CN109668702A - 一种加载高温环境的压电式激励装置及其工作方法 - Google Patents

一种加载高温环境的压电式激励装置及其工作方法 Download PDF

Info

Publication number
CN109668702A
CN109668702A CN201811538817.9A CN201811538817A CN109668702A CN 109668702 A CN109668702 A CN 109668702A CN 201811538817 A CN201811538817 A CN 201811538817A CN 109668702 A CN109668702 A CN 109668702A
Authority
CN
China
Prior art keywords
micro
ring body
sleeve
plate
push plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811538817.9A
Other languages
English (en)
Other versions
CN109668702B (zh
Inventor
田江平
田华
隆武强
冯立岩
崔靖晨
崔泽川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811538817.9A priority Critical patent/CN109668702B/zh
Publication of CN109668702A publication Critical patent/CN109668702A/zh
Application granted granted Critical
Publication of CN109668702B publication Critical patent/CN109668702B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Abstract

一种加载高温环境的压电式激励装置及其工作方法,压电式激励装置包括筒体、安装在筒体底部的底板、微结构激励单元和光加热单元,微结构激励单元包括一个手动三轴位移台,在手动三轴位移台的Z轴溜板上安装有连接板,在连接板上通过螺纹安装有封装压电陶瓷,在封装压电陶瓷的顶部安装有微结构安装板,在微结构安装板的顶部粘接有MEMS微结构;光加热单元中使用了遮光片和遮光板,使得由光加热单元发出的平行光仅能照射在MEMS微结构上;该发明的有益效果是:可以实现对MEMS微结构整体的同时加热,确保了微结构表面的温度分布均匀,降低了微结构表面的温度梯度,大幅提高了高温环境下微结构动态特性参数测试的准确性。

Description

一种加载高温环境的压电式激励装置及其工作方法
技术领域
本发明涉及一种加载高温环境的压电式激励装置及其工作方法,属于微型机械电子技术领域。
背景技术
由于MEMS微器件具有成本低、体积小、重量轻、集成度高和智能化程度高等一系列特点,目前已经在汽车、航空航天、信息通讯、生物化学、医疗、自动控制、消费品及国防等很多领域都得到广泛的应用。在设计和开发MEMS时,由于系统功能主要是通过微结构的微小位移和变形实现,需要测量微机械部件的动态性能,因此对MEMS的机械运动参数如位移、速度、振幅、频率和振动模态等进行精确测量已经成为开发MEMS的重要内容。随着MEMS产品应用领域的不断拓展,对其动态机械特性的测试和研究不能够仅局限在常态环境下,而是需要结合实际的使用环境,比如高温环境,测试其在高温环境影响下的动态特性,从而能够对产品的稳定性和可靠性进行评估,对器件在设计、制作工艺的改进、以及器件的封装等方面起到指导作用,还可以降低研发成本,减少开发时间。
为了测试微结构在高温环境下的动态特性参数,一方面需要使微结构产生振动,也就是需要对微结构进行激励。由于MEMS微结构具有尺寸小、重量轻和固有频率高等特点,传统机械模态测试中的激励方法和激励装置无法被应用在MEMS微结构的振动激励当中。近三十年来,国内外的研究人员针对MEMS微结构的振动激励方法进行了大量的探索,研究出了一些可用于MEMS微结构的激励方法以及相应的激励装置,其中基于压电陶瓷的底座激励方法能够很好的实现对微结构的激励。
另一方面,就是需要对微结构进行升温,也就是对其进行加热。公开号为CN206074210U的中国实用新型专利公开了一种用于MEMS微结构动态特性测试的高温环境加载装置,在该装置中采用电加热棒作为热源,通过热传导的方法对微结构进行加热;公开号为CN1666952A的中国发明专利公开了一种MEMS圆片或器件的动态测试加载装置,在该装置中采用电加热板作为热源,通过热传导的方法对MEMS圆片进行加热;佘东生等在《基于激波的MEMS 微结构底座冲击激励方法研究》中介绍了一种可加载高温环境的MEMS微结构激波激励装置,在该装置中采用电加热棒作为热源,通过热传导的方法对MEMS微结构进行加热。在采用上述热传导的加热方式对微结构进行加热时,由于热能是经由微结构基底再传递到微结构上的,因此微结构上的温度场分布十分不均匀,微结构上距离基底远端的温度要低于距离基底近端处的温度,根据F. Shen等在《Thermal effects on coated resonantmicrocantilevers》中的研究结果,当微结构上的温度场分布不均匀时,在高温环境下测试微结构动态特性参数的准确性将会大幅降低。因此,现有技术中采用热传导对微结构进行加热的方式具有很大的缺点。
发明内容
本发明所要解决的技术问题是提供一种可对MEMS微结构加载高温环境的压电式激励装置,该装置能够实现对MEMS微结构加载高温环境,并对处于高温状态下的MEMS微结构进行激励,同时确保微结构表面温度分布均匀,降低微结构表面的温度梯度,提高高温环境下MEMS微结构动态特性参数测试结果的准确性。
为解决上述问题,本发明采用如下技术方案:一种对MEMS微结构加载高温环境的压电式激励装置,压电式激励装置包括筒体、电动两轴位移台、安装板、光加热单元和微结构激励单元,所述光加热单元包括依次螺纹连接的前套筒、连接套筒和后套筒,在后套筒尾部中心孔内安装有平行光源;在连接套筒前端设有阶梯状安装孔,在安装孔内的环形阶梯处设有圆形光学玻璃,在光学玻璃上靠近后套筒的表面中心处粘接有遮光片,在连接套筒的前端面安装有环形压板,在压板上圆周均布的安装有紧定螺钉,紧定螺钉旋入压板并顶紧在光学玻璃上;
在前套筒前端中心处设有外环体,在外环体上安装有两个第二导向轴,第二导向轴穿过前套筒前端面的突出部并连接在第二推板上,在第二推板中心处设有一个第二调节旋钮;第二调节旋钮穿过第二推板的中心孔并螺纹连接在前套筒前端面的突出部上,在第二推板和前套筒前端面的突出部之间设有第二复位弹簧,第二复位弹簧套装在第二调节旋钮上;
在外环体前端中心处设有内环体,在内环体上安装有第一导向轴,第一导向轴穿过外环体前端面的突出部并连接在第一推板上,在第一推板中心处设有第一调节旋钮,第一调节旋钮穿过第一推板的中心孔并螺纹连接在外环体前端面的突出部上,在第一推板和外环体前端面的突出部之间设有第一复位弹簧,第一复位弹簧套装在第一调节旋钮上,用于调节内环体的位置;在内环体后端面上安装有遮光板,遮光板中心处有矩形孔;
在底板上设有微结构激励单元,所述微结构激励单元包括一个手动三轴位移台,在手动三轴位移台的溜板上安装有连接板,在连接板上通过螺纹安装有封装压电陶瓷,在封装压电陶瓷的顶部安装有微结构安装板,在微结构安装板的顶部粘接有MEMS微结构;
所述遮光板上矩形孔的形状与MEMS微结构的基底形状相同,所述遮光片的形状与MEMS微结构上镂空槽的形状相同。
一种对MEMS微结构加载高温环境的压电式激励装置的工作方法:首先,旋拧前套筒,并调节第一推板和第二推板上的调节旋钮,同时调节手动三轴位移台,使光加热单元发射出的平行光仅能照射在MEMS微结构上;其次,使用光加热单元对MEMS微结构进行加热,在红外测温仪器的协助下将MEMS微结构加热到目标温度,待达到目标温度后,控制电动两轴位移台将光加热单元移动到靠近筒体边缘处,让出测试光路;然后,使用外部电源在封装压电陶瓷两极间施加阶跃电压信号,封装压电陶瓷由于逆压电效应会实现对MEMS微结构的激励,同时使用非接触的光学测振仪器获取MEMS微结构的振动响应,从而获取MEMS微结构在该目标温度下的动态特性参数。
本发明的有益效果是:
1、由于在装置中使用光辐射的加热方式,因此可以实现对MEMS微结构整体的同时加热,确保了微结构表面的温度分布均匀,降低了微结构表面的温度梯度,大幅提高了高温环境下微结构动态特性参数测试的准确性。
2、由于在装置中使用了遮光片和遮光板,并且遮光片的形状与MEMS微结构上镂空槽的形状相同,遮光板上矩形孔的形状与MEMS微结构的基底形状相同,使得由光加热单元发出的平行光仅能照射在MEMS微结构上,避免了激励装置中不耐高温零件的不必要的温升,提高了激励装置可靠性,拓展了装置的适用范围。
3、由于在装置中采用封装压电陶瓷作为激励源,提高了激励源的可靠性和稳定性。
附图说明
图1是一种压电式激励装置的立体结构示意图。
图2是光加热单元的立体结构示意图。
图3是光加热单元的前视图。
图4是图3的A-A剖视图。
图5是光加热单元拆除掉后套筒和平行光源后的后视图。
图6是微结构激励单元的立体结构示意图。
图7是MEMS微结构的俯视图。
图中:1、筒体,2、电动两轴位移台,3、光加热单元安装板,4、光加热单元,401、后套筒,402、连接套筒,403、前套筒,404、外环体,405、内环体,406、遮光板,407、第一导向轴,4071、第二导向轴,408、第一复位弹簧,4081、第二复位弹簧,409、第一推板,410、第一调节旋钮,4101、第二调节旋钮,411、轴套,412、第二推板,413、压板,414、紧定螺钉,415、平行光源,416、遮光片,417、光学玻璃,5、微结构激励单元,501、手动三轴位移台,502、连接板,503、MEMS微结构,5031、镂空槽,5032、基底,504、微结构安装板,505、封装压电陶瓷,6、底板。
具体实施方式
图1-7示出了一种压电式激励装置的结构图。这种压电式激励装置包括筒体1和安装在筒体1底部的底板6,在底板6上设有微结构激励单元5,所述微结构激励单元6包括一个手动三轴位移台501,在手动三轴位移台501的Z轴溜板上安装有连接板502,在连接板502上通过螺纹安装有封装压电陶瓷505,在封装压电陶瓷505的顶部安装有微结构安装板504,在微结构安装板504的顶部粘接有MEMS微结构503。
在筒体1的顶部安装有电动两轴位移台2,在电动两轴位移台2的滑块上通过光加热单元安装板3安装有光加热单元4,所述光加热单元4包括依次螺纹连接的前套筒403、连接套筒402和后套筒401,在后套筒401尾部中心孔内安装有平行光源415。
在连接套筒402前端设有阶梯状安装孔,在安装孔内的环形阶梯处设有圆形光学玻璃417,在光学玻璃417上靠近后套筒401的表面中心处粘接有遮光片416,在连接套筒402的前端面安装有环形压板413,在压板413上圆周均布的安装有紧定螺钉414,紧定螺钉414旋入压板413并顶紧在光学玻璃417上。
在前套筒403前端中心处设有外环体404,在外环体404上安装有第二导向轴4071,第二导向轴4071穿过前套筒403前端面的突出部并连接在第二推板412上,在第二推板412中心处设有第二调节旋钮4101,第二调节旋钮4101穿过第二推板412的中心孔并螺纹连接在前套筒403前端面的突出部上,在第二推板412和前套筒403前端面的突出部之间设有第二复位弹簧4081,第二复位弹簧4081套装在第二调节旋钮4101上,用于调节外环体404的位置。
在外环体404前端中心处设有内环体405,在内环体405上安装有第一导向轴407,第一导向轴407穿过外环体404前端面的突出部并连接在第一推板409上,在第一推板409中心处设有第一调节旋钮410,第一调节旋钮410穿过第一推板409的中心孔并螺纹连接在外环体404前端面的突出部上,在第一推板409和外环体404前端面的突出部之间设有第一复位弹簧408,第一复位弹簧408套装在第一调节旋钮410上,用于调节内环体405的位置;在内环体405后端面上安装有遮光板406,遮光板406中心处有矩形孔。
遮光板406上矩形孔的形状与MEMS微结构503的基底5032形状相同,遮光片416的形状与MEMS微结构503上镂空槽5031的形状相同。
这种加载高温环境的压电式激励装置在工作时,首先,旋拧前套筒403,并调节第一推板409和第二推板412上的第一调节旋钮410和第二调节旋钮4101,同时调节手动三轴位移台501,使光加热单元4发射出的平行光仅能照射在MEMS微结构503上;其次,使用光加热单元4对MEMS微结构503进行加热,在红外测温仪器的协助下将MEMS微结构503加热到目标温度,待达到目标温度后,控制电动两轴位移台2将光加热单元4移动到靠近筒体1边缘处,让出测试光路;然后,使用外部电源在封装压电陶瓷505两极间施加阶跃电压信号,封装压电陶瓷505由于逆压电效应会实现对MEMS微结构503的激励,同时使用非接触的光学测振仪器获取MEMS微结构503的振动响应,从而获取MEMS微结构503在该目标温度下的动态特性参数。

Claims (2)

1.一种加载高温环境的压电式激励装置,压电式激励装置包括筒体(1)、电动两轴位移台(2)、安装板(3)、光加热单元(4)和微结构激励单元(5),其特征是:所述光加热单元(4)包括依次螺纹连接的前套筒(403)、连接套筒(402)和后套筒(401),在后套筒(401)尾部中心孔内安装有平行光源(415);在连接套筒(402)前端设有阶梯状安装孔,在安装孔内的环形阶梯处设有圆形光学玻璃(417),在光学玻璃(417)上靠近后套筒(401)的表面中心处粘接有遮光片(416),在连接套筒(402)的前端面安装有环形压板(413),在压板(413)上圆周均布的安装有紧定螺钉(414),紧定螺钉(414)旋入压板(413)并顶紧在光学玻璃(417)上;
在前套筒(403)前端中心处设有外环体(404),在外环体(404)上安装有两个第二导向轴(4071),第二导向轴(4071)穿过前套筒(403)前端面的突出部并连接在第二推板(412)上,在第二推板(412)中心处设有一个第二调节旋钮(4101);第二调节旋钮(4101)穿过第二推板(412)的中心孔并螺纹连接在前套筒(403)前端面的突出部上,在第二推板(412)和前套筒(403)前端面的突出部之间设有第二复位弹簧(4081),第二复位弹簧(4081)套装在第二调节旋钮(4101)上;
在外环体(404)前端中心处设有内环体(405),在内环体(405)上安装有第一导向轴(407),第一导向轴(407)穿过外环体(404)前端面的突出部并连接在第一推板(409)上,在第一推板(409)中心处设有第一调节旋钮(410),第一调节旋钮(410)穿过第一推板(409)的中心孔并螺纹连接在外环体(404)前端面的突出部上,在第一推板(409)和外环体(404)前端面的突出部之间设有第一复位弹簧(408),第一复位弹簧(408)套装在第一调节旋钮(410)上,用于调节内环体(405)的位置;在内环体(405)后端面上安装有遮光板(406),遮光板(406)中心处有矩形孔;
在底板(6)上设有微结构激励单元(5),所述微结构激励单元(5)包括一个手动三轴位移台(501),在手动三轴位移台(501)的溜板上安装有连接板(502),在连接板(502)上通过螺纹安装有封装压电陶瓷(505),在封装压电陶瓷(505)的顶部安装有微结构安装板(504),在微结构安装板(504)的顶部粘接有MEMS微结构(503);
所述遮光板(406)上矩形孔的形状与MEMS微结构(503)的基底(5032)形状相同,所述遮光片(416)的形状与MEMS微结构(503)上镂空槽(5031)的形状相同。
2.根据权利要求1所述的一种加载高温环境的压电式激励装置的工作方法,其特征是:工作时,首先,旋拧前套筒(403),并调节第一推板(409)和第二推板(412)上的调节旋钮(410),同时调节手动三轴位移台(501),使光加热单元(4)发射出的平行光仅能照射在MEMS微结构(503)上;其次,使用光加热单元(4)对MEMS微结构(503)进行加热,在红外测温仪器的协助下将MEMS微结构(503)加热到目标温度,待达到目标温度后,控制电动两轴位移台(2)将光加热单元(4)移动到靠近筒体(1)边缘处,让出测试光路;然后,使用外部电源在封装压电陶瓷(505)两极间施加阶跃电压信号,封装压电陶瓷(505)由于逆压电效应会实现对MEMS微结构(503)的激励,同时使用非接触的光学测振仪器获取MEMS微结构(503)的振动响应,从而获取MEMS微结构(503)在该目标温度下的动态特性参数。
CN201811538817.9A 2018-12-17 2018-12-17 一种加载高温环境的压电式激励装置及其工作方法 Expired - Fee Related CN109668702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811538817.9A CN109668702B (zh) 2018-12-17 2018-12-17 一种加载高温环境的压电式激励装置及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811538817.9A CN109668702B (zh) 2018-12-17 2018-12-17 一种加载高温环境的压电式激励装置及其工作方法

Publications (2)

Publication Number Publication Date
CN109668702A true CN109668702A (zh) 2019-04-23
CN109668702B CN109668702B (zh) 2020-02-21

Family

ID=66144401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811538817.9A Expired - Fee Related CN109668702B (zh) 2018-12-17 2018-12-17 一种加载高温环境的压电式激励装置及其工作方法

Country Status (1)

Country Link
CN (1) CN109668702B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666952A (zh) * 2005-03-29 2005-09-14 华中科技大学 Mems圆片或器件的动态测试加载装置
WO2006093232A1 (ja) * 2005-03-03 2006-09-08 Tokyo Electron Limited 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
CN101476970A (zh) * 2009-01-14 2009-07-08 大连理工大学 一种用于mems动态特性测试的底座激励装置
JP2009154263A (ja) * 2007-12-27 2009-07-16 Stanley Electric Co Ltd Memsモジュール
CN203323423U (zh) * 2013-06-03 2013-12-04 江苏双志新能源有限公司 光能冷媒加热体
CN106477518A (zh) * 2016-09-30 2017-03-08 渤海大学 一种可在高温环境下对mems金属微结构进行激励的激波激励装置
CN206074210U (zh) * 2016-10-15 2017-04-05 渤海大学 一种用于mems微结构动态特性测试的高温环境加载装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093232A1 (ja) * 2005-03-03 2006-09-08 Tokyo Electron Limited 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
CN1666952A (zh) * 2005-03-29 2005-09-14 华中科技大学 Mems圆片或器件的动态测试加载装置
JP2009154263A (ja) * 2007-12-27 2009-07-16 Stanley Electric Co Ltd Memsモジュール
CN101476970A (zh) * 2009-01-14 2009-07-08 大连理工大学 一种用于mems动态特性测试的底座激励装置
CN203323423U (zh) * 2013-06-03 2013-12-04 江苏双志新能源有限公司 光能冷媒加热体
CN106477518A (zh) * 2016-09-30 2017-03-08 渤海大学 一种可在高温环境下对mems金属微结构进行激励的激波激励装置
CN206074210U (zh) * 2016-10-15 2017-04-05 渤海大学 一种用于mems微结构动态特性测试的高温环境加载装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王晓东 等: "MEMS微构件动态特性测试的激励技术和方法", 《测试技术学报》 *

Also Published As

Publication number Publication date
CN109668702B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
Liu et al. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach
CN105891255B (zh) 一种测量单个纳米颗粒对流换热系数和比热容的方法及系统
CN103279155A (zh) 一种温度控制系统
Baloga et al. AC calorimetry at high pressure
Hodgins et al. A smart experimental technique for the optimization of dielectric elastomer actuator (DEA) systems
CN109668702A (zh) 一种加载高温环境的压电式激励装置及其工作方法
CN105319971B (zh) 基于光纤光栅的gma自适应控制方法及装置
Blackburn et al. Nonlinear piezoelectric resonance: A theoretically rigorous approach to constant I− V measurements
CN109827727A (zh) 一种加载高温环境的激波底座激励装置及其工作方法
Michaelis et al. Resistance monitoring of shape memory material stabilization during elastocaloric training
CN109437097A (zh) 一种加载高温环境的超声波激励装置及其工作方法
CN109668703A (zh) 一种动态特性测试的压电式激励装置及其工作方法
CN110579283B (zh) Hdr动态红外辐射源阵列靶标
CN109626320A (zh) 一种加载高温环境的激波聚焦激励装置及其工作方法
CN109612660A (zh) 一种动态特性测试的超声波激励装置及其工作方法
CA2295520A1 (en) Device for measuring and/or representing electrical and magnetic material properties and properties directly derivable therefrom
CN103499601B (zh) 一种测试纺织品动态热传递特性的方法和装置
CN109682558A (zh) 一种动态特性测试的激波聚焦激励装置及其工作方法
CN109650328A (zh) 一种动态特性测试的激波底座激励装置及其工作方法
CN107831072A (zh) 一种用于激光动加载实验的微型靶加热装置及其使用方法
Phillips et al. Artificial hair sensors: Electro-mechanical characterization
WO2007013702A1 (en) A method for calculating frequency characteristics of piezoelectric material non-linearly according to temperature rising
CN208848100U (zh) 用于saw谐振、反谐振频率测量的控温装置
Yang et al. A traceable dynamic calibration research of the measurement system based on quasi-static and dynamic calibration for accurate blast overpressure measurement
Moghaddam et al. Heat Flux‐Based Emissivity Measurement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200221

Termination date: 20211217