CN109658398A - 一种基于三维测量点云的零件表面缺陷识别与评估方法 - Google Patents

一种基于三维测量点云的零件表面缺陷识别与评估方法 Download PDF

Info

Publication number
CN109658398A
CN109658398A CN201811518365.8A CN201811518365A CN109658398A CN 109658398 A CN109658398 A CN 109658398A CN 201811518365 A CN201811518365 A CN 201811518365A CN 109658398 A CN109658398 A CN 109658398A
Authority
CN
China
Prior art keywords
point cloud
error
defect
area
cloud data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811518365.8A
Other languages
English (en)
Other versions
CN109658398B (zh
Inventor
李文龙
胡著
王刚
田亚明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201811518365.8A priority Critical patent/CN109658398B/zh
Publication of CN109658398A publication Critical patent/CN109658398A/zh
Application granted granted Critical
Publication of CN109658398B publication Critical patent/CN109658398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本发明属于工业自动化测量领域,并具体公开了一种基于三维测量点云的零件表面缺陷识别与评估方法,其包括如下步骤:利用光栅式面阵扫描仪采集待测零件的表面点云数据;将采集的点云数据与零件设计模型点云数据进行匹配,获取点云数据的最近点集合数据;根据点云数据与最近点集合数据计算3D误差,并根据3D误差生成误差色谱图,依据误差色谱图预判出缺陷区域;对预判的缺陷区域进行平面度拟合,求解出缺陷区域的平面度;将预判的缺陷区域转化为二维灰度图像并进行边缘提取,然后进行区域填充以计算缺陷区域的面积s,以此完成零件表面缺陷的识别与评估。本发明解决了二维图像不能获取缺陷深度和误差色谱不能获取缺陷大小的不足,适用性广。

Description

一种基于三维测量点云的零件表面缺陷识别与评估方法
技术领域
本发明属于工业自动化测量领域,更具体地,涉及一种基于三维测量点云的零件表面缺陷识别与评估方法。
背景技术
在航空航天与核电领域,环形零件非常常见,如核主泵密封面,航空发动机的环形零部件等,在长时间的服役之后,易产生尺寸变形,表面材料脱落等缺陷,需要定时对其表面进行全面的检测,以便及时检修。一般的检测方式使用三坐标测量仪,这种仪器检测精度较高,但是对于微小的划痕不便于测量深度信息,同时检测效率很慢,检测效率低。另外一种检测方式是利用二维图像识别的方式对零件表面采集图像,通过图像处理以及神经网络的方式对缺陷进行识别,这种方式检测效率高,能够获取较为准确的缺陷大小,但是由于使用的是二维图像识别,丢失了第三维的信息,所以不能识别缺陷的深度。
为了克服上述检测方式的不足,出现了基于三维测量点云的零件表面检测方法,其通过光栅式面阵扫描仪获取零件表面的点云数据,点云数据是空间中零件三维点的集合,通常数据规模达到百万级,通过点云可以提取出关键的三维信息及二维尺寸。现有的点云处理方法多采用Geomagic、GomInspect等通用点云处理软件,这些软件具备点云的显示、删除、精简、点云三维模型匹配、误差色谱显示等通用功能,但缺乏专用缺陷识别功能,无法满足零件表面的缺陷识别需求。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于三维测量点云的零件表面缺陷识别与评估方法,通过三维测量点云匹配的方式获取误差色谱图,再通过色谱图识别缺陷深度和大小,解决了二维图像不能获取缺陷深度和误差色谱不能获取缺陷大小的不足,综合了两种方法的优势,能适用于测量表面为平面的情况,适用性非常广,对核电法兰密封面的缺陷检测有着很重要的意义,同时也可以用于其他平面类的零件缺陷识别。
为实现上述目的,本发明提出了一种基于三维测量点云的零件表面缺陷识别与评估方法,其包括如下步骤:
S1利用光栅式面阵扫描仪采集待测零件的表面点云数据;
S2将采集的点云数据与零件设计模型点云数据进行匹配,获取点云数据的最近点集合数据;
S3根据点云数据与最近点集合数据计算3D误差,并根据3D误差生成误差色谱图,然后依据误差色谱图预判出缺陷区域;
S4对预判的缺陷区域进行平面度拟合,以求解出缺陷区域的深度d;
S5将预判的缺陷区域转化为二维灰度图像并进行边缘提取,然后进行区域填充以计算缺陷区域的面积s,以此完成零件表面缺陷的识别与评估。
作为进一步优选的,步骤S2中点云数据的最近点集合数据采用如下方式获得:
利用采集的点云数据P={p1,p2,...pi,...ps}与零件设计模型点云数据Q={q1,q2,...qa,...ql}进行匹配,求解点云数据坐标系与设计模型坐标系的转换矩阵T;利用转换矩阵T求解q′i=T×pi,然后构建最近点集合Q′={q′1,q′2,...,q′i,...q′s}。
作为进一步优选的,步骤S3中3D误差采用如下方式获得:
di=(pi-q′i)·ni
其中,di表示采集的点云数据中第i个点的3D误差,i=1,2,...,s,ni表示最近点q′i的法向量。
作为进一步优选的,步骤S3中依据误差色谱图预判出缺陷区域具体为:根据误差色谱图的颜色获得具有明显颜色梯度变换的区域,并框选出该区域,记为区域A。
作为进一步优选的,步骤S4中缺陷的深度d采用如下方式获得:
S41确定满足的a,b,c作为估计值其中,xi,yi,zi为区域A内对应点的三维坐标,并利用估计值建立平面方程
S42然后计算区域A内所有点离平面的距离,将正反向距离最大值相加即为缺陷深度d。
作为进一步优选的,步骤S5中将预判的缺陷区域转化为二维灰度图像具体为:采用下式将预判缺陷区域内的各点转换为灰度值fi(x,y):
其中,f和e分别为上偏差和下偏差。
作为进一步优选的,步骤S5中采用如下方式进行边缘提取:使用DOG算子对二维灰度图像中的各点进行处理以获得对应的图像点hi(x,y):
其中,σ12为高斯函数的方差参数,x,y为二维灰度图像中对应点的像素点坐标。
作为进一步优选的,步骤S5中采用如下方式进行区域填充并计算缺陷区域面积s:
S51对提取的图像进行二值化操作,使图像边界的像素值为1,其他为0,然后对二值化操作后的图像进行填充;
S52计算填充后的图像中像素为1的个数,记为N1,计算缺陷区域面积s:
其中,N为区域A内点云的数量,S为区域A的面积。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明通过引入三维测量点云与设计匹配的方式来解决缺陷识别中深度信息难以获取的难点,通过对所选平面进行平面度拟合来获取该处缺陷的深度,作为缺陷深度的一个估计。
2.本发明通过将三维误差色谱图转换为二维图像,根据颜色梯度的变化分割出缺陷区域,以此计算出缺陷面积的大小,具有简单方便准确的优点。
3.本发明很好的解决了缺陷识别中难以同时获得缺陷深度和缺陷大小的难题,在自动检测领域中可广泛应用。
附图说明
图1是带有缺陷的样件示意图;
图2是利用光栅式面阵扫描仪获取的点云数据图;
图3是经过点云-模型匹配之后的误差色谱图;
图4是误差色谱图转换为二维图像后进行图像边缘提取后的结果图;
图5是基于三维测量点云的零件表面缺陷识别与评估方法的流程图;
图6是图像区域填充流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
以待测量样件为例,目前的缺陷识别大多数通过单目相机采集二维图像,然后经过图像预处理、分割,最终识别出缺陷区域,这种方式只能测量缺陷的大小,而不能测量缺陷的深度,而对于核电密封槽而言,缺陷的深度和缺陷的面积大小都影响着日常的使用,所以,如何能够在获取缺陷深度的同时又能获取缺陷的大小对核电密封槽的检测维修具有重要的意义。
如图1所示,样件表面(平面)上加工了两个缺陷,一个是正方形缺陷,缺陷深度为0.1mm,另外一个为三角形缺陷,缺陷深度为0.05mm,本发明的目的就是将缺陷深度和缺陷大小一并求出。
如图5所示,本发明实施例提供的一种基于三维测量点云的零件表面缺陷识别与评估方法,其包括如下步骤:
S1利用现有的光栅式面阵扫描仪采集待测零件的表面点云数据P={p1,p2,...pi,...ps},采集的数据点数量根据需要进行设定,采集的点云数据如图2所示;
S2将采集的点云数据P={p1,p2,...pi,...ps}与零件设计模型点云数据Q={q1,q2,...qa,...ql}进行匹配,获取点云数据的最近点集合数据Q′={q′1,q′2,...,q′i,...q′s},该零件设计模型点云数据预先设定,其为数据集,包含了零件所有点云数据,数量大于采集的点云数据的量;
S3根据点云数据P={p1,p2,...pi,...ps}与最近点集合数据Q′={q′1,q′2,...,q′i,...q′s}计算各点的3D误差,并根据3D误差值生成误差色谱图,依据误差色谱图预判出缺陷区域;
S4对预判的缺陷区域进行平面度拟合,以求解出缺陷区域的平面度,该平面度即为缺陷的深度d;
S5将预判的缺陷区域转化为二维灰度图像并进行边缘提取,然后进行区域填充以计算缺陷区域的面积s,以此完成零件表面缺陷的识别与评估。
对于步骤S2而言,采用如下方式获得最近点集合数据:利用采集的点云数据P={p1,p2,...pi,...ps}与零件设计模型点云数据Q={q1,q2,...qa,...ql}进行匹配求解点云数据坐标系与设计模型坐标系的转换矩阵T;利用转换矩阵T求解q′i=T×pi,构建最近点集合Q′={q′1,q′2,...,q′i,...q′s}。
转换矩阵T采用如下方式确定:
S21对P中所有点pi从Q中搜索各点对应的最近点qi,计算质心μP、μQ及坐标差
S22由点集P、Q计算3×3阶协方差矩阵H:
其中,Hij表示矩阵H的第i行第j列元素;
S23由H构造4×4阶对称矩阵W;
S24计算矩阵W的特征值,提取最大特征值对应的特征向量进而求解旋转矩阵R和平移矩阵t:
t=μQ-R×μP
进而求得
对于步骤S3而言,根据点云数据P={p1,p2,...pi,...ps}与最近点集合Q′={q′1,q′2,..q′i,...q′s}求距离dist,距离dist为每个点3D误差di的集合,ni表示最近点q′i的法向量,误差集合dist表达式如下:
dist={d1,d2,...di,...ds}
di=(pi-q′i)·ni
设定误差下限值distmin的RGB值为(0,0,1),设定误差上限值distmax的RGB值为(1,0,0),根据误差值大小di在区间[distmin,distmax]位置计算其对应的RGB值,生成误差色谱图,如图3所示;
根据获取的误差色谱图,首先根据色谱图的颜色找出具有颜色梯度变换明显的区域,如绿色变成蓝色,绿色变成红色的区域,然后框选该区域作为区域A,例如利用矩形工具框选该区域,以使框选出来的区域A包围该梯度变换明显的区域,也可采用该梯度变换明显区域的最小包围盒作为区域A。
对于步骤S4而言,采用如下方式计算缺陷深度d:
S41确定满足的a,b,c作为估计值即满足上述方程的a,b,c分别作为平面方程中的参数其中,xi,yi,zi为区域A内对应点i的三维坐标,n为区域A内点云的个数,利用估计值建立平面方程
S42然后计算区域A内所有点离平面的距离,将正反向距离最大值相加即为缺陷深度d。
对于步骤S5而言,首先将预判的缺陷区域A转化为二维灰度图像,具体是针对框选区域的色谱图,按照上下偏差将对应点的误差值映射到二维灰度图像的[0,255]区间内,第i(i=1,2…,n)个点的误差di对应的灰度值fi(x,y)为:
其中,f和e分别为上偏差和下偏差,f取缺陷区域A内的最大误差值,e取缺陷区域A内的最小误差值;
采用上式将预判缺陷区域内的所有点均转换为灰度值,如此即实现了将预判的缺陷区域A转化为二维灰度图像,然后进行二维图像的边缘提取。
因为物体的边缘是以图像局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,如灰度值的突变、颜色的突变、纹理结构的突变等等,同时物体的边缘也是不同区域的分界处。图像边缘有幅度和方向两个特性,通常沿着边缘的方向灰度变化平缓,垂直于边缘走向的灰度变化剧烈,可以根据这一特征来提取色谱图中真正的缺陷区域。本发明中二维图像边缘提取使用DOG算子,使用DOG算子的基本思路是先用高斯函数对图像进行滤波,然后对滤波后的图像进行拉普拉斯运算,得到的值等于0的点认为是边界点,具体而言,对求解出来的二维灰度图像中的各点fi(x,y),使用DOG算子为:
其中,σ12为高斯函数的方差参数,x,y为二维图像中第i点的像素点坐标;
DOG运算得到hi(x,y):
hi(x,y)=[DOG(σ12)]×fi(x,y)
如此就提取了与二维灰度图像中各点fi(x,y)对应的点hi(x,y),获得提取后的图像;
对于步骤S5而言,进行区域填充并计算缺陷区域面积s具体包括如下子步骤:
S51对上一步提取的图像中的各点hi(x,y)进行二值化操作得到bi(x,y),使得缺陷边界的像素值为1,其他为0,然后对二值化操作后的图像进行填充,本发明采用现有技术中常规的区域填充方法对二值化图像进行填充,此处仅作简要说明:
S511如图6所示,在提取的图像区域内选择任意一点作为初始填充点,定义为s1
S512按照上下左右的顺序检查与初始填充点s1相邻的四个像素,若像素在图像区域内且未置成1,把该像素作为下一个待填充点,定义为s2,然后将初始填充点s1像素值置1,当然此处可能有多个像素满足要求,例如三个,那就定义为s2、s3、s4
S513重复步骤S512,以遍历图像区域内所有的像素点,结束填充,即按照上下左右的顺序检查与下一个待填充点(即s2)相邻的四个像素,若像素在图像区域内且未置成1,把其作为下一个待填充点,然后将s2置1,此处的下一个待填充点接着步骤S512中待填充点的编号即可,完成s2的填充,接着继续s3的填充,依次类推,直至完成图像区域内所有像素点的填充;
S52计算填充后的图像中像素为1的个数,记为N1,则缺陷区域面积s为:
其中,N为区域A内点云的数量,S为区域A的面积,S=l·w,l为区域A的长,w为区域A的宽。
本发明的方法可利用三维点云匹配的方式获取零件表面缺陷的深度信息,同时利用二维图像识别的方式获取零件表面缺陷的形状和面积,实现三维信息和二维信息的融合,可代替传统的人工识别缺陷的方式,实现零件表面缺陷的自动识别和尺寸信息计算。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,包括如下步骤:
S1利用光栅式面阵扫描仪采集待测零件的表面点云数据;
S2将采集的点云数据与零件设计模型点云数据进行匹配,获取点云数据的最近点集合数据;
S3根据点云数据与最近点集合数据计算3D误差,并根据3D误差生成误差色谱图,然后依据误差色谱图预判出缺陷区域;
S4对预判的缺陷区域进行平面度拟合,以求解出缺陷区域的深度d;
S5将预判的缺陷区域转化为二维灰度图像并进行边缘提取,然后进行区域填充以计算缺陷区域的面积s,以此完成零件表面缺陷的识别与评估。
2.如权利要求1所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S2中点云数据的最近点集合数据采用如下方式获得:
利用采集的点云数据P={p1,p2,...pi,...ps}与零件设计模型点云数据Q={q1,q2,...qa,...ql}进行匹配,求解点云数据坐标系与设计模型坐标系的转换矩阵T;利用转换矩阵T求解q′i=T×pi,然后构建最近点集合Q′={q′1,q′2,...,q′i,...q′s}。
3.如权利要求1所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S3中3D误差采用如下方式获得:
di=(pi-q′i)·ni
其中,di表示采集的点云数据中第i个点的3D误差,i=1,2,...,s,ni表示最近点q′i的法向量。
4.如权利要求1所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S3中依据误差色谱图预判出缺陷区域具体为:根据误差色谱图的颜色获得具有明显颜色梯度变换的区域,并框选出该区域,记为区域A。
5.如权利要求1所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S4中缺陷的深度d采用如下方式获得:
S51确定满足的a,b,c作为估计值其中,xi,yi,zi为区域A内对应点i的三维坐标,并利用估计值建立平面方程
S52然后计算区域A内所有点离平面的距离,将正反向距离最大值相加即为缺陷深度d。
6.如权利要求1所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S5中将预判的缺陷区域转化为二维灰度图像具体为:采用下式将预判缺陷区域内的各点转换为灰度值fi(x,y):
其中,f和e分别为上偏差和下偏差。
7.如权利要求1-6任一项所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S5中采用如下方式进行边缘提取:使用DOG算子对二维灰度图像中的各点进行处理以获得对应的图像点hi(x,y):
其中,σ12为高斯函数的方差参数,x,y为二维灰度图像中对应点的像素点坐标。
8.如权利要求1-7任一项所述的基于三维测量点云的零件表面缺陷识别与评估方法,其特征在于,步骤S5中采用如下方式进行区域填充并计算缺陷区域面积s:
S51对提取的图像进行二值化操作,使图像边界的像素值为1,其他为0,然后对二值化操作后的图像进行填充;
S52计算填充后的图像中像素为1的个数,记为N1,计算缺陷区域面积s:
其中,N为区域A内点云的数量,S为区域A的面积。
CN201811518365.8A 2018-12-12 2018-12-12 一种基于三维测量点云的零件表面缺陷识别与评估方法 Active CN109658398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811518365.8A CN109658398B (zh) 2018-12-12 2018-12-12 一种基于三维测量点云的零件表面缺陷识别与评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811518365.8A CN109658398B (zh) 2018-12-12 2018-12-12 一种基于三维测量点云的零件表面缺陷识别与评估方法

Publications (2)

Publication Number Publication Date
CN109658398A true CN109658398A (zh) 2019-04-19
CN109658398B CN109658398B (zh) 2021-05-18

Family

ID=66113806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811518365.8A Active CN109658398B (zh) 2018-12-12 2018-12-12 一种基于三维测量点云的零件表面缺陷识别与评估方法

Country Status (1)

Country Link
CN (1) CN109658398B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349195A (zh) * 2019-06-25 2019-10-18 杭州汇萃智能科技有限公司 一种基于深度图像的目标物体3d测量参数获取方法、系统和存储介质
CN111666629A (zh) * 2020-05-15 2020-09-15 成都飞机工业(集团)有限责任公司 一种零部件表面缺陷快速检测样板的设计方法
CN111929307A (zh) * 2020-08-07 2020-11-13 上海市建筑科学研究院有限公司 既有钢结构构件锈蚀程度现场无损检测评估方法
CN112734760A (zh) * 2021-03-31 2021-04-30 惠州高视科技有限公司 半导体bump缺陷检测方法、电子设备及存储介质
CN112825192A (zh) * 2019-11-21 2021-05-21 财团法人工业技术研究院 基于机器学习的对象辨识系统及其方法
CN112927204A (zh) * 2021-02-25 2021-06-08 同济大学 一种基于关键渗水点识别的路面渗水性能评估方法
CN113008895A (zh) * 2021-01-29 2021-06-22 广州信邦智能装备股份有限公司 一种基于三维数据的分块拟合缺陷检测方法
CN113223176A (zh) * 2021-05-12 2021-08-06 武汉中仪物联技术股份有限公司 多维度管道特征参数的获取方法和装置
CN114004804A (zh) * 2021-10-29 2022-02-01 上汽大众汽车有限公司 表面质量评价方法、装置和计算机可读介质
CN115953400A (zh) * 2023-03-13 2023-04-11 安格利(成都)仪器设备有限公司 基于三维点云物体表面的腐蚀坑自动检测方法
CN116481460A (zh) * 2023-05-26 2023-07-25 中国矿业大学 一种基于三维重构模型的表观坑洞缺陷尺寸检测方法
CN116645370A (zh) * 2023-07-27 2023-08-25 山东顺发重工有限公司 基于三维点云数据的高温锻件表面缺陷实时检测方法
CN117788476A (zh) * 2024-02-27 2024-03-29 南京邮电大学 一种基于数字孪生技术的工件缺陷检测方法、装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544694A (zh) * 2013-09-22 2014-01-29 上海交通大学 基于高清晰测量灰度图像的零件表面三维形貌评价方法
CN105354850A (zh) * 2015-11-16 2016-02-24 华中科技大学 基于电场性质的复杂曲面零件尺寸三维匹配检测方法
CN106373127A (zh) * 2016-09-14 2017-02-01 东北林业大学 用于木材树种及表面缺陷的激光扫描并行检测方法
CN106952257A (zh) * 2017-03-21 2017-07-14 南京大学 一种基于模板匹配与相似度计算的曲面标签破损缺陷检测方法
CN108090960A (zh) * 2017-12-25 2018-05-29 北京航空航天大学 一种基于几何约束的目标重建方法
CN108319920A (zh) * 2018-02-05 2018-07-24 武汉武大卓越科技有限责任公司 一种基于线扫描三维点云的路面标线检测及参数计算方法
US20180211373A1 (en) * 2017-01-20 2018-07-26 Aquifi, Inc. Systems and methods for defect detection
CN108596873A (zh) * 2018-03-14 2018-09-28 浙江大学山东工业技术研究院 基于高度直方图分割的耐火砖深度缺陷的识别方法
CN108921027A (zh) * 2018-06-01 2018-11-30 杭州荣跃科技有限公司 一种基于激光散斑三维重建的行车障碍物识别方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544694A (zh) * 2013-09-22 2014-01-29 上海交通大学 基于高清晰测量灰度图像的零件表面三维形貌评价方法
CN105354850A (zh) * 2015-11-16 2016-02-24 华中科技大学 基于电场性质的复杂曲面零件尺寸三维匹配检测方法
CN106373127A (zh) * 2016-09-14 2017-02-01 东北林业大学 用于木材树种及表面缺陷的激光扫描并行检测方法
US20180211373A1 (en) * 2017-01-20 2018-07-26 Aquifi, Inc. Systems and methods for defect detection
CN106952257A (zh) * 2017-03-21 2017-07-14 南京大学 一种基于模板匹配与相似度计算的曲面标签破损缺陷检测方法
CN108090960A (zh) * 2017-12-25 2018-05-29 北京航空航天大学 一种基于几何约束的目标重建方法
CN108319920A (zh) * 2018-02-05 2018-07-24 武汉武大卓越科技有限责任公司 一种基于线扫描三维点云的路面标线检测及参数计算方法
CN108596873A (zh) * 2018-03-14 2018-09-28 浙江大学山东工业技术研究院 基于高度直方图分割的耐火砖深度缺陷的识别方法
CN108921027A (zh) * 2018-06-01 2018-11-30 杭州荣跃科技有限公司 一种基于激光散斑三维重建的行车障碍物识别方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IGOR JOVANCEVIC.ET.: "3D Point Cloud Analysis for Detection and Characterization of Defects on Airplane Exterior Surface", 《JOURNAL OF NONDESTRUCTIVE EVALUATION》 *
哈哈KLS: "最小二乘法拟合平面", 《CSDN》 *
李文龙: "复杂曲面零件数据拼合与精密加工技术研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
松子茶: "DOG算子", 《CSDN》 *
郝庆军等: "法兰密封面三维光学检测系统设计", 《机械与电子》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349195A (zh) * 2019-06-25 2019-10-18 杭州汇萃智能科技有限公司 一种基于深度图像的目标物体3d测量参数获取方法、系统和存储介质
CN110349195B (zh) * 2019-06-25 2021-09-03 杭州汇萃智能科技有限公司 一种基于深度图像的目标物体3d测量参数获取方法、系统和存储介质
CN112825192B (zh) * 2019-11-21 2023-10-17 财团法人工业技术研究院 基于机器学习的对象辨识系统及其方法
CN112825192A (zh) * 2019-11-21 2021-05-21 财团法人工业技术研究院 基于机器学习的对象辨识系统及其方法
CN111666629A (zh) * 2020-05-15 2020-09-15 成都飞机工业(集团)有限责任公司 一种零部件表面缺陷快速检测样板的设计方法
CN111929307A (zh) * 2020-08-07 2020-11-13 上海市建筑科学研究院有限公司 既有钢结构构件锈蚀程度现场无损检测评估方法
CN113008895A (zh) * 2021-01-29 2021-06-22 广州信邦智能装备股份有限公司 一种基于三维数据的分块拟合缺陷检测方法
CN112927204A (zh) * 2021-02-25 2021-06-08 同济大学 一种基于关键渗水点识别的路面渗水性能评估方法
CN112927204B (zh) * 2021-02-25 2022-09-20 同济大学 一种基于关键渗水点识别的路面渗水性能评估方法
CN112734760B (zh) * 2021-03-31 2021-08-06 高视科技(苏州)有限公司 半导体bump缺陷检测方法、电子设备及存储介质
CN112734760A (zh) * 2021-03-31 2021-04-30 惠州高视科技有限公司 半导体bump缺陷检测方法、电子设备及存储介质
CN113223176A (zh) * 2021-05-12 2021-08-06 武汉中仪物联技术股份有限公司 多维度管道特征参数的获取方法和装置
CN113223176B (zh) * 2021-05-12 2022-09-20 武汉中仪物联技术股份有限公司 多维度管道特征参数的获取方法和装置
CN114004804A (zh) * 2021-10-29 2022-02-01 上汽大众汽车有限公司 表面质量评价方法、装置和计算机可读介质
CN115953400A (zh) * 2023-03-13 2023-04-11 安格利(成都)仪器设备有限公司 基于三维点云物体表面的腐蚀坑自动检测方法
CN116481460A (zh) * 2023-05-26 2023-07-25 中国矿业大学 一种基于三维重构模型的表观坑洞缺陷尺寸检测方法
CN116481460B (zh) * 2023-05-26 2024-05-07 中国矿业大学 一种基于三维重构模型的表观坑洞缺陷尺寸检测方法
CN116645370A (zh) * 2023-07-27 2023-08-25 山东顺发重工有限公司 基于三维点云数据的高温锻件表面缺陷实时检测方法
CN116645370B (zh) * 2023-07-27 2023-10-10 山东顺发重工有限公司 基于三维点云数据的高温锻件表面缺陷实时检测方法
CN117788476A (zh) * 2024-02-27 2024-03-29 南京邮电大学 一种基于数字孪生技术的工件缺陷检测方法、装置
CN117788476B (zh) * 2024-02-27 2024-05-10 南京邮电大学 一种基于数字孪生技术的工件缺陷检测方法、装置

Also Published As

Publication number Publication date
CN109658398B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN109658398A (zh) 一种基于三维测量点云的零件表面缺陷识别与评估方法
CN107014294B (zh) 一种基于红外图像的接触网几何参数检测方法及系统
CN106651752B (zh) 三维点云数据配准方法及拼接方法
Yang et al. Automated registration of dense terrestrial laser-scanning point clouds using curves
CN108763606A (zh) 一种基于机器视觉的户型图元素自动提取方法与系统
CN111640158B (zh) 基于对应掩模的端到端的摄像头与激光雷达外参标定方法
CN110335234B (zh) 一种基于古文物LiDAR点云的三维变化检测方法
CN104200461B (zh) 基于互信息图像选块和sift特征的遥感图像配准方法
CN104021556A (zh) 一种基于几何结构相似性的异源遥感影像配准方法
CN103136525B (zh) 一种利用广义Hough变换的异型扩展目标高精度定位方法
CN103295239A (zh) 一种基于平面基准影像的激光点云数据的自动配准方法
CN106643555B (zh) 基于结构光三维测量系统的连接件识别方法
CN107687819A (zh) 一种快速高精度的光条中心亚像素提取方法
CN103727930A (zh) 一种基于边缘匹配的激光测距仪与相机相对位姿标定方法
Monisha et al. Classification of malignant melanoma and benign skin lesion by using back propagation neural network and ABCD rule
Liang et al. Automatic registration of terrestrial laser scanning data using precisely located artificial planar targets
CN102446356A (zh) 一种获取均匀分布匹配点的遥感影像并行自适应匹配方法
CN109870106A (zh) 一种基于无人机图片的建筑物体积测量方法
CN108320236A (zh) 一种室内空间测绘数据管理系统
CN105787950A (zh) 一种基于行梯度累加的红外图像海天线检测算法
Li et al. A deep learning-based indoor acceptance system for assessment on flatness and verticality quality of concrete surfaces
CN106529548A (zh) 亚像素级的多尺度Harris角点检测算法
CN117422753A (zh) 一种联合光学和sar图像的高精度场景实时三维重建方法
CN113532424B (zh) 一种获取多维信息的一体化设备与协同测量方法
CN114972628A (zh) 一种基于多光谱激光雷达点云数据的建筑立体提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant