ID=66183006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710972022.8A Pending CN109682762A (zh) | 2017-10-18 | 2017-10-18 | 一种基于高光谱的土壤有机质含量估算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109682762A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358584A (zh) * | 2021-06-22 | 2021-09-07 | 浙江省农业科学院 | 一种利用光谱估算土壤有机质含量的方法 |
CN114509404A (zh) * | 2022-02-16 | 2022-05-17 | 安徽农业大学 | 一种高光谱土壤有效硼含量预测方法 |
-
2017
- 2017-10-18 CN CN201710972022.8A patent/CN109682762A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358584A (zh) * | 2021-06-22 | 2021-09-07 | 浙江省农业科学院 | 一种利用光谱估算土壤有机质含量的方法 |
CN113358584B (zh) * | 2021-06-22 | 2024-01-16 | 浙江省农业科学院 | 一种利用光谱估算土壤有机质含量的方法 |
CN114509404A (zh) * | 2022-02-16 | 2022-05-17 | 安徽农业大学 | 一种高光谱土壤有效硼含量预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gibb et al. | Phytoplankton pigment chemotaxonomy of the northeastern Atlantic | |
Song et al. | Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model | |
Carter et al. | Freshwater DOM quantity and quality from a two-component model of UV absorbance | |
Azcarate et al. | Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety | |
Miller et al. | Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley | |
Grinand et al. | Prediction of soil organic and inorganic carbon contents at a national scale (France) using mid‐infrared reflectance spectroscopy (MIRS) | |
Gerhart et al. | Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood | |
Lapierre et al. | Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon | |
Xu et al. | Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV–Vis spectrometry combined with wavelength selection and partial least squares regression | |
CN109682762A (zh) | 一种基于高光谱的土壤有机质含量估算方法 | |
McDowell et al. | Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy | |
Valverde-Barrantes et al. | Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest | |
Ateia et al. | The relationship between molecular composition and fluorescence properties of humic substances | |
CN102830072A (zh) | 一种基于近红外光谱鉴别重金属污染水稻叶片的方法 | |
Khajvand et al. | Sensitive assay of hexythiazox residue in citrus fruits using gold nanoparticles-catalysed luminol–H2O2 chemiluminescence | |
Proctor et al. | Determining the absorption coefficients of decay pigments in decomposing monocots | |
Tarighat | Orthogonal projection approach and continuous wavelet transform-feed forward neural networks for simultaneous spectrophotometric determination of some heavy metals in diet samples | |
Li et al. | Rapid detection of pesticide residue in apple based on Raman spectroscopy | |
Ahmad et al. | A Comparative study of log volume estimation by using statistical method | |
Neilen et al. | Effects of photochemical and microbiological changes in terrestrial dissolved organic matter on its chemical characteristics and phytotoxicity towards cyanobacteria | |
CN104502302A (zh) | 混油的太赫兹时域波形多参数组合定量分析方法 | |
Ryan et al. | Optical properties of dissolved organic matter in throughfall and stemflow vary across tree species and season in a temperate headwater forest | |
Ide et al. | Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests | |
Krich et al. | Functional convergence of biosphere–atmosphere interactions in response to meteorological conditions | |
CN102880861B (zh) | 基于线性预测倒谱系数的高光谱图像分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190426 |
|
WD01 | Invention patent application deemed withdrawn after publication |