CN109636015B - 一种梯级水电虚拟抽蓄电站调度方法 - Google Patents

一种梯级水电虚拟抽蓄电站调度方法 Download PDF

Info

Publication number
CN109636015B
CN109636015B CN201811433527.8A CN201811433527A CN109636015B CN 109636015 B CN109636015 B CN 109636015B CN 201811433527 A CN201811433527 A CN 201811433527A CN 109636015 B CN109636015 B CN 109636015B
Authority
CN
China
Prior art keywords
hydropower
station
water
power
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811433527.8A
Other languages
English (en)
Other versions
CN109636015A (zh
Inventor
拜润卿
史玉杰
郝如海
何欣
陈仕彬
刘文飞
张海龙
邓长虹
杨谨诚
张思颖
药炜
张爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE GRID GASU ELECTRIC POWER RESEARCH INSTITUTE
Wuhan University WHU
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Taiyuan Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Original Assignee
STATE GRID GASU ELECTRIC POWER RESEARCH INSTITUTE
Wuhan University WHU
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Taiyuan Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE GRID GASU ELECTRIC POWER RESEARCH INSTITUTE, Wuhan University WHU, Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd, Taiyuan Power Supply Co of State Grid Shanxi Electric Power Co Ltd filed Critical STATE GRID GASU ELECTRIC POWER RESEARCH INSTITUTE
Priority to CN201811433527.8A priority Critical patent/CN109636015B/zh
Publication of CN109636015A publication Critical patent/CN109636015A/zh
Application granted granted Critical
Publication of CN109636015B publication Critical patent/CN109636015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种梯级水电虚拟抽蓄电站调度方法,本发明通过构建梯级水电站的发电模型和蓄水模型,以实际与目标调峰功率偏差最小和梯级水电耗水量最小为调度目标,并构建凸优化问题进行求解,制定调度计划,实现流域梯级水电的虚拟抽水蓄能电站调度,充分挖掘梯级水电站的调峰潜力,有效解决新能源消纳引起的系统调峰能力不足问题。

Description

一种梯级水电虚拟抽蓄电站调度方法
技术领域
本发明属于水电调度领域,具体涉及一种梯级水电虚拟抽蓄电站调度方法。
背景技术
现代电力系统的主要发展趋势是从原来的化石能源发电逐渐转向新能源发电,截至2017年底,我国风电、太阳能发电装机容量分别达到164GW和130GW,均位居世界第一,占全国总装机容量的16.5%,局部地区渗透率甚至超过50%。然而,与水力发电、火力发电等常规发电方式相比,风电、光伏等新能源发电最根本的不同点在于其有功出力的随机性、间歇性和半可控性。在新能源发展过程中,随着新能源在电网中的渗透率逐步提高,电网对新能源的消纳能力面临严重挑战。提高电网调峰能力,促进电网对新能源的消纳已刻不容缓。抽水蓄能电站作为一种优质的调峰电源,因其启动迅速、灵活可靠、绿色无污染的优势,在现代电网中的应用越来越广泛。但投资成本巨大且受地区水力资源限制严重等问题,给新抽水蓄能电站的建设带来困难。
我国水电能源的多年持续开发,水电站,特别梯级水电运行技术发展成熟。梯级水电日前联合调度是一类大规模、强耦合、多约束、动态的非线性优化问题,许多学者在梯级水电模型建立和优化运行上进行了大量的探索,并取得了丰厚的成果;作为联合利益主力,不再单独追求单个电站发电量最大,而是综合考虑整个梯级的发电效益和容量效益。但是,在水电能源优化运行领域的研究中,侧重探究梯级水电的物理过程,从电网侧挖掘梯级水电调峰潜力方面,相关文献较少。
发明内容
为了解决上述的技术问题,本发明提出了一种梯级水电“虚拟抽蓄电站”调度方法。
本发明所采用的技术方案是:一种梯级水电“虚拟抽蓄电站”调度方法,用于对梯级水电系统进行优化调度,所述梯级水电系统包括至少两个水电站,且至少一个为年调节水电站。
所述的梯级水电“虚拟抽蓄电站”调度方法是根据挖掘梯级水电站的调峰潜力为原则,在梯级水电站联合调度系统中制定电力系统短期调度计划时,考虑梯级水电各项约束的情况下,以实际与目标调峰功率偏差最小和梯级水电耗水量最小为调度目标,进行优化调度。
具体包括:
步骤1、根据梯级水电站参数和来水数据等,构建梯级水电站的水利发电模型;
步骤2、建立梯级水电调度周期内“虚拟抽蓄电站”模型;
步骤3,根据步骤1和步骤2建立的模型,以实际与目标调峰功率偏差最小和梯级水电耗水量最小为调度目标,构建梯级水电“虚拟抽蓄电站”调度目标函数进行求解优化调度。
在上述的一种梯级水电虚拟抽蓄电站调度方法,构建梯级水电站的水利发电模型基于以下定义:
定义一、各水电站约束为:
水位高度约束
Vj,min≤Vj,t≤Vj,max
式中,Vj,min和Vj,max分别表示第j座水电站的最小和最大库容;
下泄流量约束
Qj,min≤qj,t+sj,t≤Qj,max
式中,Qj,min和Qj,max分别表示第j座水电站的最小和最大下泄流量;
水电站出力约束
Pj,min≤Pj,t≤Pj,max
式中,Pj,min和Pj,max分别表示第j座水电站的最小和最大出力;
弃水量约束
sj,min≤sj,t≤sj,max
式中,sj,min和sj,max分别表示第j座水电站的最小和最大弃水量;
日调节水库末水位约束
对于具有日调节能力的水电站,在每日调度期末,其水库蓄水量应恢复到初始位置,即
Vnd,end=Vnd,exp
式中,Nd为日调节水电站总数;Vnd,end为第nd座日调节水库在调度期末的蓄水量;Vnd,exp为第nd座日调节水库在调度期末的期望蓄水量;
定义二、水力耦合联系为:
在一个含n座水电站的梯级水电系统中,第1座水电站的来水量由自然来水决定,而第2到n座水电站的来水量则由上游水电站的下泄流量和水流时滞决定;不同水电站之间的耦合关系可以通过水量平衡方程式来表示,上游水电站放出的水经过一段时间延迟,到达下游水电站,其数学模型由如下分段函数描述:
Figure GDA0003935520380000031
式中,Vj,t为t时段第j座水电站的蓄水量;qj,t和sj,t分别为t时段第j座水电站的发电流量和弃水流量;wj,t为t时段第j座水电站的自然来水;τj为第j-1座水电站与第j座水电站之间的水流时滞;
定义三、梯级水电水电转化模型为:
水电站出力由发电流量、水头高度、转化效率等因素共同决定;水电站在t0—t1时段中生产的电能其数学模型为
Figure GDA0003935520380000032
式中,η为水能到电能的转化效率;q为发电流量;h为水头高度;实际应用中,对于水头高度,通常采用时段的平均水头来替代瞬时水头,即认为在t0—t1时段中水头高度保持不变;因此,对上式微分可得水电站发电功率P的数学模型如下式所示,
P=9.81ρηqh。
在上述的一种梯级水电虚拟抽蓄电站调度方法,建立梯级水电调度周期内“虚拟抽蓄电站”模型具体方法是:等效蓄能功率和蓄能总量的数学模型如下所示:
Figure GDA0003935520380000041
Figure GDA0003935520380000042
式中,Pstorage,t为梯级水电t时刻等效蓄能功率,若Pstorage,t为正,表示此时梯级水电处于蓄水状态,若Pstorage,t为负,表示此时梯级水电处于放水状态;Estorage,t为梯级水电t时刻蓄能总量;hj,t为t时段第j座水电站的发电水头;hj,min为第j座水电站的最小水头;Ψj(h)为第j座水电站水头-面积函数。
在上述的一种梯级水电虚拟抽蓄电站调度方法,构建梯级水电“虚拟抽蓄电站”调度目标函数:
构建实际与目标调峰功率偏差最小目标函数为:
Figure GDA0003935520380000043
Figure GDA0003935520380000044
其中,T为调度期;a为权重系数;Ppeak,aim,t为梯级水电t时刻目标调峰功率;J为梯级水电所含水电站总数;Ppeak,t为梯级水电t时刻总体等效调峰功率,当Ppeak,t大于0时,表示此时为向上调峰,当Ppeak,t小于0时,表示此时为向下调峰;Pload,t为梯级水电t时刻所带负荷的功率;
构建梯级水电耗水量最小目标函数为:
Figure GDA0003935520380000045
式中,dj和cj为权重,定义如下,
Figure GDA0003935520380000046
式中,Ψj,t为水电站j在t时段水库面积。
与现有技术相比,本发明通过对流域梯级水电联合调度,使其对外输出特性与抽水蓄能电站相似,实现流域梯级水电的“虚拟抽蓄电站”调度,有效挖掘梯级水电站的调峰潜力,提高了系统的调峰能力,实用性较好。
附图说明
图1是本发明实施例的梯级水电“虚拟抽蓄电站”调度流程图;
图2是本发明实施例的梯级水电发电情况图;
图3是本发明实施例的梯级水电调峰功率曲线;
图4是本发明实施例的的梯级水电蓄能总量曲线。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
本发明电力验证系统,甘肃黄河流域刘家峡至乌金峡共8座梯级水电站为例。上游来水依次通过刘家峡、盐锅峡、八盘峡、河口、柴家峡、小峡、大峡、乌金峡。其具体参数如表1所示。
表1梯级水电站参数
Figure GDA0003935520380000051
请见图1,基于电力验证系统,本发明所采用的技术方案是:一种梯级水电“虚拟抽蓄电站”调度方法,包括以下步骤:
步骤1:根据梯级水电站参数和来水数据,构建梯级水电站的水利发电模型;
1)根据梯级水电站参数和来水数据,构建梯级水电站的水利发电模型;
①各水电站约束为:
水位高度约束
Vj,min≤Vj,t≤Vj,max
下泄流量约束
Qj,min≤qj,t+sj,t≤Qj,max
水电站出力约束
Pj,min≤Pj,t≤Pj,max
弃水量约束
sj,min≤sj,t≤sj,max
日调节水库末水位约束
对于具有日调节能力的水电站,在每日调度期末,其水库蓄水量应恢复到初始位置,即
Vnd,end=Vnd,exp
②水力耦合联系为:
在一个含n座水电站的梯级水电系统中,第1座水电站的来水量由自然来水决定,而第2到n座水电站的来水量则由上游水电站的下泄流量和水流时滞决定[5-7]。不同水电站之间的耦合关系可以通过水量平衡方程式来表示,上游水电站放出的水经过一段时间延迟,到达下游水电站,其数学模型由如下分段函数描述:
Figure GDA0003935520380000061
③梯级水电水电转化模型为:
水电站出力由发电流量、水头高度、转化效率等因素共同决定。水电站在t0—t1时段中生产的电能其数学模型为
P=9.81ρηqh
步骤2:建立梯级水电调度周期内“虚拟抽蓄电站”模型:
所述梯级水电“虚拟抽蓄电站”模型模型为:
对于具有年调节或季调节能力的水电站,其水库具有较强调节能力,在日前优化调度中,可以储存水以满足未来用水的需要。制定调度计划,下发发电任务至梯级水电,可确定每个梯级水电站的下泄流量和来水量(由上游水电站下泄流量确定)。从水库角度看,通过使水电站下泄流量小于来水量,水库蓄水量增加,等效为抽蓄电站的抽水过程;使水电站放水量大于来水量,水库蓄水量减小,等效为抽蓄电站的放水过程。其等效蓄能功率和蓄能总量的数学模型如下所示,
Figure GDA0003935520380000071
Figure GDA0003935520380000072
步骤3:构建梯级水电“虚拟抽蓄电站”调度目标函数:
①构建实际与目标调峰功率偏差最小目标函数为:
Figure GDA0003935520380000073
Figure GDA0003935520380000074
②构建梯级水电耗水量最小目标函数为:
Figure GDA0003935520380000075
式中,dj和cj为权重,定义如下,
Figure GDA0003935520380000076
步骤4:根据梯级水电站参数、来水数据和负荷数据等,设置目标调峰功率;
步骤5:采用商业计算软件对优化问题进行求解,制定调度计划。
为验证本发明有效性,以甘肃省黄河流域刘家峡-乌金峡共8座梯级水电站为研究对象,建立模型进行仿真。考虑到该流域梯级水电站在11月至次年3月不参与电网调峰,故采用6月的历史数据作为梯级水电来水量和所带负荷量。算例设计在每日8至20点,设定目标调峰功率为500MW,使梯级水电工作在放水发电状态下;在每日0点至8点和20点至24点,设定目标调峰功率为-500MW,使梯级水电工作在抽水蓄能状态下。
请见图2,是本发明实施例的梯级水电发电情况图,可见,采用“虚拟抽蓄电站”调度方法后,梯级水电发电运行更加灵活。在8点至20点,电网负荷较大,梯级水电运行在放水发电状态,向上调峰,缓解电网调峰压力;在0点至8点和20点至24点,电网负荷较小,梯级水电运行在抽水蓄能状态,向下调峰,从电网吸收功率进行储能,便于新能源的消纳。
请见图3,是本发明实施例的梯级水电调峰功率曲线,可见,梯级水电的调峰功率与目标设定值偏差较小,最大不超过2.55%,表明该梯级水电能够按照目标调峰功率运行,实现梯级水电的上下调峰。
请见图4,是本发明实施例的梯级水电蓄能总量曲线,可见,在0点至8点和20点至24点,梯级水电的总蓄能量呈增加态势,表明此时梯级水电水库正在蓄水储能;而在8至20点,梯级水电的总蓄能量呈减少态势,表明此时梯级水电水库正在放水发电,与图1结果一致。且经过一个调度周期后,梯级水电的总蓄能量增加了2.54×109kJ,这是因为该调度策略也会使水从水电转换率低且水库面积大的水电站,流向水电转换率高且水库面积小的水电站,提高梯级水电的水电转换效率,所以能在未减少总发电量的情况下,增加梯级水电的总蓄能量。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (3)

1.一种梯级水电虚拟抽蓄电站调度方法,其特征在于:包括:
步骤1、根据梯级水电站参数和来水数据,构建梯级水电站的水利发电模型;
步骤2、建立梯级水电调度周期内“虚拟抽蓄电站”模型;
步骤3,根据步骤1和步骤2建立的模型,以实际与目标调峰功率偏差最小和梯级水电耗水量最小为调度目标,构建梯级水电“虚拟抽蓄电站”调度目标函数进行求解优化调度;
构建梯级水电站的水利发电模型基于以下定义:
定义一、各水电站约束为:
水位高度约束
Vj,min≤Vj,t≤Vj,max
式中,Vj,min和Vj,max分别表示第j座水电站的最小和最大库容;
下泄流量约束
Qj,min≤qj,t+sj,t≤Qj,max
式中,Qj,min和Qj,max分别表示第j座水电站的最小和最大下泄流量;
水电站出力约束
Pj,min≤Pj,t≤Pj,max
式中,Pj,min和Pj,max分别表示第j座水电站的最小和最大出力;
弃水量约束
sj,min≤sj,t≤sj,max
式中,sj,min和sj,max分别表示第j座水电站的最小和最大弃水量;
日调节水库末水位约束
对于具有日调节能力的水电站,在每日调度期末,其水库蓄水量应恢复到初始位置,即
Vnd,end=Vnd,exp
式中,Nd为日调节水电站总数;Vnd,end为第nd座日调节水库在调度期末的蓄水量;Vnd,exp为第nd座日调节水库在调度期末的期望蓄水量;
定义二、水力耦合联系为:
在一个含n座水电站的梯级水电系统中,第1座水电站的来水量由自然来水决定,而第2到n座水电站的来水量则由上游水电站的下泄流量和水流时滞决定;不同水电站之间的耦合关系可以通过水量平衡方程式来表示,上游水电站放出的水经过一段时间延迟,到达下游水电站,其数学模型由如下分段函数描述:
Figure FDA0003935520370000021
式中,Vj,t为t时段第j座水电站的蓄水量;qj,t和sj,t分别为t时段第j座水电站的发电流量和弃水流量;wj,t为t时段第j座水电站的自然来水;τj为第j-1座水电站与第j座水电站之间的水流时滞;
定义三、梯级水电水电转化模型为:
水电站出力由发电流量、水头高度、转化效率因素共同决定;水电站在t0—t1时段中生产的电能其数学模型为
Figure FDA0003935520370000022
式中,η为水能到电能的转化效率;q为发电流量;h为水头高度;实际应用中,对于水头高度,通常采用时段的平均水头来替代瞬时水头,即认为在t0—t1时段中水头高度保持不变;因此,对上式微分可得水电站发电功率P的数学模型如下式所示,
P=9.81ρηqh。
2.根据权利要求1所述的一种梯级水电虚拟抽蓄电站调度方法,其特征在于:建立梯级水电调度周期内“虚拟抽蓄电站”模型具体方法是:等效蓄能功率和蓄能总量的数学模型如下所示:
Figure FDA0003935520370000023
Figure FDA0003935520370000024
式中,Pstorage,t为梯级水电t时刻等效蓄能功率,若Pstorage,t为正,表示此时梯级水电处于蓄水状态,若Pstorage,t为负,表示此时梯级水电处于放水状态;Estorage,t为梯级水电t时刻蓄能总量;hj,t为t时段第j座水电站的发电水头;hj,min为第j座水电站的最小水头;Ψj(h)为第j座水电站水头-面积函数。
3.根据权利要求1所述的一种梯级水电虚拟抽蓄电站调度方法,其特征在于:构建梯级水电“虚拟抽蓄电站”调度目标函数:
构建实际与目标调峰功率偏差最小目标函数为:
Figure FDA0003935520370000031
Figure FDA0003935520370000032
其中,T为调度期;a为权重系数;Ppeak,aim,t为梯级水电t时刻目标调峰功率;J为梯级水电所含水电站总数;Ppeak,t为梯级水电t时刻总体等效调峰功率,当Ppeak,t大于0时,表示此时为向上调峰,当Ppeak,t小于0时,表示此时为向下调峰;Pload,t为梯级水电t时刻所带负荷的功率;
构建梯级水电耗水量最小目标函数为:
Figure FDA0003935520370000033
式中,dj和cj为权重,定义如下,
Figure FDA0003935520370000034
式中,Ψj,t为水电站j在t时段水库面积。
CN201811433527.8A 2018-11-28 2018-11-28 一种梯级水电虚拟抽蓄电站调度方法 Active CN109636015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811433527.8A CN109636015B (zh) 2018-11-28 2018-11-28 一种梯级水电虚拟抽蓄电站调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811433527.8A CN109636015B (zh) 2018-11-28 2018-11-28 一种梯级水电虚拟抽蓄电站调度方法

Publications (2)

Publication Number Publication Date
CN109636015A CN109636015A (zh) 2019-04-16
CN109636015B true CN109636015B (zh) 2023-04-07

Family

ID=66069466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811433527.8A Active CN109636015B (zh) 2018-11-28 2018-11-28 一种梯级水电虚拟抽蓄电站调度方法

Country Status (1)

Country Link
CN (1) CN109636015B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120685B (zh) * 2019-05-23 2023-04-07 国家电网公司西南分部 高水电比重系统中梯级水电群与风光电站协调调峰方法
CN113158286B (zh) * 2021-01-15 2022-10-14 中国电建集团华东勘测设计研究院有限公司 一种基于最大规模准则的抽水蓄能电站水能参数计算方法
CN117833299B (zh) * 2024-03-04 2024-05-17 华北电力大学 一种混合抽蓄电站群容量分配方法、系统及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123589A (zh) * 2014-06-24 2014-10-29 华中科技大学 一种梯级水电站短期优化调度方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089190B2 (en) * 2001-05-18 2006-08-08 Power Resource Managers, Llp System and method for managing utility power use
CN103631234B (zh) * 2013-12-06 2016-01-20 云南电网公司大理供电局 一种梯级水电集控站自动化系统的智能优化调度方法
CN104636831B (zh) * 2015-02-12 2016-02-17 华中科技大学 一种面向多电网的水电站短期调峰特征值搜索方法
CN105225017B (zh) * 2015-10-30 2019-02-26 南京南瑞集团公司 一种多Agent的水电站群短期优化调度方法
CN106099960B (zh) * 2016-07-18 2018-12-28 华中科技大学 一种小水电机群组成分布式储能系统的方法
CN106655280B (zh) * 2016-11-26 2019-03-29 大连理工大学 一种基于电量控制的梯级水电短期调峰模型及求解方法
CN106886839B (zh) * 2017-02-20 2020-07-28 国网青海省电力公司电力科学研究院 基于混合整数规划的水火电机组组合优化调度方法
CN108596388A (zh) * 2018-04-23 2018-09-28 广西大学 一种考虑梯级水电站最优弃水的水火联合调度方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123589A (zh) * 2014-06-24 2014-10-29 华中科技大学 一种梯级水电站短期优化调度方法

Also Published As

Publication number Publication date
CN109636015A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020063144A1 (zh) 一种柔性直流电网的能源外送能力评估方法及系统
WO2019006733A1 (zh) 一种跨省互联水电站群长期联合调峰调度方法
CN103942728B (zh) 梯级水电站群日发电计划编制方法
CN109636015B (zh) 一种梯级水电虚拟抽蓄电站调度方法
CN108711892B (zh) 一种多能互补发电系统的优化调度方法
CN109447405B (zh) 一种承担调峰任务的一库多级式梯级库群短期计划制定方法
CN104063808B (zh) 一种跨省送电梯级水电站群调峰调度两阶段搜索方法
CN110365013B (zh) 一种光热-光伏-风电联合发电系统的容量优化方法
WO2019119413A1 (zh) 一种耦合相对目标接近度和边际分析原理的梯级水电站多目标优化调度方法
CN109936164A (zh) 基于电源互补特性分析的多能源电力系统优化运行方法
CN104636830A (zh) 一种来水变化下省级电网水火电实时负荷调整方法
CN108133104B (zh) 一种长期跨流域多梯级水电优化运行模拟方法
CN102298731A (zh) 考虑顶潮供水综合要求的梯级水库短期发电优化调度方法
CN104701888B (zh) 一种电网水、火电工况自匹配模式调整实时负荷的方法
CN106447218B (zh) 基于多风电场的抽水蓄能系统的可靠性评估方法
CN110838733B (zh) 一种适于梯级水光互补能源发电系统的光伏容量配置方法
CN111967157B (zh) 考虑分期多目标函数的水库群水沙优化调度方法及系统
CN116667395B (zh) 基于梯级水电改造的水风光蓄互补泵站容量配置方法
CN110942212B (zh) 一种基于梯级水库运行系数的梯级水库优化运行方法
CN105184426A (zh) 一种基于随机连续寻优策略的梯级电站调峰方法
CN112736985A (zh) 一种考虑受端负荷特性的水光联合调度的出力分配方法
CN112581310A (zh) 梯级水电站群发电指标分配方法
CN106600022B (zh) 基于多目标优化的风-光-燃气-海水抽水蓄能孤立电力系统容量优化配置方法
CN107059761B (zh) 水库群防洪库容时空分配设计方法
CN111969591B (zh) 一种光蓄能水电站互补的离网式混合能源系统优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant