CN109682762A - 一种基于高光谱的土壤有机质含量估算方法 - Google Patents
一种基于高光谱的土壤有机质含量估算方法 Download PDFInfo
- Publication number
- CN109682762A CN109682762A CN201710972022.8A CN201710972022A CN109682762A CN 109682762 A CN109682762 A CN 109682762A CN 201710972022 A CN201710972022 A CN 201710972022A CN 109682762 A CN109682762 A CN 109682762A
- Authority
- CN
- China
- Prior art keywords
- soil
- organic matter
- method based
- evaluation method
- hyperion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004016 soil organic matter Substances 0.000 title claims abstract description 17
- 238000011156 evaluation Methods 0.000 title claims abstract description 14
- 239000002689 soil Substances 0.000 claims abstract description 41
- 238000001228 spectrum Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000005416 organic matter Substances 0.000 claims abstract description 10
- 230000003595 spectral effect Effects 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 8
- 238000000985 reflectance spectrum Methods 0.000 claims abstract description 6
- 230000009466 transformation Effects 0.000 claims abstract description 6
- 238000004611 spectroscopical analysis Methods 0.000 claims description 6
- 238000012952 Resampling Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 230000001373 regressive effect Effects 0.000 claims description 2
- 238000012271 agricultural production Methods 0.000 abstract description 4
- 235000015097 nutrients Nutrition 0.000 abstract description 3
- 238000010238 partial least squares regression Methods 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000004181 pedogenesis Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于高光谱的土壤有机质含量估算方法,该方法首先采集土壤样本,然后测定土壤样本光谱,接着对土壤反射率光谱进行一阶微分和倒数的对数两种变换,最后在提取特征吸收波段的基础上,运用偏最小二乘回归法建立相应的估算模型,从而估算出土壤中的有机质含量。通过基于高光谱的土壤有机质含量估算方法,在保留尽量多的光谱信息并维持光谱原有基本特征的前提下,对于减少数据量,尤其是去除冗余信息起到了很好的作用,能够快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
Description
技术领域
本发明涉及土壤有机质含量估算领域,特别发明了一种基于高光谱的土壤有机质含量估算方法。
背景技术
土壤有机质是存在于土壤中所有含碳的有机物质,其含量的多少,是土壤肥力的一个重要指标。通过土壤有机质的高光谱遥感分析,了解土壤的现状,并据此进行农业生产管理,是保证农业高产、优产、高效的重要前提。
对土壤光谱与土壤有机质含量之间关系的研究发现,土壤光谱反射率与有机质含量呈显著负相关。尽管国内外对土壤有机质含量的光谱效应进行了大量的研究工作,但在认识上还存在一定的分歧,主要是由于大多研究基于多种土壤类型,不同的土壤,由于受气候、母质、地形、生物等成土因素不同和成土年龄的差异,以及人类活动的影响,其理化特性具有明显差别。土壤组成物质的多样性以及每种组成物质独特的光谱特性,使得各类土壤光谱具有自己的特点。因此,将研究结果应用到特定土壤时,都可能产生较大误差。
因此,迫切需要研究一种基于高光谱的土壤有机质含量估算方法,来快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
发明内容
发明目的:通过基于高光谱的土壤有机质含量估算方法,能够快速估算土壤中的有机质含量。
技术方案:本发明公开了一种基于高光谱的土壤有机质含量估算方法,该方法包括以下6步骤:
步骤1:采集土壤样本;
步骤2:测定光谱;
步骤3:光谱数据数学变换;
步骤4:提取特征吸收带;
步骤5:光谱重采样;
步骤6:偏最小二乘回归分析,估算土壤中的有机质含量。
进一步的,步骤1中,土壤样本经风干、碾磨、过筛。
进一步的,步骤2中,将每个土样测得的10条反射光谱曲线经算数平均后作为土样的实际反射光谱数据。
进一步的,步骤3中,光谱数据的数学变换方法为,对光谱曲线作一阶微分变换和倒数的对数变换。
进一步的,步骤4中,利用去包络线法对反射率光谱曲线上的特征吸收带进行提取。
进一步的,步骤4中,对特征吸收带的光谱数据以10nm为间隔进行算术平均运算。
与现有技术相比,本发明具有如下有益效果:
通过基于高光谱的土壤有机质含量估算方法,在保留尽量多的光谱信息并维持光谱原有基本特征的前提下,对于减少数据量,尤其是去除冗余信息起到了很好的作用,能够快速估算土壤中的有机质含量。通过了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供了科学依据。
具体实施方式
本实施例采集江西省余江县和泰和县34个红壤土样,土壤样本经风干、碾磨、过20目筛。采用美国ASD公司生产的ASD Field SpecPro型光谱测试仪,光谱范围为350-2500nm,其中350-1000nm光谱采样间隔为1.4nm,在1000-2500范围内光谱采样间隔2nm,重采样间隔为1nm。将每个土样测得的10条反射光谱曲线经算术平均后则为该土样的实际反射光谱数据。对土壤反射率光谱进行一阶微分和倒数的对数两种变换,最后在提取特征吸收波段的基础上,运用偏最小二乘回归法建立相应的估算模型,从而估算出土壤中的有机质含量。经验证,该方法可达到较高精度,因而具有快速估算土壤中有机质含量的潜力。
Claims (6)
1.一种基于高光谱的土壤有机质含量估算方法,其特征在于:包括以下6步骤:
步骤1:采集土壤样本;
步骤2:测定光谱;
步骤3:光谱数据数学变换;
步骤4:提取特征吸收带;
步骤5:光谱重采样;
步骤6:偏最小二乘回归分析,估算土壤中的有机质含量。
2.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤1中,土壤样本经风干、碾磨、过筛。
3.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤2中,将每个土样测得的10条反射光谱曲线经算数平均后作为土样的实际反射光谱数据。
4.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤3中,光谱数据的数学变换方法为,对光谱曲线作一阶微分变换和倒数的对数变换。
5.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤4中,利用去包络线法对反射率光谱曲线上的特征吸收带进行提取。
6.根据权利要求1所述的一种基于高光谱的土壤有机质含量估算方法,其特征在于:所述步骤4中,对特征吸收带的光谱数据以10nm为间隔进行算术平均运算。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710972022.8A CN109682762A (zh) | 2017-10-18 | 2017-10-18 | 一种基于高光谱的土壤有机质含量估算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710972022.8A CN109682762A (zh) | 2017-10-18 | 2017-10-18 | 一种基于高光谱的土壤有机质含量估算方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109682762A true CN109682762A (zh) | 2019-04-26 |
Family
ID=66183006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710972022.8A Pending CN109682762A (zh) | 2017-10-18 | 2017-10-18 | 一种基于高光谱的土壤有机质含量估算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109682762A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358584A (zh) * | 2021-06-22 | 2021-09-07 | 浙江省农业科学院 | 一种利用光谱估算土壤有机质含量的方法 |
CN114509404A (zh) * | 2022-02-16 | 2022-05-17 | 安徽农业大学 | 一种高光谱土壤有效硼含量预测方法 |
-
2017
- 2017-10-18 CN CN201710972022.8A patent/CN109682762A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358584A (zh) * | 2021-06-22 | 2021-09-07 | 浙江省农业科学院 | 一种利用光谱估算土壤有机质含量的方法 |
CN113358584B (zh) * | 2021-06-22 | 2024-01-16 | 浙江省农业科学院 | 一种利用光谱估算土壤有机质含量的方法 |
CN114509404A (zh) * | 2022-02-16 | 2022-05-17 | 安徽农业大学 | 一种高光谱土壤有效硼含量预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gibb et al. | Phytoplankton pigment chemotaxonomy of the northeastern Atlantic | |
Song et al. | Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model | |
Grinand et al. | Prediction of soil organic and inorganic carbon contents at a national scale (France) using mid‐infrared reflectance spectroscopy (MIRS) | |
Azcarate et al. | Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety | |
Li et al. | Assessment of unified models for estimating leaf chlorophyll content across directional-hemispherical reflectance and bidirectional reflectance spectra | |
CN103954567B (zh) | 基于连续统去除法的土壤盐分测定方法 | |
Gerhart et al. | Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood | |
Valverde-Barrantes et al. | Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest | |
Gao et al. | Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods | |
CN109682762A (zh) | 一种基于高光谱的土壤有机质含量估算方法 | |
Adams et al. | The contribution of algae to freshwater dissolved organic matter: implications for UV spectroscopic analysis | |
CN106918567A (zh) | 一种测量痕量金属离子浓度的方法和装置 | |
Khajvand et al. | Sensitive assay of hexythiazox residue in citrus fruits using gold nanoparticles-catalysed luminol–H2O2 chemiluminescence | |
CN107632010A (zh) | 一种结合激光诱导击穿光谱对钢铁样品的定量方法 | |
Sun et al. | Linkages between optical and molecular signatures of dissolved organic matter along the Yangtze River Estuary-to-East China Sea continuum | |
Sherman et al. | Chlorophyll dynamics from Sentinel-3 using an optimized algorithm for enhanced ecological monitoring in complex urban estuarine waters | |
CN117057464A (zh) | 基于非线性记忆学习的土壤有机质光谱预测方法和装置 | |
Li et al. | Rapid detection of pesticide residue in apple based on Raman spectroscopy | |
Teickner et al. | Electrochemical properties of peat particulate organic matter on a global scale: Relation to peat chemistry and degree of decomposition | |
CN108956584B (zh) | 一种桑椹中重金属元素铬的快速准确检测方法 | |
Krich et al. | Functional convergence of biosphere–atmosphere interactions in response to meteorological conditions | |
CN103868858B (zh) | 一种确定盐渍土主导盐分光谱响应最佳波段的方法 | |
CN106126879B (zh) | 一种基于稀疏表示技术的土壤近红外光谱分析预测方法 | |
Ide et al. | Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests | |
CN104502302A (zh) | 混油的太赫兹时域波形多参数组合定量分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190426 |
|
WD01 | Invention patent application deemed withdrawn after publication |