CN1096610C - Electric field sensor - Google Patents

Electric field sensor Download PDF

Info

Publication number
CN1096610C
CN1096610C CN95105369A CN95105369A CN1096610C CN 1096610 C CN1096610 C CN 1096610C CN 95105369 A CN95105369 A CN 95105369A CN 95105369 A CN95105369 A CN 95105369A CN 1096610 C CN1096610 C CN 1096610C
Authority
CN
China
Prior art keywords
field sensor
electric
antenna
receiving
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95105369A
Other languages
Chinese (zh)
Other versions
CN1116310A (en
Inventor
鸟羽良和
近藤充和
佐藤由郎
生岩量久
中尚
石川匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Nippon Hoso Kyokai NHK
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, NEC Tokin Corp filed Critical Nippon Hoso Kyokai NHK
Publication of CN1116310A publication Critical patent/CN1116310A/en
Application granted granted Critical
Publication of CN1096610C publication Critical patent/CN1096610C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • G01R29/0885Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

An electric field sensor comprises an electric field sensor head for varying an intensity of a propagating light beam in response to an electric field intensity of an input signal received by a reception antenna. The electric field sensor head comprises an incident optical waveguide, two phase-shift optical waveguides having a variable refractive index which varies in response to the electric field intensity, an outgoing optical waveguide and, at least one modulation electrode formed in the vicinity of at least one of the two phase-shift optical waveguides. The electric field sensor further comprises a circuit element connected between the modulation electrode and the reception antenna . The modulation electrode has a thickness not smaller than 1 mu m. The modulation electrode may comprise a plurality of split electrodes which are split in a light propagating direction and which are capacitively coupled. The reception antenna is preferably implemented by a low radiation resistance antenna.

Description

Electric-field sensor
Technical field
The present invention relates to be used to measure electric-field sensor in the electric field intensity of the electromagnetic wave signal of spatial transmission.
Background technology
Fig. 1 is the front elevation of the major part of existing electric-field sensor.This electric-field sensor comprises antenna for receiving 101, electric-field sensor probe 102, incident optical 103, outgoing optical fiber 104, light source (not shown) and photodetector (not shown).
Described antenna for receiving 101 receiving inputted signals.Described electric-field sensor probe 102 can make the variation of the electric field intensity of the input signal that the light intensity that sees through receives with described antenna for receiving 101 change.Described incident optical 103 is connected with described electric-field sensor probe 102 with described outgoing optical fiber 104.Described light source is connected with an end of described incident optical 103, and, to these incident optical 103 emission light.Described photodetector receives seeing through light and detecting the described light that sees through from electric-field sensor probe 102 by described outgoing optical fiber 104.
Described electric-field sensor probe 102 comprises substrate 105, incident light waveguide 106, two phase shifted light waveguides 107, emergent light waveguide 108 and modulator electrodes 109.Described incident light waveguide 106 forms on described substrate 105, in order to be connected with described incident optical 103.Described phase shifted light waveguide 107 forms on described substrate 105, is used for incident light waveguide 106 is divided into two.Described emergent light waveguide 108 forms on described substrate 105, in order to being connected with described outgoing optical fiber 104, and, described two phase shifted light waveguides 107 are converged.Near the formation described two phase shifted light waveguides 107 of described modulator electrode 109, and be connected with described antenna for receiving 101.
But, in described electric-field sensor, have the lower problem of remolding sensitivity.
Summary of the invention
The object of the present invention is to provide highly sensitive electric-field sensor.
According to one aspect of the present invention, a kind of electric-field sensor comprises:
An antenna for receiving that is used for receiving inputted signal;
Electric-field sensor probe is used to make through the variation with the electric field intensity of described input signal of the intensity of the propagation light beam of this probe change;
An incident optical and an outgoing optical fiber, described incident and outgoing optical fiber are connected to described electric-field sensor probe;
One is connected with an end of described incident optical and to the light source of this incident optical emission as described propagation light beam;
One receives propagation light beam from described electric-field sensor probe to detect the photodetector of described propagation light beam by described outgoing optical fiber;
Described electric-field sensor probe comprises a substrate, one on described substrate, form be used for the incident light waveguide that is connected with described incident optical, two form on described substrate and from the phase shifted light waveguide with refractive index that the variation with described electric field intensity changes of described incident light waveguide branch, one forms on described substrate so that the one end is connected with described outgoing optical fiber and the emergent light waveguide of its other end and described two phase shifted light waveguide meets, with at least one described two phase shifted light waveguides one of them near formation modulator electrode, the thickness of described at least one modulator electrode is not less than 1 μ m; With
A resonant circuit components that is connected between described at least one modulator electrode and the described antenna for receiving, and wherein said resonant circuit components, described electric-field sensor and described antenna for receiving constitute a resonance device together.
According to another aspect of the present invention, a kind of electric-field sensor comprises:
An antenna for receiving that is used for receiving inputted signal;
Electric-field sensor probe is used to make through the variation with the electric field intensity of described input signal of the intensity of the propagation light beam of this probe change;
An incident optical and an outgoing optical fiber, described incident and outgoing optical fiber are connected to described electric-field sensor probe;
One is connected with an end of described incident optical and to the light source of this incident optical emission as described propagation light beam;
One receives propagation light beam from described electric-field sensor probe (3) to detect the photodetector of described propagation light beam by described outgoing optical fiber;
Described electric-field sensor probe comprises a substrate, one on described substrate, form be used for the incident light waveguide that is connected with described incident optical, two form on described substrate and from the phase shifted light waveguide with refractive index that the variation with described electric field intensity changes of described incident light waveguide branch, one forms on described substrate so that the one end is connected with described outgoing optical fiber and the emergent light waveguide of its other end and described two phase shifted light waveguide meets, with at least one near the modulator electrode that forms one of them of described two phase shifted light waveguides, described at least one modulator electrode comprises along optical propagation direction and separates and pass through capacity coupled a plurality of sub-electrodes; With
A resonant circuit components that is connected between described at least one modulator electrode and the described antenna for receiving, and wherein said resonant circuit components, described electric-field sensor and described antenna for receiving constitute a resonance device together.
Description of drawings
Fig. 1 is the front elevation of the major part of existing electric-field sensor;
Fig. 2 is the block diagram of the 1st embodiment of the present invention;
Fig. 3 is the front elevation of the major part of the 1st embodiment of the present invention;
Fig. 4 is the equivalent circuit diagram of the resonance device that comprises antenna for receiving and electric-field sensor probe among the 1st embodiment of the present invention;
Fig. 5 is the graph of relation between the resistance of the thickness of the modulator electrode among the 1st embodiment of the present invention and electric-field sensor probe;
Fig. 6 is the front elevation of the major part of the 2nd embodiment of the present invention;
Fig. 7 is the oblique view of the antenna for receiving among the 2nd embodiment of the present invention;
Fig. 8 is the block diagram of the 3rd embodiment of the present invention;
Fig. 9 is the block diagram of the 4th embodiment of the present invention;
Figure 10 is the block diagram of the 5th embodiment of the present invention.
Embodiment describes in detail
Fig. 2 is the block diagram of the major part of the 1st embodiment of the present invention.As shown in Figure 2, electric-field sensor of the present invention comprises antenna for receiving 1, resonant circuit components 2, electric-field sensor probe 3, incident optical 4, outgoing optical fiber 5, light source 6 and photodetector 7.
Described antenna for receiving 1 receiving inputted signal.Described electric-field sensor probe 3 is connected with described antenna for receiving 1 by described resonant circuit components 2.Described electric-field sensor probe 3 is by the input signal of described resonant circuit components 2 receptions from described antenna for receiving 1, and the light intensity that sees through is changed with the variation of electric field intensity.Described incident optical 4 is connected with described electric-field sensor probe 3 with described outgoing optical fiber 5.Described light source 6 is connected with an end of described incident optical 4, and to these incident optical 4 emission light.Described photodetector 7 receives the light that sees through from described electric-field sensor probe 3 by described outgoing optical fiber 5, and detects the described light that sees through.
As shown in Figure 3, described electric-field sensor probe 3 comprises substrate 8, incident light waveguide 9, two phase shifted light waveguides 10, emergent light waveguide 11 and modulator electrodes 12.Described incident light waveguide 9 forms on described substrate 8, is used for being connected with described incident optical 4.Described two phase shifted light waveguides 10 form on described substrate 8, come out from described incident light waveguide 9 branches, and its refractive index change with the variation of electric field intensity.Described emergent light waveguide 11 forms on described substrate 8, is used for being connected with described outgoing optical fiber 5, and described two phase shifted light waveguides 10 are converged.Described resonant circuit components 2 is connected between described modulator electrode 12 and the described antenna for receiving 1.Described antenna for receiving 1 is connected with modulator electrode 12 by electrode attenuator 13 with resonant circuit components 2.
Described substrate 8 is made of the lithium niobate monocrystal sheet perpendicular to the cutting of C axle.On this substrate 8, spread titanium, form described incident light waveguide 9, described phase shifted light waveguide 10 and described emergent light waveguide 11.After inciding in the incident light waveguide 9 from the incident light of described incident light waveguide 4, be branched off in two phase shifted light waveguides 10.When antenna for receiving 1 received input signal, this input signal induced voltage on modulator electrode 12, produced along the reciprocal electric field component of its direction of depth direction in two phase shifted light waveguides 10.
The result, in two phase shifted light waveguides 10, because electrooptical effect causes variations in refractive index, produce big or small corresponding phase differential between the light of in two phase shifted light waveguides 10, propagating with extra electric field, after this two-beam converges, the synthetic outgoing light time in emergent light waveguide 11, owing to interfere, light intensity changes.That is, the outgoing light intensity that shines in the outgoing optical fiber 5 changes with the variation of the electric field intensity that adds, so, utilize photodetector 7 to measure these intensity variations, just can measure the intensity of extra electric field.
By the thickness that makes described modulator electrode 12 is more than the 1 μ m, and, reduce the resistance of described modulator electrode 12, the Q value of the resonance device that is made of described electric-field sensor probe 3, described antenna for receiving 1 and resonant circuit components 2 is reached more than the certain value (for example 10).The equivalent electrical circuit of this resonance device is shown in Fig. 4.In this resonance device, if the all-in resistance of described electric-field sensor probe 3 is that re, total inductance are that Le, total capacitance are Ce, the radiation resistance of described antenna for receiving 1 is that the voltage of ra, input signal is V, and described resonant circuit components 2 is that the coil of Lp constitutes by inductance.Described resonant circuit components 2 also can be by electric capacity or electric capacity and inductive coupling and is constituted.
Electric-field sensor as the 1st embodiment of the present invention, in order to amplify the voltage that is added on the described modulator electrode 12, described resonant circuit components 2 is connected with described modulator electrode 12, constitutes described resonance device, improve sensitivity by the Q value (voltage ratio) that improves this resonance device.
Usually, establishing frequency is that f, electric capacity are that C, resistance are R, and then the Q value of resonance device can be used Q=1/ (2 π fCR) expression.
Therefore, the 1st embodiment of the present invention reduces the all-in resistance of described electric-field sensor probe 3 in order to improve sensitivity by the thickness that thickens described modulator electrode 12.Relation between the all-in resistance of the thickness of described modulator electrode 12 and described electric-field sensor probe 3 is represented with the curve A among Fig. 5.In the 1st embodiment of the present invention, the thickness of described modulator electrode 12 is greater than 1 μ m.
Below, with reference to Fig. 6 the 2nd embodiment of the present invention is described.
In the 2nd embodiment shown in Figure 6, described modulator electrode 12 is by combining along the optical propagation direction setting and by capacity coupled a plurality of electrode 12a, 12b.In addition, described electric field antenna for receiving 1 is low radiation resistance antenna.In the 2nd embodiment, by total capacitance that reduces described electric-field sensor probe 3 and the radiation resistance that reduces electric field antenna for receiving 1, improve the Q value of resonant circuit device, thus the sensitivity that improves electric-field sensor.
As shown in Figure 6,1 lateral electrode in described two modulator electrodes 12 is made of 4 sub-electrode 12a.Opposite side electrode in described two modulator electrodes 12 is made of 4 sub-electrode 12b.The sub-electrode 12a that is arranged in the end of described each sub-electrode 12a is connected with antenna for receiving 1.In addition, the sub-electrode 12b that is arranged in the other end of described each sub-electrode 12b is connected with described antenna for receiving 1 by described resonant circuit components 2.Sub-electrode 12a beyond sub-electrode 12a, the 12b that is connected with described antenna for receiving 1,12b both sides connect respectively in couples.
Described antenna for receiving 1 is a kind of low radiation resistance antenna, is the 8JK directional antenna by John Crouse invention.This 8JK directional antenna is made of citation form shown in Figure 7, and (λ: the dipole element 1a wavelength of electric wave) arranges on the narrow spaced and parallel ground about with W=λ/8 in L=λ/2.Described 8JK directional antenna encourages with antiphase, so the interval W of element 1a is narrow more, radiation resistance is more little.
Electric-field sensor of the present invention also can be provided with such wave guide of Yagi antenna or reverberator, at this moment, and by electric wave being concentrated the sensitivity that can improve electric-field sensor.
Below, a plurality of specific embodiment of the present invention is described.
The 1st specific embodiment of the present invention is described earlier.
Described substrate 8 is formed by lithium niobate crystal chip (Z sheet).As the cushion that prevents that absorbing light from using, be with silicon dioxide (SiO 2) film is carried on the whole surface of described substrate 8, utilizes described method to form described phase shifted light waveguide 10 then.In these two phase shifted light waveguides 10, form 1 pair of described modulator electrode 12.At this moment, form described modulator electrode 12 with Au, the all-in resistance that makes described electric-field sensor probe 3 is less than 5 Ω, and the thickness that makes described modulator electrode 12 is 1 μ m.In addition, for the total capacitance that makes described electric-field sensor probe 3 is 3pF, modulator electrode 12 is divided into 4 parts (referring to Fig. 6) along optical propagation direction.
When utilizing network analyser to measure the resistance of described electric-field sensor 3 and electric capacity, resistance is 5 Ω (500MHz), and electric capacity is 3pF.In addition, as described antenna for receiving 1, the length L that makes the interval W that makes element 1a and be W=λ/10, element 1a is the 8JK directional antenna (referring to Fig. 7) of L=λ/2, utilizes network analyser to measure the radiation resistance of this 8JK directional antenna, and this resistance is 5 Ω.
The 8JK directional antenna of described resonant circuit components 2 and described reception usefulness is connected with the described modulator electrode 12 of described electric-field sensor probe 3, when measuring the detection sensitivity of electric field, the result shows, compare with existing electric-field sensor, improved and the corresponding to sensitivity of Q value, for the electric wave of 500MHz, when electric field intensity was 80dB μ V/m, the detection signal of photodetector 7 was output as 75dB μ V.
Below, make following such existing electric-field sensor (referring to Fig. 1), study its sensitivity.
Except electrode structure is a unitary electrode, thickness is that 1000A, antenna for receiving are outside the structure of half-wave dipole antenna, utilizes material and the method the same with electric-field sensor of the present invention to make existing electric-field sensor.
, when utilizing network analyser to measure the resistance of described existing electric-field sensor probe and electric capacity, resistance is 50 Ω (500MHz), and electric capacity is 12pF, and the radiation resistance of half-wave dipole antenna is 73 Ω.
Make the measuring condition and the described embodiment of described light source 6 and photodetector 7 etc. identical, during research electric field detection sensitivity, for the electric wave of 500MHz, in an embodiment of the present invention, when electric field intensity was 80dB μ V/m, the detection signal of photodetector 7 was output as 55dB μ V.
As mentioned above, the high 20dB of the existing electric-field sensor of the remolding sensitivity of electric-field sensor of the present invention.The Yagi antenna combination of present embodiment electric-field sensor that makes and the wave guide that is provided with element 20 will be utilized in addition, the above sensitivity of 10dB can be further improved.
In addition, if when increasing to the thickness of modulator electrode 12 more than 2 times, the all-in resistance of electric-field sensor probe will be less than 4 Ω, and total capacitance is about 1.5P, can further improve the sensitivity of 15dB than described embodiment.
Below, the 2nd specific embodiment of the present invention is described.
Fig. 8 be in the transfer system between the signal transmitting and receiving that sends the television relay transmitting station that point separates with acceptance point as described the 1st specific embodiment use the example of electric-field sensor like that.Transfer system between this signal transmitting and receiving have with the 1st embodiment shown in Figure 2 in the main composition part of same-sign.In addition, the transfer system between this signal transmitting and receiving also have with the light from emergent light fibre 5 be transformed to electric signal photoelectric conversion circuit 14, receive 14 outputs of this photoelectric conversion circuit signal compensating circuit 15 and receive the conversion amplifying circuit 16 of the output signal of this compensating circuit 15.Described conversion amplifying circuit 16 is transformed to IF signal (intermediate-freuqncy signal) and sends transmitter to after receiving the output signal of photoelectric conversion circuit 14 by compensating circuit 15.Like this, owing to utilize just direct modulated light signal of faint RF signal, so, do not need power supply at receiving end.
Below, the 3rd specific embodiment of the present invention is described.
Fig. 9 is with the present invention and the example that adds the use of high frequency and high-tension machine insulation.
For reduction of expenditure, the reception of STL is installed on the medium-wave antenna 17 about 100m with parabola antenna 1b as a rule as shown in Figure 9.At this moment, high frequency and high voltage just are added on the medium-wave antenna 17.Described electric-field sensor probe 3 is by sphere gap 18 ground connection.In wave launcher 19 and described electric-field sensor pop one's head in and 3 be connected with the tie point of described sphere gap 18.If use electric-field sensor of the present invention, just can not needing the shared device that insulate as shown in Figure 9, thus can reduce expenses.
Below, the 4th specific embodiment of the present invention is described.
Figure 10 is the example that prevents lightning hazards that the present invention is used for Wireline.In this example, described electric-field sensor probe 3 is connected with outside Wireline 20 with terminal resistance 22 by lightning arrester 21.If use electric-field sensor of the present invention, owing to can realize electrical separation between the signal transmitting and receiving, so, can prevent because thunderbolt etc. damage the machine of receiving end.
In addition, in above embodiment, can also adopt such structure, promptly adopt the exiting side that reverberator is arranged on the phase shifted light waveguide of electric-field sensor probe, make the turn back reflection type structure of outgoing of reflected light, can make incident optical and outgoing optical fiber public.

Claims (7)

1. electric-field sensor comprises:
An antenna for receiving (1) that is used for receiving inputted signal;
Electric-field sensor probe (3) is used to make through the variation with the electric field intensity of described input signal of the intensity of the propagation light beam of this probe change;
An incident optical (4) and an outgoing optical fiber (5), described incident and outgoing optical fiber are connected to described electric-field sensor probe (3);
End with described incident optical (4) is connected and to the light source (6) of this incident optical (4) emission as described propagation light beam;
One by propagation light beam the photodetector (7) to detect described propagation light beam of described outgoing optical fiber (5) reception from described electric-field sensor probe (3);
Described electric-field sensor probe (3) comprises a substrate (8), an incident light waveguide (9) that is connected with described incident optical (4) being used for of go up forming of described substrate (8), two go up to form and from the phase shifted light waveguide (10) with refractive index that the variation with described electric field intensity changes of described incident light waveguide (9) branch at described substrate (8), one forms on described substrate (8) so that the one end is connected with described outgoing optical fiber (5) and the emergent light waveguide (11) of its other end and described two phase shifted light waveguides (10) meet, with at least one described two phase shifted light waveguides (10) one of them near formation modulator electrode (12), the thickness of described at least one modulator electrode (12) is not less than 1 μ m; With
A resonant circuit components (2) that is connected between described at least one modulator electrode (12) and the described antenna for receiving (1), and wherein said resonant circuit components, described electric-field sensor and described antenna for receiving constitute a resonance device together.
2. according to the described electric-field sensor of claim 1, it is characterized in that described at least one modulator electrode (12) comprises along the optical propagation direction separation and by capacity coupled a plurality of sub-electrodes.
3. according to the described electric-field sensor of claim 1, it is characterized in that described antenna for receiving (1) comprises a low radiation resistance antenna.
4. according to the described electric-field sensor of claim 1, it is characterized in that, a wave guide and a reverberator one of them is coupled to described electric-field sensor at least.
5. electric-field sensor comprises:
An antenna for receiving (1) that is used for receiving inputted signal;
Electric-field sensor probe (3) is used to make through the variation with the electric field intensity of described input signal of the intensity of the propagation light beam of this probe change;
An incident optical (4) and an outgoing optical fiber (5), described incident and outgoing optical fiber are connected to described electric-field sensor probe (3);
End with described incident optical (4) is connected and to the light source (6) of this incident optical (4) emission as described propagation light beam;
One by propagation light beam the photodetector (7) to detect described propagation light beam of described outgoing optical fiber (5) reception from described electric-field sensor probe (3);
Described electric-field sensor probe (3) comprises a substrate (8), an incident light waveguide (9) that is connected with described incident optical (4) being used for of go up forming of described substrate (8), two go up to form and from the phase shifted light waveguide (10) with refractive index that the variation with described electric field intensity changes of described incident light waveguide (9) branch at described substrate (8), one forms on described substrate (8) so that the one end is connected with described outgoing optical fiber (5) and the emergent light waveguide (11) of its other end and described two phase shifted light waveguides (10) meet, with at least one near the modulator electrode (12) that forms one of them of described two phase shifted light waveguides (10), described at least one modulator electrode (12) comprises along optical propagation direction and separates and pass through capacity coupled a plurality of sub-electrodes; With
A resonant circuit components (2) that is connected between described at least one modulator electrode (12) and the described antenna for receiving (1), and wherein said resonant circuit components, described electric-field sensor and described antenna for receiving constitute a resonance device together.
6. according to the described electric-field sensor of claim 5, it is characterized in that described antenna for receiving (1) comprises a low radiation resistance antenna.
7. according to the described electric-field sensor of claim 5, it is characterized in that, a wave guide and a reverberator one of them is coupled to described electric-field sensor at least.
CN95105369A 1994-05-12 1995-05-12 Electric field sensor Expired - Fee Related CN1096610C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6098331A JP2791856B2 (en) 1994-05-12 1994-05-12 Electric field sensor
JP98331/94 1994-05-12

Publications (2)

Publication Number Publication Date
CN1116310A CN1116310A (en) 1996-02-07
CN1096610C true CN1096610C (en) 2002-12-18

Family

ID=14216927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95105369A Expired - Fee Related CN1096610C (en) 1994-05-12 1995-05-12 Electric field sensor

Country Status (6)

Country Link
US (1) US5574805A (en)
EP (1) EP0682262A3 (en)
JP (1) JP2791856B2 (en)
KR (1) KR100356566B1 (en)
CN (1) CN1096610C (en)
CA (1) CA2149267C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799972C1 (en) * 2023-02-16 2023-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный автомобильно-дорожный университет (СибАДИ)" Method for measuring the electric field strength by the equality of two components

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411947B2 (en) * 1995-08-08 2003-06-03 シャープ株式会社 Radio-to-optical conversion modulator and communication system using the same
US5654818A (en) * 1996-02-09 1997-08-05 The United States Of America As Represented By The United States National Aeronautics And Space Administration Polarization independent electro-optic modulator
US7088175B2 (en) * 2001-02-13 2006-08-08 Quantum Applied Science & Research, Inc. Low noise, electric field sensor
US6686800B2 (en) 2001-02-13 2004-02-03 Quantum Applied Science And Research, Inc. Low noise, electric field sensor
GB0114456D0 (en) * 2001-06-14 2001-08-08 Koninkl Philips Electronics Nv Object sensing
EP1808741B1 (en) 2001-09-26 2011-04-13 Nippon Telegraph And Telephone Corporation Transceiver suitable for data communication between wearable computers
TW583399B (en) * 2002-12-31 2004-04-11 Ind Tech Res Inst An optical sensor for electromagnetic field
US7015011B2 (en) * 2003-04-18 2006-03-21 Electronic Biosciences, Llc Circuit and method to non-invasively detect the electrical potential of a cell or neuron
US6961601B2 (en) * 2003-06-11 2005-11-01 Quantum Applied Science & Research, Inc. Sensor system for measuring biopotentials
WO2005052511A2 (en) * 2003-10-07 2005-06-09 Quantum Applied Science And Research, Inc. Integrated sensor system for measuring electric and/or magnetic field vector components
US20050147417A1 (en) * 2003-10-21 2005-07-07 Prather Dennis W. Wave detection methods and apparatus
JP2005167189A (en) * 2003-11-13 2005-06-23 Hitachi Cable Ltd Optical-electrical conversion module and optical transceiver using the same
US7173437B2 (en) * 2004-06-10 2007-02-06 Quantum Applied Science And Research, Inc. Garment incorporating embedded physiological sensors
CA2477615A1 (en) * 2004-07-15 2006-01-15 Quantum Applied Science And Research, Inc. Unobtrusive measurement system for bioelectric signals
US20060041196A1 (en) * 2004-08-17 2006-02-23 Quasar, Inc. Unobtrusive measurement system for bioelectric signals
JP4619799B2 (en) * 2005-01-20 2011-01-26 太陽誘電株式会社 Electric field vector calculation method and apparatus, electric field vector calculation program, and recording medium recording the program
US20080068182A1 (en) * 2006-09-13 2008-03-20 Brian Watson Sensor for measuring relative conductivity changes in biological tissue
US20090128515A1 (en) * 2007-11-02 2009-05-21 Bytheway Jared G Proximity sensing by increasing gain in touchpad circuitry and increasing distance between sensor electrodes and a sense electrode
CN101477153B (en) * 2009-01-24 2011-05-25 国网电力科学研究院 High-frequency electric field tester
WO2011047377A2 (en) * 2009-10-16 2011-04-21 Emprimus, Inc. Electromagnetic field detection systems and methods
CN103308782B (en) * 2012-03-16 2016-01-27 中国科学院电子学研究所 Rotary resonance type three-dimensional electric field sensor
CN103308781B (en) * 2012-03-16 2016-01-27 中国科学院电子学研究所 Flexible resonant three-dimensional electric field sensor
DE202014103874U1 (en) * 2014-08-21 2015-11-25 Grass Gmbh Furniture with sensor device
CN106680595B (en) * 2015-11-11 2019-09-10 北京卫星环境工程研究所 Double probe field measurement devices based on integrated light guide
CN113608037B (en) * 2021-08-09 2022-06-17 西安电子科技大学 Pulse electric field sensor based on asymmetric straight waveguide interferometer
US12085768B2 (en) * 2021-09-02 2024-09-10 Advanced Semiconductor Engineering, Inc. Optical module
WO2024185094A1 (en) * 2023-03-08 2024-09-12 三菱電機株式会社 Spatial electric field detection device, spatial electric field detection method, and spatial electric field detection system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070621A (en) * 1976-07-23 1978-01-24 The United States Of America As Represented By The Department Of Health, Education And Welfare Antenna with electro-optical modulator
US4395702A (en) * 1979-10-09 1983-07-26 Westinghouse Electric Corp. Bulk acoustic wave integrated optical deflector and monolithic A/D converter using such deflector
JPS59155764A (en) * 1983-02-24 1984-09-04 Yokogawa Hokushin Electric Corp Photovoltometer
EP0394219B1 (en) * 1987-06-04 1992-01-15 LUKOSZ, Walter Optical modulation and measurement process
JP2619981B2 (en) * 1990-11-06 1997-06-11 株式会社豊田中央研究所 Electromagnetic field strength measuring device
JPH04172260A (en) * 1990-11-05 1992-06-19 Toyota Central Res & Dev Lab Inc Apparatus for measuring strength of electromagnetic field
JPH04332878A (en) * 1991-05-07 1992-11-19 Toyota Central Res & Dev Lab Inc Electromagnetic field intensity measuring device
US5249243A (en) * 1992-05-21 1993-09-28 Siemens Components, Inc. Apparatus and method for cascade coupled integrated optical phase modulator for linearization of signal transfer
US5278923A (en) * 1992-09-02 1994-01-11 Harmonic Lightwaves, Inc. Cascaded optical modulation system with high linearity
JP3123007B2 (en) * 1993-02-15 2001-01-09 日本電信電話株式会社 Electric field sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799972C1 (en) * 2023-02-16 2023-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный автомобильно-дорожный университет (СибАДИ)" Method for measuring the electric field strength by the equality of two components

Also Published As

Publication number Publication date
JP2791856B2 (en) 1998-08-27
CA2149267A1 (en) 1995-11-13
JPH07306235A (en) 1995-11-21
EP0682262A2 (en) 1995-11-15
CN1116310A (en) 1996-02-07
CA2149267C (en) 2001-09-04
KR100356566B1 (en) 2003-01-24
EP0682262A3 (en) 1996-11-27
US5574805A (en) 1996-11-12
KR950033498A (en) 1995-12-26

Similar Documents

Publication Publication Date Title
CN1096610C (en) Electric field sensor
CN1052070C (en) Electric field sensor
EP0613182B1 (en) High power capacity optical receiver apparatus and method employing distributed photodetectors
CN100527449C (en) Semiconductor waveguide-based avalanche photodetector with separate absorption and multiplication regions
CN1052072C (en) Electric field sensor
WO2020092789A1 (en) Method and apparatus for control and suppression of stray light in a photonic integrated circuit
EP1160613A2 (en) Time compensation architectures for controlling timing of optical signals
CN1628259A (en) Conversion between optical and radio frequency signals
KR101897257B1 (en) photo detector and optical device used the same
JP3404606B2 (en) Electric field sensor
US6777665B2 (en) High frequency optical signal sampling device
US7877015B2 (en) Optical to radio frequency detector
CN108809435A (en) Transmission system is examined in a kind of transmitting terminal of single sideband singal, production method and straight straightening
JP3435588B2 (en) Electric field sensor
CN217846687U (en) Waveguide-integrated optical module and optical chip
JP3518063B2 (en) Electric field sensor
CN1612504A (en) Optical transmission module
CN115524789A (en) Waveguide-integrated optical module and optical chip
JPH09203757A (en) Electric field sensor head
CN112764243A (en) Hyperbolic broken line differential electrode structure for modulator
JPH11242195A (en) Optical modulation device
JPH09292423A (en) Receiving system for electromagnetic waves
JP2002168896A (en) Optical remote antenna
JPH0968553A (en) Electric field sensor
JPH09251047A (en) Electric field sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C56 Change in the name or address of the patentee

Owner name: NEC TOKIN CORP.

Free format text: FORMER NAME OR ADDRESS: TOKIN CORPORATION

CP01 Change in the name or title of a patent holder

Patentee after: NEC Tokin Corp.

Patentee before: Tokin Corporation

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee