CN1096581A - Component magnetometer correction method and correctable device - Google Patents

Component magnetometer correction method and correctable device Download PDF

Info

Publication number
CN1096581A
CN1096581A CN 93111451 CN93111451A CN1096581A CN 1096581 A CN1096581 A CN 1096581A CN 93111451 CN93111451 CN 93111451 CN 93111451 A CN93111451 A CN 93111451A CN 1096581 A CN1096581 A CN 1096581A
Authority
CN
China
Prior art keywords
data
magnetometer
attitude
orientation
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 93111451
Other languages
Chinese (zh)
Other versions
CN1069406C (en
Inventor
张学孚
陆怡良
张晓辉
张晓枢
张晓华
Original Assignee
张学孚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张学孚 filed Critical 张学孚
Priority to CN 93111451 priority Critical patent/CN1069406C/en
Publication of CN1096581A publication Critical patent/CN1096581A/en
Application granted granted Critical
Publication of CN1069406C publication Critical patent/CN1069406C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

The invention discloses a kind of magnetometer correction method that can accurately revise manufacturing, installation and carrier magnetic interference error, comprise according to the correction formula of 12 constant calculations with according to choosing orientation data that attitude is surveyed wantonly and find the solution the equation of 12 constants.Being suitable on magnetic carrier strapdown installs and not disturbed by its operation, reduction is to the requirement of magnetometer and corollary system, improve flight path magnetic field and orientation attitude measurement accuracy, and can constitute magnetic---inertia orientation attitude and navigational system, realization is from normal moveout correction, the calculating of orientation attitude remaining, elimination accumulation drift error, the substantial magnetic field data storehouse of automatic correction, needn't require its integrity, can be in magnetic anomaly district operate as normal.

Description

Component magnetometer correction method and correctable device
The present invention relates to the component magnetometer that a kind of probe strapdown on carrier installs bearing calibration, use the component magnetometer of this bearing calibration and use the device of this magnetometer, comprise canonical systems such as flight path environmental magnetic field automatic measurement system, magnetic azimuth system (strapdown compass), strapdown deviational survey orientation system, magnetic-inertia orientation attitude system and magnetic-inertial navigation system.
Component magnetometer not only is used for magnetic survey, and is used to measure carrier orientation attitude, but existing component magnetometer service precision is not high, lacks accurate bearing calibration, seriously harms its application on the high-acruracy survey engineering and the carrier that disturbs that is magnetic.For example measure in the operation at the flight path environmental magnetic field, have to its probe is placed on place away from the motion carrier body, as be fixed on the guide rod end and launch satellite outside again, be suspended on the aircraft below, be supported on vehicle or naval vessel top etc., not only complex structure but also influence measuring accuracy and carrier moves; The component magnetometer that the probe strapdown is installed has good moving pedestal serviceability when being used to measure carrier orientation attitude, but can not continue to use the installation bearing calibration of traditional magnetic compass, so, use the strapdown compass of this magnetometer and the service precision of strapdown deviational survey orientation system and often can not meet the demands, in carrier magnetic field when more intense even can't use; The orientation attitude of application inertial sensor and the bearing accuracy of navigational system are relatively poor, use the environmental magnetic field data that higher attitude data of its precision and component magnetometer are measured, according to the computer azimuth angle of coordinate transform formula, be used to carry out alignment of orientation, be present most popular scheme; The orientation attitude data that inertia system provides has the accumulation drift error, and component magnetometer is used to measure the orientation attitude and does not have cumulative errors, just in time can remedy it, constitutes magnetic-inertia system.Home and abroad aeronautical engineering circle or has been developed this novel orientation attitude and navigational system, but because of the service precision of magnetometer can not meet the demands, fails so far formally to use.Other two technical barriers-flight path environmental magnetic field data imperfection of magnetic-inertia orientation attitude and navigational system is inaccurate (for example: the magnetic map that the terrestrial magnetic field data can only rely on earth magnetism monitoring department to provide; obviously apply not need) and during by the magnetic anomaly district orientation attitude data insincere, also be difficult to solve because of the component magnetometer service precision is not high.
The purpose of this invention is to provide the precision correcting method of component magnetometer and can thoroughly revise the high precision component magnetometer of its foozle, alignment error and carrier magnetic interference error and use the various systems of this magnetometer, comprise magnetic-inertia orientation attitude and the navigational system that provides a kind of and can accurately proofread and correct, improve automatically flight path environmental magnetic field database automatically and eliminate the influence of magnetic anomaly district.
In order to achieve the above object, the precision correcting method of component magnetometer of the present invention comprises:
A) be installed in component magnetometer on the carrier and place and proofread and correct ground, change the orientation attitude of carrier, write down each stack orientations attitude data and corresponding component magnetometer measured data;
B) according to the environmental magnetic field data of proofreading and correct ground and each stack orientations attitude data, use the coordinate transform formula, calculate the component magnetometer corresponding and should survey the environmental magnetic field component data with each stack orientations attitude data;
C) component magnetometer of each stack orientations attitude correspondence is surveyed three-dimensional data H Mx, H My, H McWith should survey three-dimensional data H x, H y, H zSubstitution correction constant basic calculating formula
f xxH x+f xyH y+f xzH z+F x=H mx
f yxH x+f yyH y+f yzH x+F y=H my
f zxH z+f xyH y+f zzH z+F z=H mz
Obtain respectively to revise constant f Xx, f Xy, f Xz, F xOr f Yx, f Yy, f Yz, F yOr f Zx, f Zy, f Zz, F zEquation for unknown number;
D) according to the above-mentioned solving simultaneous equation correction constant corresponding with four groups or more stack orientations attitudes;
When the simultaneous equations number surpassed four, by combination principle, the relevant constant of revising of optional earlier four solving simultaneous equations asked each to revise the assembly average of separating of all combinations of constant again, uses for corrected Calculation;
When carrier inconvenience changes orientation attitude and magnetometer precision and can meet the demands, given f Xx=f Yy=f Zz=1, f Xy=f Xz=f Yz=f Zx=f Xy=0, according to the above-mentioned Equation for Calculating correction constant F of any stack orientations attitude correspondence x, F y, F z, or under many stack orientations attitude, determine F respectively x, F y, F z, ask its assembly average again;
E) according to calibrated definite correction constant, use basic correction formula
Figure 931114519_IMG4
Calculate component magnetometer and should survey the three-dimensional data H of local environment magnetic field intensity x, H y, H z;
When institute's school magnetic strength is counted the three-component magnetometer, the transformation for mula of available above-mentioned basic correction formula
Figure 931114519_IMG5
Directly find the solution H z, H y, H zOr be used to calculate other data;
When institute's school magnetic strength is counted two components or simple component magnetometer, with the discrete formula of above-mentioned basic correction formula
f xxH x+f xyH y+f xzH z=H mx-F x
f yxH x+f yyH y+f yzH z=H my-F y
f zxH x+f zyH y+f zzH z=H mz-F s
In the formula relevant and one or two with this magnetometer measured data calculate H according to local environment magnetic field data and carrier orientation attitude data xAnd/or H yAnd/or H zThe coordinate transform formula, simultaneous solution H xAnd/or H yAnd/or H z
When the magnetometer precision can meet the demands, from above-mentioned discrete formula deletion its do not survey the component correspondence should survey component terms, directly find the solution.
Use the component magnetometer of above-mentioned bearing calibration and comprise that the device of this magnetometer is equipped with after sampling apparatus and the computing machine, just can revise the magnetometer measured data automatically.This computing machine has the specific address of storage magnetometer correction constant, this specific address can be saved in stored data before the next calibration modifications always, after a, b, c, d proofread and correct and calculate as stated above at every turn, deposit the specific address of computing machine in or revise the data that deposit in before this revising constant; This computing machine also is provided with the calculation procedure of the described magnetometer correction formula of said method e.
The bearing calibration of component magnetometer of the present invention, the advantage of using the magnetometer of this bearing calibration and using the device of this magnetometer are: (1) can thoroughly revise foozle, alignment error and the carrier magnetic interference error of magnetometer; (2) manufacturing and installation accuracy requirement have been reduced to magnetometer; (3) timing only needs arbitrarily to change the orientation attitude of carrier, and automatically calibrating; (4) owing to realized high-acruracy survey and allowed carrier to have, enlarged range of application than ferromagnetism; (5) owing to improved the magnetometer service precision, can constitute magnetic-inertia orientation attitude and navigational system, realize the calculating of orientation attitude weighting remaining, eliminate the accumulation drift error, reduce the accuracy requirement of inertial sensor and inertial navigation system or obtain higher precision, can under the coarse situation of environmental magnetic field database imperfection, begin to come into operation and the energy self-perfection, not influence performance when entering the magnetic anomaly district.
Be embodiment with magnetic air-inertial navigation system below, the present invention is described in further detail.
Fig. 1 is the operation program block diagram that magnetic-inertial navigation system navigational computer is set up.
This system is made of three-component magnetometer, inertial navigation system and mode selector; The sampling apparatus of inertial navigation system is held concurrently the magnetometer measured data is carried out synchronized sampling, and navigational computer adds magnetometer correction constant calculations program, alignment of orientation program, orientation attitude weighting remaining calculation procedure, pure inertia work branch state computation program, can be saved to correction next time, the magnetometer correction constant specific address of revising and geomagnetic field intensity at geographic coordinate system (right-handed system) three direction of principal axis component H Xo, H Yo, H ZoThe magnetic map database.
Mode selector is provided with " correction " and two status commands of " RUN "; Above-mentioned magnetometer correction constant calculations program is carried out in the instruction of the direct receive status selector switch of navigational computer, correcting state, and running status is carried out above-mentioned orientation attitude weighting remaining calculation procedure or pure inertia work branch state computation program.
Three sensitive axes of three-component magnetometer probe are aimed at aircraft axes (right-handed system) three direction of principal axis and are installed.
Aircraft true bearing ψ, roll γ and the pitching θ of native system definition meet following regulation: be ψ=γ=θ=0 when aircraft axes overlap with geographic coordinate system, aircraft orientation attitude thus turns over ψ around self vertical pivot, turn over γ around self longitudinal axis again, turn over θ around self transverse axis at last, arrive real-time orientation attitude.
The principle formula that native system is suitable for is as follows:
According to H Xo, H Yo, H ZoCalculate the three-component magnetometer and should survey data H x, H y, H zFormula: use the coordinate transform formula,
Figure 931114519_IMG6
The basic correction formula of strapdown three-component magnetometer:
Figure 931114519_IMG7
H wherein Mx, H My, H Mz-three-component magnetometer measured data;
F x, F y, F z, f Xx, f Xy, f Xz, f Yx, f Yy, f Yz, f Zx, f Zy, f Zz-correction constant.
Revise the constant basic calculating formula: according to formula (1), (2),
Figure 931114519_IMG8
∴f xx[(H xocosψ+H yosinψ)cosθ-(H xosinψ-H yocosψ)sinθsinγ-H zosinθcosγ]+
+f xy[-(H xosinψ-H yocosψ)cosγ+H zosinγ]+
+f xz[(H xocosψ+H yosinψ)sinθ+(H xosinψ-H yocosψ)cosθsinγ+H zocosθcosγ]+
+F x=H mx(4)
f yx[(H xocosψ+H yosinψ)cosθ-(H xosinψ-H yocosψ)sinθsinγ-H zosinθcosγ]+
+f yy[-(H xosinψ-H yocosψ)cosγ+H zosinγ]+
+f yz[(H xocosψ+H yosinψ)sinθ+(H xosinψ-H yocosψ)cosθsinγ+H zocosθcosγ]+
+F y=H my(5)
f zx[(H xocosψ+H yosinψ)cosθ-(H xosinψ-H yocosψ)sinθsinγ-H zosinθcosγ]+
+f zy[-(H zosinψ-H yocosψ)cosγ+H zosinγ]+
+f zz[(H xocosψ+H yosinψ)sinθ+(H xosinψ-H yocosψ)cosθsinγ+H zocosθcosγ]+
+F z=H mz(6)
The magnetometer correction formula: according to formula (2),
Figure 931114519_IMG9
According to H x, H y, H z, H Xo, H Yo, H ZoCalculate true bearing ψ M, roll γ M, pitching θ MFormula: use the coordinate transform formula,
ψ M = t g -1 ( - H X s i nθ + H z c o s θ ) s i n γ - H y c o s γ H X c o s θ + H Z s i n θ + t g -1 H y o H Z O ( 8 )
γ M = t g -1 H X s i nθ - H z c o s θ H y + t g -1 H z o - H xO s i n ψ + H y o c o s ψ ( 9 )
θ M = t g -1 - H X H X + t g -1 H x o cos ψ + H y o s i n ψ (H x o s i nψ - H y o cos ψ )s i n γ + H z o c o s γ ( 10 )
According to H x, H y, H z, ψ, γ, θ calculate H Xo, H Yo, H ZoFormula: use the coordinate transform formula,
Figure 931114519_IMG11
∴H xo=H x(cosθcosψ-sinθsinγsinψ)-H ycosγsinψ+H z(sinθcosψ+cosθsinγsinψ) (12)
H yo=H x(cosθsinψ+sinθsinγcosψ)+H ycosγcosψ+H z(sinθsinψ-cosθsinγ-cosθsinγcosψ) (13)
H zo=-H xsinθcosγ+H ysinγ+H zcosθcosγ (14)
Correcting measuring calculates the step of magnetometer correction constant:
1) aircraft is placed correction ground;
2) start on magnetic-inertial navigation system and the aircraft all in working order the magnetic influence be different from machinery, power, the electrical equipment of stationary state;
3) rely on terrestrial reference or testing meter and instrument to finish the accurate aligning or the correction of inertial navigation system orientation attitude;
4) aircraft is when proofreading and correct ground or lift-off change orientation attitude, and the operation state selector switch makes navigational computer change correcting state over to, carries out the calculation procedure of following magnetometer correction constant.
The calculation procedure of magnetometer correction constant: the true bearing ψ that calculates gained according to inertial navigation system N, roll γ N, pitching θ N, synchronously sampled data H Mx, H My, H MzCorrection ground H with storage Xo, H Yo, H Zo, by calculating shown in Figure 1, this program comprises:
1) the computed information H that will at every turn sample Mx, H My, H Mz, ψ N, γ N, θ NDeposit specified address in;
2) by combination principle, with optional four groups sampling computational data H Mx, H My, H Mz, ψ N, γ N, θ NAnd H Xo, H Yo, H ZoDifference substitution formula (4), (5) and (6) are with ψ N, γ N, θ NReplace wherein ψ, γ, θ respectively, respectively simultaneous solution correction constant; This program also can be divided into for two steps: first application formula (1) is calculated magnetometer should survey data H x, H y, H z; Substitution formula again (2) simultaneous solution;
3) ask each to revise the assembly average of separating of all combinations of constant, deposit its specific address in;
4) calculating finishes, and navigational computer changes running status automatically over to.
Start working procedure:
1) attitude initial alignment: continue to use original method of inertial navigation system and program;
2) orientation initial alignment: carry out following alignment of orientation program;
3) normal operation: carry out following orientation attitude weighting remaining calculation procedure or pure inertia work and divide the state computation program;
4) navigator fix calculates: continue to use original method of inertial navigation system and program.
Alignment of orientation program: calculate gained and attitude data γ through aiming at according to inertial navigation system No, θ No, synchronously sampled data H Mx, H My, H Mz, the storage H Xo, H YoWith 12 correction constants, by calculating shown in Figure 1.This program comprises:
1) according to γ No, θ No, H Mx, H My, H Mz, H Xo, H Yo, application formula (7) and (8) are with γ No, θ NoReplace wherein γ, θ respectively, calculate ψ MoProgram;
2) according to ψ Mo, even the program that inertial navigation system is carried out alignment of orientation is its true bearing ψ through aiming at NoMo
Orientation attitude weighting remaining calculation procedure: navigational computer is carried out before the navigator fix calculation procedure, inserts weighting remaining computer azimuth attitude program.Calculate the ψ of gained according to inertial navigation system N, γ N, θ N, synchronously sampled data H Mx, H My, H Mz, the storage local H Xo, H Yo, H ZoWith 12 correction constants, by calculating shown in Figure 1.This program comprises:
1) calculates gained ψ according to this (the 1st time) of inertial navigation system sampling Ni, γ Ni, θ NiBefore this (the i time) calculate its accumulation drift error correction of gained △ ψ Ni, △ γ Ni, △ θ Ni,, calculate the orientation attitude data after deduction is accumulated drift error according to following formula
ψ′ Ni=ψ Ni+△ψ Ni(15)
γ′ Ni=γ Ni+△γ Ni(16)
θ′ Ni=θ Ni+△θ Ni(17)
2) according to H Mx, H My, H MzWith 12 correction constants, application formula (7) is calculated H x, H y, H z;
3) according to H x, H y, H z, H Xo, H Yo, H Zo, use formula (8), (9) and (10) respectively, with ψ ' Ni, γ ' Ni, θ ' NiReplace wherein ψ, γ, θ respectively, by γ ' Ni, θ ' NiCalculate ψ ' Ni, by θ ' Ni, ψ ' NiCalculate γ ' Ni, by ψ ' Ni, γ ' NiCalculate θ Mi;
4) differentiate ψ Mi, γ Mi, θ MiWhether correct, if
︱ψ Mi-ψ′ Ni|>△ψ Mm(18)
Or | γ Mi-γ ' Ni|>△ γ Mm(19)
Or | θ Mi-θ ' Ni|>△ θ Mm(20)
△ ψ wherein Mm, △ γ Mm, △ θ MmThe H of-storage Xo, H Yo, H ZoThe inaccurate ψ that causes M, γ M, θ MError then changes pure inertia work over to and divides state, otherwise continues next step computing;
5) find the solution orientation attitude weighting remaining computational data according to following formula
ψ′ i=a ψψ′ Ni+b ψψ Mi(21)
γ′ i=a γγ′ Ni+b γγ Mi(22)
θ′ i=a θθ′ Ni+b θθ Mi(23)
A wherein ψ, b ψ, a γ, b γ, a θ, b θ-according to ψ MWith ψ ' N, γ MWith γ ' N, θ MWith θ ' NPrecision height and decide, and can according to move condition of work and working time section become, but should satisfy a ψ+ b ψ=1, a γ+ b γ=1, a θ+ b θ=1
Calculate gained ψ ' i, γ ' i, θ ' iFor the usefulness that shows, controls and calculate navigation positioning data;
6), calculate inertial navigation system and accumulate the drift error correction in real time according to following formula
△ψ Ni=ψ′ iNi(24)
△γ Ni=γ′ iNi(25)
△θ Ni=θ′ iNi(26)
Wherein the 1st sampled data is that inertial navigation system is finished the later sampled data of orientation attitude aligning, therefore given accumulation drift error △ ψ before this No=△ γ No=△ θ No=0.
Calculate gained △ ψ Ni, △ γ Ni, △ θ NiUsefulness for calculating next time.
Pure inertia work divides the state computation program: navigational computer is carried out and is calculated ψ ', γ ', θ ' and perfect, correction H Xo, H Yo, H ZoProgram.By shown in Figure 1, calculate the ψ of gained according to inertial navigation system N, γ N, θ N(the j time) calculates its accumulation drift error correction of gained △ ψ for the last time before this N1, △ γ N1, △ θ N1Calculate ψ ', γ ', θ '; According to synchronized sampling computed information H x, H y, H z, ψ ', γ ', θ ', calculate H Zo, H Yo, H ZooThis program computation sequence is as follows:
1) according to ψ Ni, γ Ni, θ Ni, △ ψ Ni, △ γ Ni, △ θ Ni,, directly calculate according to following formula
ψ′ i=ψ Ni+△ψ Ni(27)
γ′ i=γ Ni+△γ Ni(28)
θ′ i=θ Ni+△θ Ni(29)
2) according to H x, H y, H z, ψ ' i, γ ' i, θ ' i, use formula (12), (13) and (14) respectively, with ψ ' i, γ ' i, θ ' iReplace wherein ψ, γ, θ respectively, calculate H Xo, H Yo, H Zo;
3) with H Xo, H Yo, H ZoThe real-time sync bit data of aircraft according to inertial navigation system provides deposit the address of relevant position, geomagnetic data storehouse in, or revise wherein data.

Claims (8)

1, a kind of bearing calibration of the probe component magnetometer that strapdown is installed on carrier, it is characterized in that: this bearing calibration comprises
A) be installed in component magnetometer on the carrier and place and proofread and correct ground, change the orientation attitude of carrier, write down each stack orientations attitude data and corresponding component magnetometer measured data;
B) according to the environmental magnetic field data of proofreading and correct ground and each stack orientations attitude data, use the coordinate transform formula, calculate the component magnetometer corresponding and should survey the environmental magnetic field component data with each stack orientations attitude data;
C) component magnetometer of each stack orientations attitude correspondence is surveyed three-dimensional data H Mx, H My, H MzWith should survey three-dimensional data H x, H y, H zSubstitution correction constant basic calculating formula
f xxH x+f xyH y+f xxH z+F x=H mx
f yxH x+f yyH y+f yzH z+F y=H my
f xxH z+f zyH y+f zzH z+F z=H mz
Obtain respectively to revise constant f Xx, f Xy, f Xz, F xOr f Yz, f Yy, f Yz, F yOr f Xx, f Xy, f Zz, F zEquation for unknown number;
D) according to the above-mentioned solving simultaneous equation correction constant corresponding with four groups or more stack orientations attitudes; When the simultaneous equations number surpassed four, by combination principle, the relevant constant of revising of optional earlier four solving simultaneous equations asked each to revise the assembly average of separating of all combinations of constant again, uses for corrected Calculation;
When carrier inconvenience changes orientation attitude and magnetometer precision and can meet the demands, given f Xx=f Yy=f Zz=1, f Xy=f Xz=f Yx=f Yz=f Zx=f Zy=0, according to the above-mentioned Equation for Calculating correction constant F of any stack orientations attitude correspondence x, F y, F z, or under many stack orientations attitude, determine F respectively x, F y, F z, ask its assembly average again;
E) according to calibrated definite correction constant, use basic correction formula
Figure 931114519_IMG2
Calculate component magnetometer and should survey the three-dimensional data H of real time environment magnetic field intensity x, H y, H z
When institute's school magnetic strength is counted the three-component magnetometer, with the transformation for mula of above-mentioned basic correction formula
Figure 931114519_IMG3
Directly find the solution H x, H y, H zOr be used to calculate other data;
When institute's school magnetic strength is counted two components or a component magnetometer, with the discrete formula of above-mentioned basic correction formula
f xxH x+f xyH z=H mx-F x
f yzH x+f yyH y+f yzH z=H my-F y
f zxH x+f zyH y+f zzH z=H mz-F z
In the formula relevant and one or two with this magnetometer measured data calculate H according to local environment magnetic field data and carrier orientation attitude data xAnd/or H yAnd/or H zThe coordinate transform formula, simultaneous solution H zAnd/or H yAnd/or H x
When the magnetometer precision can meet the demands, from above-mentioned discrete formula deletion its do not survey the component correspondence should survey component terms, directly find the solution.
2, application rights requires the component magnetometer of 1 described bearing calibration and comprises the device of this magnetometer, this magnetic strength is taken into account this device and is also comprised sampling apparatus and computing machine, it is characterized in that: this computing machine has the specific address of storage magnetometer correction constant, this specific address can be saved in stored data before the next calibration modifications always, after each described method of a, b, c, d of pressing in the claim 1 is proofreaied and correct and calculated, deposit the specific address of computing machine in or revise the data that deposit in before this revising constant; This computing machine also is provided with the calculation procedure of the described magnetometer correction formula of e in the claim 1.
3, device according to claim 2, this device also comprises inertial navigation system, pen recorder and computing machine, constitutes flight path environmental magnetic field automatic measurement system, it is characterized in that: the probe of this magnetometer directly is fixed on the carrier; This sampling apparatus is gathered the carrier orientation posture position data of magnetometer measured data and inertial navigation system calculating gained, this computing machine also is provided with the calculation procedure of coordinate transform formula, this program should be surveyed data computation environmental magnetic field data according to carrier orientation attitude and magnetometer, and deposits pen recorder together in the carrier real time position data.
4, device according to claim 2, one jiao, two jiaos or the inertial sensor of triangle data that provides in carrier position angle and attitude two angular datas also is provided this device, constitute magnetic-inertia orientation attitude system, it is characterized in that: except that two jiaos of the attitudes that provides according to inertial sensor are calculated the orientation attitude system of magnetic azimuth, this computer installation flight path environmental magnetic field database; This computing machine also is provided with the calculation procedure of coordinate transform formula, and this program is calculated remaining angular data according to a jiao of should survey that data and inertial sensor provide of local environment magnetic field data, the magnetometer of storage or two angular datas.
5, device according to claim 2, this device also comprises inertial navigation system, all sampling computing functions are finished by the related device of inertial navigation system, constitute magnetic-inertial navigation system, it is characterized in that: synchronous acquisition magnetometer data when the data sampling device of inertial navigation system is gathered its data; And the calculation procedure of flight path environmental magnetic field database and coordinate transform formula is set in computing machine; this program should be surveyed the attitude of carrier data computation bearing data that data and inertial navigation system are calculated gained according to local environment magnetic field data, the magnetometer of storage, as inertial navigation system alignment of orientation data.
6, flight path environmental magnetic field automatic measurement system according to claim 3, its computing machine also store proofreaies and correct ground environmental magnetic field data; Or magnetic according to claim 4-inertia orientation attitude system, whole three angular datas of its inertial sensor provider pose attitude; Or magnetic-inertial navigation system according to claim 5, it is characterized in that: this system also comprises mode selector, and this selector switch is provided with proofreaies and correct and moves two status commands, and the direct instruction computing machine is carried out correcting state program or running status program; Computing machine is also set up by the b in the claim 1, c, the described magnetometer correction of d constant calculations program, specializes in realization and uses from the correcting state of normal moveout correction.
7, orientation according to claim 4 attitude system, its orientation attitude sensor provides whole three angular datas; Or magnetic-inertial navigation system according to claim 5, it is characterized in that: computing machine also is arranged on to showing, control and calculating navigation positioning data provider pose attitude data and carry out the follow procedure that attitude weighting remaining in orientation is calculated before:
A) provide according to the orientation attitude sensor or inertial navigation system is calculated the real-time orientation attitude data of gained and is calculated its accumulation drift error correction of gained, the program of the orientation attitude data after the calculating deduction accumulation drift error before this;
B) should survey the local environment magnetic field data of data, storage and two angular datas in the orientation attitude data after the above-mentioned deduction accumulation drift error, applying a magnetic field strength component coordinate transform formula, the program of calculating third angle data according to magnetometer;
C) to after the above-mentioned deduction accumulation drift error and be weighted the remaining Program for Calculation according to the orientation attitude data that magnetic field data calculates gained, the weighting ratio is decided according to their precision height, and can according to the operation condition of work and working time section become, with the weighting remaining calculate gained orientation attitude data for show, control and calculate the usefulness of navigation positioning data;
D) the weighting remaining computational data with program c gained is as the criterion, and that the computer azimuth attitude sensor provides or inertial navigation system is calculated the program of real-time accumulation drift error correction of the real-time orientation attitude data of gained, and this correction is used for next computing.
8, orientation attitude system according to claim 7 or magnetic-inertial navigation system, it is characterized in that: computing machine is also inserting follow procedure between claim 7 a sequencer program b and the c: relatively after the deduction accumulation drift error and according to the orientation attitude data of magnetic patch data computation gained, when wherein the difference of arbitrary angular data surpasses given permissible error, change follow procedure a and b over to, otherwise still enforcement of rights requires 7 described program c and d;
Computing machine is also set up follow procedure:
A) that provide from the orientation attitude sensor or inertial navigation system is calculated the program that deduction the real-time orientation attitude data of gained calculates its accumulation drift error of gained before this for the last time, with by the orientation attitude data after the deduction accumulation drift error of this program gained for show, the program of the usefulness of control and calculating navigation positioning data;
B) should survey data according to the magnetometer of orientation attitude data after the deduction accumulation drift error of program a gained and synchronized sampling calculating gained, applying a magnetic field strength component coordinate transform formula, the program of calculating local environment magnetic field data;
To deposit the address of environmental magnetic field database relevant position by the local environment magnetic field data of this program gained in, or revise wherein data.
CN 93111451 1993-06-16 1993-06-16 Component magnetometer correction method and correctable device Expired - Fee Related CN1069406C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 93111451 CN1069406C (en) 1993-06-16 1993-06-16 Component magnetometer correction method and correctable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 93111451 CN1069406C (en) 1993-06-16 1993-06-16 Component magnetometer correction method and correctable device

Publications (2)

Publication Number Publication Date
CN1096581A true CN1096581A (en) 1994-12-21
CN1069406C CN1069406C (en) 2001-08-08

Family

ID=4989234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 93111451 Expired - Fee Related CN1069406C (en) 1993-06-16 1993-06-16 Component magnetometer correction method and correctable device

Country Status (1)

Country Link
CN (1) CN1069406C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252689A (en) * 2010-05-19 2011-11-23 北京国浩传感器技术研究院(普通合伙) Electronic compass calibration method based on magnetic sensor
CN103454607A (en) * 2012-05-29 2013-12-18 上海汽车集团股份有限公司 Method of correcting signals of magnetic field sensor and vehicle navigation system based on method
CN103954286A (en) * 2014-04-24 2014-07-30 南京航空航天大学 On-orbit iterative calibration method for multi-error model of microsatellite magnetic sensor
CN104678340A (en) * 2015-02-27 2015-06-03 清华大学 Measuring error correction method and system for magnetometer
CN104360380B (en) * 2014-10-21 2017-02-15 中国人民解放军63653部队 Geophysical characteristic based attitude correction method for deep-hole mounting of sensor
CN106872794A (en) * 2017-01-09 2017-06-20 佳禾智能科技股份有限公司 The signal strength test system and method for testing of a kind of radio communication product
CN108318845A (en) * 2018-01-29 2018-07-24 深圳清华大学研究院 Magnetometer error calibration method and device, magnetometry device
CN110044321A (en) * 2019-03-22 2019-07-23 北京理工大学 The method for resolving attitude of flight vehicle using Geomagnetism Information and angular rate gyroscope
CN111505540A (en) * 2020-05-11 2020-08-07 电子科技大学 Method for calibrating spatial position of triaxial vector atom magnetometer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003683A1 (en) * 2003-07-03 2005-01-13 Asahi Kasei Emd Corporation Azimuth measurement device and azimuth measurement method
CN101251584B (en) * 2008-04-09 2010-09-29 武汉大学 Three-axial magnetometer correcting method and three-axial magnetic gradient correcting method
CN102116852A (en) * 2010-12-29 2011-07-06 中国船舶重工集团公司第七一○研究所 Method for measuring orthogonal degree of three-axis magnetic field coils through magnetic fields

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252689A (en) * 2010-05-19 2011-11-23 北京国浩传感器技术研究院(普通合伙) Electronic compass calibration method based on magnetic sensor
CN103454607A (en) * 2012-05-29 2013-12-18 上海汽车集团股份有限公司 Method of correcting signals of magnetic field sensor and vehicle navigation system based on method
CN103454607B (en) * 2012-05-29 2016-02-17 上海汽车集团股份有限公司 The bearing calibration of magnetic field sensor signal and the Vehicular navigation system based on the method
CN103954286A (en) * 2014-04-24 2014-07-30 南京航空航天大学 On-orbit iterative calibration method for multi-error model of microsatellite magnetic sensor
CN103954286B (en) * 2014-04-24 2016-08-24 南京航空航天大学 Microsatellite Magnetic Sensor multiple error model iteration scaling method in-orbit
CN104360380B (en) * 2014-10-21 2017-02-15 中国人民解放军63653部队 Geophysical characteristic based attitude correction method for deep-hole mounting of sensor
CN104678340A (en) * 2015-02-27 2015-06-03 清华大学 Measuring error correction method and system for magnetometer
CN104678340B (en) * 2015-02-27 2017-09-22 清华大学 A kind of magnetometer survey error correction method and system
CN106872794A (en) * 2017-01-09 2017-06-20 佳禾智能科技股份有限公司 The signal strength test system and method for testing of a kind of radio communication product
CN108318845A (en) * 2018-01-29 2018-07-24 深圳清华大学研究院 Magnetometer error calibration method and device, magnetometry device
CN110044321A (en) * 2019-03-22 2019-07-23 北京理工大学 The method for resolving attitude of flight vehicle using Geomagnetism Information and angular rate gyroscope
CN111505540A (en) * 2020-05-11 2020-08-07 电子科技大学 Method for calibrating spatial position of triaxial vector atom magnetometer

Also Published As

Publication number Publication date
CN1069406C (en) 2001-08-08

Similar Documents

Publication Publication Date Title
CN1314945C (en) Aerial in-flight alignment method for SINS/GPS combined navigation system
CN1096581A (en) Component magnetometer correction method and correctable device
CN110926468B (en) Communication-in-motion antenna multi-platform navigation attitude determination method based on transfer alignment
CN108981754B (en) Method for zero alignment of mounting angles of photoelectric platform and carrier
CN110940354B (en) Calibration method for strapdown inertial navigation installation attitude of photoelectric tracking system
CN110006460B (en) Relative calibration method and system for star sensor and magnetometer
US5177686A (en) Method for determining the position of a space vehicle by means of star acquisition and star identification
CN1135265A (en) Assured-integrity Monitored-extrapotion navigation apparatus
CN109883444B (en) Attitude angle coupling error compensation method and device and electronic equipment
CN108802788A (en) A kind of determination method, apparatus, equipment and the storage medium of course deviation
CN105891821A (en) Automatic tracking method of airborne downward-looking measurement target
CN104459728B (en) A kind of magnetic declination calibration steps positioned based on GNSS
CN111381256A (en) Method and system for calculating phase center offset error of active remote sensing satellite antenna
CN108845345A (en) The method for surveying appearance using the double antenna orientation of GNSS measuring principle
CN109708667B (en) Double-dynamic target tracking and guiding method based on laser gyro
CN110243364A (en) Unmanned plane course determines method, apparatus, unmanned plane and storage medium
CN1303431C (en) Airborne synthetic aperture radar surveying area positioning system
CN1204416C (en) GPS receiving device
CN110988393A (en) Unmanned aerial vehicle wind speed and direction measurement and correction algorithm based on ultrasonic anemoscope
CN109670204B (en) Carrier rocket video image interpretation error correction method
CN111504301A (en) Positioning method, device and system based on magnetic field characteristic vector
CN107228683B (en) Slow-variation error real-time on-orbit correction method among multiple star sensors
CN110954080A (en) Magnetic compass calibration method for eliminating carrier magnetic interference
EP0901609B8 (en) Method and device for determining correction parameters
CN112484712B (en) Double-gyroscope north-seeking attitude reference instrument and north-seeking method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee