CN109679071B - 一种PCLT-g-PEDOT导电复合物及其制备方法 - Google Patents

一种PCLT-g-PEDOT导电复合物及其制备方法 Download PDF

Info

Publication number
CN109679071B
CN109679071B CN201811607999.0A CN201811607999A CN109679071B CN 109679071 B CN109679071 B CN 109679071B CN 201811607999 A CN201811607999 A CN 201811607999A CN 109679071 B CN109679071 B CN 109679071B
Authority
CN
China
Prior art keywords
pclt
solution
pedot
conductive
edotcooh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811607999.0A
Other languages
English (en)
Other versions
CN109679071A (zh
Inventor
关水
徐超
许建强
孙长凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811607999.0A priority Critical patent/CN109679071B/zh
Publication of CN109679071A publication Critical patent/CN109679071A/zh
Application granted granted Critical
Publication of CN109679071B publication Critical patent/CN109679071B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明提供了一种新型PCLT‑g‑PEDOT导电复合物及其制备方法,涉及导电复合材料技术领域。其制备方法包括:(1)通过Friedel‑Crafts酰基化反应合成具有羧基反应性官能团的新型α位取代EDOT单体衍生物EDOTCOOH;(2)通过EDCI/DMAP酯化反应与具有良好的生物相容性的分子量在900左右的PCLT进行结合,获得EDOT封端的EDOTCOOH‑g‑PCLT材料;(3)与EDOT单体通过化学聚合方式扩大导电链长度,制备新型的具有良好降解性的支化嵌段PCLT‑g‑PEDOT导电复合物材料。本方法工艺简单,具有较好的重复性,得到的导电复合物产率高,性能优良,可连续批量生产,应用前景广阔。

Description

一种PCLT-g-PEDOT导电复合物及其制备方法
技术领域
本发明涉及导电复合材料技术领域,具体涉及一种PCLT-g-PEDOT导电复合物及其制备方法。
背景技术
导电聚合物(conductive polymers,CPs)由于良好的电学性能和生物相容性,在生物医疗领域备受关注。经过30多年的发展,基于神经发育过程中细胞内外的电活动影响及电刺激信号的重要调控作用,以聚苯胺(polyaniline,PANi)、聚吡咯(polypyrrole,PPy)、聚噻吩(polythiophene,PTh)及其衍生物为代表的导电聚合物与以壳聚糖(chitosan,Cs)、明胶(gelatin,Gel)、聚乳酸(poly(L-lactic acid),PLLA)、L-乳酸/柠檬酸共聚物(poly(L-lactic-co-citric acid),PLCA)、聚己内酯(polycaprolactone,PCL)为代表的天然/有机高分子材料通过化学或物理方法结合构建新型的“智能”电活性生物支架材料,已成为近年来组织工程与再生医学及药物释放领域的研究热点,显示出广阔的临床应用前景。
然而,导电聚合物材料通常存在硬而脆、不易二次成型的缺点,极大限制了它们的大规模应用。目前,最常见有效的改性方法之一是通过化学聚合或电化学方法将导电聚合物引入绝缘柔性聚合物,进而制备成导电嵌段共聚物,以使新材料与常规材料一样可以二次加工成型。如Durgam等通过吡咯和吡咯封端的聚己内酯大分子单体之间进行氧化共聚合成了PPy-g-PCL嵌段共聚物,这种新的导电可降解生物材料具有良好的生物相容性,并且在体外(有和没有电刺激)和体内神经元(没有电刺激)的情况下支持PC12细胞的增殖和生长。Xie等合成了一系列基于4臂聚乳酸(PLA)和苯胺四聚体(AT)的超支化嵌段导电可降解共聚物(HPLAAT),这些新聚合物显著增强了c2c12成肌细胞的肌原性分化,所有含AT的共聚物都具备电活性,而且比没有AT的HPLA具有更高的生物相容性。Huang等将羧基封端苯胺五聚体与羟基封端聚乳酸进行偶联反应,合成线性嵌段共聚物,该共聚物表现出和聚苯胺类似的优异电活性,可刺激大鼠C6胶质瘤细胞增殖和分化,具有良好的生物相容性和降解性;该导电共聚物在普通有机溶剂中也显示出良好的溶解性,具有优良的可加工性。Wu等合成了一种柔性可降解聚(甘油癸二酸酯)和苯胺五聚体的线性嵌段共聚物。该聚合物显示出良好的生物相容性,能够显著增强施旺细胞的髓鞘基因表达和神经营养素分泌,同时还能够诱导共同培养的PC12细胞神经突出的延长。
聚3,4-乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)是近年来开始研究的一类导电高分子,属于噻吩衍生物。PEDOT具有许多优良的特性,3,4位乙撑二氧基的引入阻止了单体聚合时噻吩环的α-β连接,使聚合物分子链更为规整有序,使其导电的掺杂状态更加稳定,是目前已知的最稳定的,电导率最高的导电聚合物。在组织工程领域,大量实验已经证明PEDOT具有较好的生物相容性,显示了广阔的应用前景。需要指出的是,PEDOT是一种无定形,不溶和粉末状的产品,因此有必要对它进一步改性以提高材料的二次可加工性能。但与PANI和PPy等其他导电聚合物不同的是,EDOT单体本身缺少活性反应基团,因此近年来对生物功能性的EDOT单体衍生物的开发逐渐增加。其中最常见的是在乙撑二氧基位点引入新的官能团,包括羟甲基EDOT和C4-EDOT-COOH等。例如,Molina等通过3-噻吩甲醇和ε-己内酯单体进行开环聚合,获得噻吩端基化聚己内酯,再和羟甲基EDOT单体进行电化学聚合,获得的支化共聚物具有生物降解性和生物相容性。Hai等合成了一种C4位接枝有三糖的EDOT衍生物,并与EDOT单体电化学聚合,获得的三糖接枝导电聚合物能够特定识别人类甲型流感A病毒。Mawad等制备了由C4-EDOT-COOH衍生物与亲水聚合物共价结合的电活性水凝胶,有利于c2c12细胞粘附,增殖和分化,显示了良好的生物相容性。da Silva等将羟甲基EDOT和丙交酯单体开环聚合,获得EDOT端基化PLLA,再和EDOT单体进行化学聚合,获得了可生物降解的导电支化聚合物。Zhang等通过羟甲基EDOT与丁二酸酐反应获得的羧酸官能化的C4-EDOT-COOH单体,可用于制造化学和生物传感应用的高质量薄膜。Luo等开发了一系列基于羟甲基 EDOT的官能化衍生物,包括羧酸,乙酸酯,叠氮化物,N-羟基琥珀酰亚胺,发现它们都可以通过水性微乳液的电聚合反应沉积在电极表面上;而且它们还显示出很弱的细胞毒性,且体内实验时不显示炎症反应。Povlich等合成的EDOT和C4-EDOT-COOH单体的电化学共聚物薄膜,并通过活性羧酸官能团实现RGD多肽的固定,实验显示这种表面多肽化薄膜能够使原代大鼠运动神经元的粘附性比对照组增加3至9倍。综合以上研究表明,取代基对导电聚合物的物理化学性能以及生物相容性等会产生重要的影响。
发明内容
本发明目的在于提供一种新型导电复合物材料及其制备方法。
为了实现上述目的,本发明的技术方案为:
本发明制备了一种新型导电复合物材料,为聚己内酯三醇/聚3,4-乙烯二氧噻吩,简写为PCLT-g-PEDOT,呈具有良好降解性的支化嵌段结构。
本发明提供了一种新型导电复合物材料的制备方法,包括如下步骤:
S1、向装有冷凝管和恒压滴定漏斗的500 mL两口烧瓶中加入7.0 g~9.0 g无水AlCl3和90 mL~110 mL无水二氯甲烷,冰水浴下利用磁力搅拌器搅拌10 min,然后加入已预先干燥的2.00 g~4.00 g丁二酸酐,继续搅拌20 min;
S2、取3.50 g~5.00 g 3,4-乙烯二氧噻吩溶解于90 mL~110 mL无水二氯甲烷,高纯氮气保护下使用恒压滴定漏斗缓慢滴加至上述S1的两口烧瓶中,1 h滴完,整个过程都是在冰浴下进行;
S3、将反应体系升温至50 ℃,回流24 h后停止反应,冷却至室温后,向两口烧瓶中加入12 mol/L浓盐酸/碎冰猝灭1 h,期间不断用磁力搅拌器搅拌以溶解固体反应产物;
S4、将上述S3所得溶液用旋转蒸发仪旋蒸去除二氯甲烷,得到绿色浑浊液,用布氏漏斗抽滤获得绿色滤饼,将滤饼溶于200 mL~400 mL 1mol/L 的NaOH溶液,形成砖红色溶液,抽滤取滤液;
S5、向滤液中加入浓盐酸,此时溶液中析出大量颗粒状绿色沉淀,抽滤取滤饼,将滤饼溶于纯水中,加热至100 ℃,期间不断搅拌,随后趁热过滤,取下层澄清透明黄色滤液,0 ℃静置过夜,析出大量黄色片状结晶,抽滤取滤饼,50 ℃真空干燥48 h,得黄色片状结晶;
S6、用丙酮与石油醚体积比为1:1的流动相进行硅胶柱层析提纯,得到EDOTCOOH黄色粉末;
S7、将EDOTCOOH、20 mL~30 mL无水二氯甲烷、分子量900左右的PCLT加入到经火焰干燥的烧瓶内,磁力搅拌器搅拌10 min,然后加入催化剂EDCI 1.2 g~1.4 g和DAMP 0.08 g~0.09 g,持续搅拌并在高纯氮气保护下室温反应36 h;
S8、用90 mL~110 mL无水二氯甲烷稀释后,再用100 mL 1 mol/L的盐酸溶液洗涤三次,100 mL饱和NaHCO3溶液洗涤三次和100 mL去离子水洗涤一次;
S9、通过旋转蒸发除去有机溶剂,得到粗产物,再用甲醇与二氯甲烷的体积比为1:20的流动相进行硅胶柱层析提纯,得到EDOTCOOH-g-PCLT材料;
S10、将上述S9所得材料和EDOT单体溶于15 mL~25 mL乙腈,加入2.3 g~3.4g 55%甲苯磺酸铁/正丁醇溶液,磁力搅拌40 ℃反应24 h;
S11、待反应停止恢复至室温后,加入乙醇/水的体积比为20%的溶液,5000 rpm的转速下高速离心5 min,过滤,沉淀用大量纯水重复洗涤3~4次,然后在60 ℃真空烘箱中真空干燥24 h,获得不同含量的PCLT-g-PEDOT导电复合物材料的粉末。
本发明具有如下优点:
1、本发明方法工艺简单,具有较好的重复性,得到的导电复合物产率可达89%以上,性能优良,可连续批量生产,应用前景广阔;
2、本发明可为神经/心肌细胞等生长提供良好的三维电学培养微环境,实现神经/心脏组织工程构建以及药物筛选和毒性评价及其进一步临床移植应用。
附图说明
图1为本发明新型PCLT-g-PEDOT导电复合物材料的合成路线图;
图2为本发明新型α位取代EDOT单体衍生物EDOTCOOH的红外谱图;
图3为本发明新型α位取代EDOT单体衍生物EDOTCOOH的核磁共振谱图。
具体实施方式
以下结合具体实施方式对本发明的技术方案作进一步详细说明,但并不因此而限制于本发明。
实施例1
向装有冷凝管和恒压滴定漏斗的500 mL两口烧瓶中加入8.0 g无水AlCl3和100mL无水DCM,冰水浴下利用磁力搅拌器搅拌10 min,然后加入已预先干燥的3.00 g丁二酸酐,继续搅拌20 min;取4.23 g EDOT溶于100 mL无水DCM,高纯氮气保护下使用恒压滴定漏斗缓慢滴加,1 h滴完,整个过程都是在冰浴下进行;将反应体系升温至50 ℃,回流24 h后停止反应,冷却至室温后,不断搅拌下加入12 mol/L浓盐酸/碎冰猝灭1 h,所得溶液旋蒸去除DCM,抽滤获得绿色滤饼,将滤饼溶于300 mL 1mol/L的NaOH溶液,抽滤取滤液;向滤液中加入浓盐酸,抽滤取滤饼,将滤饼溶于纯水中,加热至100 ℃,期间不断搅拌,随后趁热过滤,取下层澄清透明黄色滤液,0 ℃静置过夜,抽滤取滤饼,50 ℃真空干燥48 h,然后用硅胶柱层析(PA:PE=1:1)提纯,得到EDOTCOOH黄色粉末。
实施例2
将EDOTCOOH、25 mL无水DCM、分子量900左右的PCLT加入到火焰干燥的烧瓶内,搅拌10 min,然后加入1.32 g EDCI 和0.083 g DAMP,持续搅拌并在高纯氮气保护下室温反应36 h;用100 mL无水DCM稀释后,再分别用100 mL 1 mol/L的盐酸溶液洗涤三次、100 mL饱和NaHCO3溶液洗涤三次、100 mL去离子水洗涤一次;之后旋蒸除去有机溶剂,得到粗产物,再用硅胶柱层析(MeOH:DCM=1:20)提纯,得到EDOTCOOH-g-PCLT材料。
实施例3
将EDOTCOOH-g-PCLT材料和EDOT单体溶于20 mL乙腈,加入2.8 g 55% 甲苯磺酸铁/正丁醇溶液,40 ℃磁力搅拌反应24 h;待反应停止恢复至室温后,加入乙醇/水的体积比为20%的溶液,5000 rpm的转速下高速离心5 min,过滤,沉淀用大量纯水重复洗涤3次,然后在60 ℃真空烘箱中真空干燥24 h,获得不同含量的PCLT-g-PEDOT纳米复合材料的粉末。
实施例4
采用Bruker EQUINOX55傅里叶红外光谱仪对新型α位取代EDOT单体衍生物EDOTCOOH进行测试。样品与KBr的质量比1:(100-200),经过研磨后压制成薄片,转移到红外光谱仪样品池进行测试,扫描范围4000-400cm-1,分辨率4cm-1
实施例5
采用Bruker Avance II 400M型核磁共振波谱仪对新型α位取代EDOT单体衍生物EDOTCOOH进行检测。以氘代DMSO(DMSO-d6)为溶剂,操作频率为 400 MHz (ok),室温下测定样品的核磁共振氢谱和碳谱。
对于实施例1所得样品进行了实施例4、5的红外光谱和核磁共振波谱检测。
图2所示展示了与EDOT单体红外谱图相比,样品EDOTCOOH谱图中的3120cm-1处吸收峰强度明显下降,而该吸收峰为噻吩环上α位C-H伸缩振动吸收峰,这是因为EDOT的酸化发生在噻吩环的α位,因此导致上述C-H吸收峰强度的明显下降;另外新出现的1700cm-1为终端-COOH羰基伸缩振动峰(HO-C=O),1641cm-1为噻吩环的α位上的酮羰基(α-C=O)特征峰。由此证实反应得到相应的化合物为新型α位取代EDOT单体衍生物EDOTCOOH。同时图3显示了1HNMR (DMSO-d6)δ/ppm: 12.09 (s, H, COOH),7.11 (s, H, S-CH),4.43 (t, 2H, O-CH2),4.27 (t, 2H, O-CH2),3.05 (t, 2H, COCH2CH2),2.53 (t, 2H, CH2COOH);13C NMR(DMSO- d6)δ/ppm: 192.56,176.62,148.16,144.53,121.18,111.52,68.35,66.60,38.67,30.28,进一步表明反应得到相应的化合物为新型α位取代EDOT单体衍生物EDOTCOOH。
本发明提供的新型PCLT-g-PEDOT导电复合物材料,制备方法工艺简单,具有较好的重复性,得到的导电复合物产率可达89%以上,性能优良,可连续批量生产,应用前景广阔;并且可为神经/心肌细胞等生长提供良好的三维电学培养微环境,实现神经/心脏组织工程构建以及药物筛选和毒性评价及其进一步临床移植应用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种导电复合物材料的制备方法,其特征在于,包括如下步骤:
S1、向装有冷凝管和恒压滴定漏斗的500 mL两口烧瓶中加入7.0 g~9.0 g无水AlCl3和90 mL~110 mL无水二氯甲烷,冰水浴下利用磁力搅拌器搅拌10 min,然后加入已预先干燥的2.00 g~4.00 g丁二酸酐,继续搅拌20 min;
S2、取3.50 g~5.00 g 3,4-乙烯二氧噻吩溶解于90 mL~110 mL无水二氯甲烷,高纯氮气保护下使用恒压滴定漏斗缓慢滴加至上述S1的两口烧瓶中,1 h滴完,整个过程都是在冰浴下进行;
S3、将反应体系升温至50 ℃,回流24 h后停止反应,冷却至室温后,向两口烧瓶中加入12 mol/L浓盐酸/碎冰猝灭1 h,期间不断用磁力搅拌器搅拌以溶解固体反应产物;
S4、将上述S3所得溶液用旋转蒸发仪旋蒸去除二氯甲烷,得到绿色浑浊液,用布氏漏斗抽滤获得绿色滤饼,将滤饼溶于200 mL~400 mL 1mol/L 的NaOH溶液,形成砖红色溶液,抽滤取滤液;
S5、向滤液中加入浓盐酸,此时溶液中析出大量颗粒状绿色沉淀,抽滤取滤饼,将滤饼溶于纯水中,加热至100 ℃,期间不断搅拌,随后趁热过滤,取下层澄清透明黄色滤液,0 ℃静置过夜,析出大量黄色片状结晶,抽滤取滤饼,50 ℃真空干燥48 h,得黄色片状结晶;
S6、用丙酮与石油醚体积比为1:1的流动相进行硅胶柱层析提纯,得到EDOTCOOH黄色粉末;
S7、将EDOTCOOH、20 mL~30 mL无水二氯甲烷、分子量900的PCLT加入到经火焰干燥的烧瓶内,磁力搅拌器搅拌10 min,然后加入催化剂EDCI 1.2 g~1.4 g和DAMP 0.08 g~0.09 g,持续搅拌并在高纯氮气保护下室温反应36 h;
S8、用90 mL~110 mL无水二氯甲烷稀释后,再用100 mL 1 mol/L的盐酸溶液洗涤三次,100 mL饱和NaHCO3溶液洗涤三次和100 mL去离子水洗涤一次;
S9、通过旋转蒸发除去有机溶剂,得到粗产物,再用甲醇与二氯甲烷的体积比为1:20的流动相进行硅胶柱层析提纯,得到EDOTCOOH-g-PCLT材料;
S10、将上述S9所得材料和EDOT单体溶于15 mL~25 mL乙腈,加入2.3 g~3.4g 55% 甲苯磺酸铁/正丁醇溶液,磁力搅拌40 ℃反应24 h;
S11、待反应停止恢复至室温后,加入乙醇/水的体积比为20%的溶液,5000 rpm的转速下高速离心5 min,过滤,沉淀用大量纯水重复洗涤3~4次,然后在60 ℃真空烘箱中真空干燥24 h,获得不同含量的PCLT-g-PEDOT纳米复合材料的粉末。
2.一种如权利要求1所述方法制备的导电复合物材料PCLT-g-PEDOT。
3.一种如权利要求2所述导电复合物材料PCLT-g-PEDOT的用途,其特征在于,用于制备PCLT-g-PEDOT导电膜材料以及三维PCLT-g-PEDOT导电支架。
4.一种如权利要求2所述导电复合物材料PCLT-g-PEDOT的用途,其特征在于,用于为神经/心肌细胞的生长提供良好的三维电学培养微环境,实现神经/心脏组织工程构建以及药物筛选和毒性评价及其进一步临床移植应用。
CN201811607999.0A 2018-12-27 2018-12-27 一种PCLT-g-PEDOT导电复合物及其制备方法 Active CN109679071B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811607999.0A CN109679071B (zh) 2018-12-27 2018-12-27 一种PCLT-g-PEDOT导电复合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811607999.0A CN109679071B (zh) 2018-12-27 2018-12-27 一种PCLT-g-PEDOT导电复合物及其制备方法

Publications (2)

Publication Number Publication Date
CN109679071A CN109679071A (zh) 2019-04-26
CN109679071B true CN109679071B (zh) 2022-04-29

Family

ID=66189909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811607999.0A Active CN109679071B (zh) 2018-12-27 2018-12-27 一种PCLT-g-PEDOT导电复合物及其制备方法

Country Status (1)

Country Link
CN (1) CN109679071B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558089B (zh) * 2022-10-28 2024-02-02 吉林大学 一种电子-离子混合导电聚合物、制备方法及其在制备高倍率水系锌离子电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007687A2 (en) * 2001-07-20 2003-01-30 The Research Foundation Of State University Of New York Polymer-matrix materials and methods for making same
CN103113558A (zh) * 2013-01-31 2013-05-22 深圳新宙邦科技股份有限公司 导电性高分子、其合成用氧化剂及固体电容器
CN103159781A (zh) * 2013-03-28 2013-06-19 江西科技师范大学 一种羧基功能化的(3,4-乙撑二氧噻吩)单体、聚合物及其制备方法
KR20150136846A (ko) * 2014-05-28 2015-12-08 단국대학교 산학협력단 전도성 고분자의 제조방법 및 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031607A1 (en) * 2000-12-19 2007-02-08 Alexander Dubson Method and apparatus for coating medical implants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007687A2 (en) * 2001-07-20 2003-01-30 The Research Foundation Of State University Of New York Polymer-matrix materials and methods for making same
CN103113558A (zh) * 2013-01-31 2013-05-22 深圳新宙邦科技股份有限公司 导电性高分子、其合成用氧化剂及固体电容器
CN103159781A (zh) * 2013-03-28 2013-06-19 江西科技师范大学 一种羧基功能化的(3,4-乙撑二氧噻吩)单体、聚合物及其制备方法
KR20150136846A (ko) * 2014-05-28 2015-12-08 단국대학교 산학협력단 전도성 고분자의 제조방법 및 시스템

Also Published As

Publication number Publication date
CN109679071A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Guo et al. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer
Barouti et al. New linear and star‐shaped thermogelling poly ([R]‐3‐hydroxybutyrate) copolymers
Huang et al. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications
Wolf et al. Poly (lactide)-block-poly (HEMA) block copolymers: an orthogonal one-pot combination of ROP and ATRP, using a bifunctional initiator
Guo et al. Universal two-step approach to degradable and electroactive block copolymers and networks from combined ring-opening polymerization and post-functionalization via oxidative coupling reactions
Li et al. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation
Sarvari et al. Novel three-dimensional, conducting, biocompatible, porous, and elastic polyaniline-based scaffolds for regenerative therapies
Pourjavadi et al. Synthesis and characterization of semi-conductive nanocomposite based on hydrolyzed collagen and in vitro electrically controlled drug release study
CN108752541B (zh) 以偶氮键作连接键的具有乏氧、温度双重响应性两亲性嵌段聚合物及其制备方法
Dominguez-Alfaro et al. Electroactive 3D printable poly (3, 4-ethylenedioxythiophene)-graft-poly (ε-caprolactone) copolymers as scaffolds for muscle cell alignment
Hatamzadeh et al. Electrically conductive nanofibrous scaffolds based on poly (ethylene glycol) s-modified polyaniline and poly (ε-caprolactone) for tissue engineering applications
KR20030041636A (ko) 구조적 배열이 일정한 생분해성 락타이드(글리콜라이드또는 락타이드/글리콜라이드)/ε-카프로락톤 멀티블록공중합체 및 이의 제조 방법
Ding et al. Synthesis and characterization of degradable electrically conducting copolymer of aniline pentamer and polyglycolide
Zhao et al. Single component thermo-gelling electroactive hydrogels from poly (caprolactone)–poly (ethylene glycol)–poly (caprolactone)-graft-aniline tetramer amphiphilic copolymers
Bai et al. Controlled self-assembly of thermo-responsive amphiphilic H-shaped polymer for adjustable drug release
JP2006528718A (ja) 温度感応性ポリホスファゼン系高分子、その製造方法、及びそれを用いた注入型温度感応性ポリホスファゼンヒドロゲル
da Silva et al. One pot biocatalytic synthesis of a biodegradable electroactive macromonomer based on 3, 4-ethylenedioxytiophene and poly (l-lactic acid)
CN109679071B (zh) 一种PCLT-g-PEDOT导电复合物及其制备方法
CN102964582B (zh) 一种嵌段共聚物、其制备方法及水凝胶
Sarvari et al. Porous conductive and biocompatible scaffolds on the basis of polycaprolactone and polythiophene for scaffolding
WO2011014887A1 (en) Electrically conducting polymer and copolymer compositions, methods for making same and applications therefor
CN102898635B (zh) 两亲性高分子材料及其制备方法
Shadi et al. A facile synthesis of polyaniline/polyethylene glycol/polyaniline terpolymers: preparation of electrospun conducting nanofibers by blending of the terpolymers with polycaprolactone
CN113024781B (zh) 一种环状聚内酯的制备方法
CN101585919B (zh) 具有生物相容性的超支化聚磷酸酯及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant