CN109632890B - 一种PAA/AgNPs复合柔性氨气传感器的制备方法 - Google Patents

一种PAA/AgNPs复合柔性氨气传感器的制备方法 Download PDF

Info

Publication number
CN109632890B
CN109632890B CN201811339796.8A CN201811339796A CN109632890B CN 109632890 B CN109632890 B CN 109632890B CN 201811339796 A CN201811339796 A CN 201811339796A CN 109632890 B CN109632890 B CN 109632890B
Authority
CN
China
Prior art keywords
silver
ammonia gas
paa
ink
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811339796.8A
Other languages
English (en)
Other versions
CN109632890A (zh
Inventor
宋伟杰
吕大伍
沈文锋
彭明月
谭瑞琴
许炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201811339796.8A priority Critical patent/CN109632890B/zh
Publication of CN109632890A publication Critical patent/CN109632890A/zh
Application granted granted Critical
Publication of CN109632890B publication Critical patent/CN109632890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开的PAA/AgNPs复合柔性氨气传感器的制备方法,将敏感材料制备为适合普通喷墨打印机打印的墨水形式,通过喷墨打印方法可方便地控制沉积的氨气敏感材料层的厚度、形状,制备出具有较好性能的氨气传感器,且喷墨打印方式可按需沉积,能够有效减少原料的浪费,降低传感器的制作成本,同时有利于传感器的大规模制造,便于工业化生产;本发明工艺简单、生产成本低,制备的氨气传感器在室温下对不同浓度的氨气均具有较好的响应,且检测范围宽,同时具有响应时间短、稳定性高和气体选择性好的特点,适合在室温下对氨气进行高灵敏的检测,且柔性好、工作温度低,可结合可穿戴设备应用于人体周围环境氨气检测。

Description

一种PAA/AgNPs复合柔性氨气传感器的制备方法
技术领域
本发明涉及一种气体传感器的制备方法,具体涉及一种PAA/AgNPs复合柔性氨气传感器的制备方法,属于气体检测技术领域。
背景技术
有毒有害气体检测在工业、医疗、自然环境保护和日常生活方面具有重要意义。随着现代工业的快速发展,人们日常生活中接触的各种挥发性有毒有害气体的几率也越来越大。因此发展有毒气体检测技术是非常有意义的。
在有关氨类有毒有害气体的检测技术研究方面,为了结合可穿戴设备发展理念,具有可室温工作、高灵敏度、稳定性较好、成本低等优点的导电有机物,吸引了研究人员的注意。现在作为研究重点的导电有机物主要包括聚( 3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩,其中聚( 3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐和聚噻吩对氨气响应较小,而聚苯胺虽然对氨气具有较大的响应,但是材料具有毒性。另外,这几种导电有机物价格都比较昂贵。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种PAA/AgNPs复合柔性氨气传感器的制备方法,制备的氨气传感器在室温下对不同浓度的氨气均具有较好的响应,且检测范围宽,同时具有响应时间短、稳定性高和气体选择性好的特点,适合在室温下对氨气进行高灵敏的检测,且柔性好、工作温度低,可结合可穿戴设备应用于人体周围环境氨气检测。
本发明解决上述技术问题所采用的技术方案为:一种PAA/AgNPs复合柔性氨气传感器的制备方法,包括以下步骤:
(1)准备一柔性基底,分别采用乙醇和丙酮对该柔性基底超声清洗10~30分钟,之后在80~200℃温度下热处理10~100分钟;
(2)在柔性基底上丝网印刷或喷墨打印导电银浆或银导电墨水,之后在40~200℃温度下热处理10~200分钟,在柔性基底上制备得到银叉指电极层;
(3)称量1~5g聚丙烯酸和5~60g乙醇胺放入40~80mL去离子水中,磁力搅拌2~3小时,得到溶液A;称量5~30g金属银盐放入10~30mL去离子水中,超声震荡5~10分钟,之后缓慢滴加入搅拌中的溶液A中,得到溶液B,然后在30~70℃温度下反应10~50小时得到溶液C;再将100~300mL乙醇加入溶液C中,得到沉淀物,将沉淀物在50~80℃温度下干燥10~30小时,即得到固态聚丙烯酸/银纳米颗粒;
(4)将固态聚丙烯酸/银纳米颗粒、溶剂、表面活性剂以(12~21):(50~78):(0.2~1)的质量比混合,之后超声震荡10~60分钟,得到聚丙烯酸/银纳米颗粒复合敏感材料;
(5)将聚丙烯酸/银纳米颗粒复合敏感材料通过喷墨打印沉积于步骤(2)得到的银叉指电极层的表面,之后在40~100℃温度下热处理5~120分钟,在银叉指电极层上沉积得到氨气敏感材料层,从而制备得到PAA/AgNPs复合柔性氨气传感器。
作为优选,步骤(1)中所述的柔性基底为聚对苯二甲酸乙二醇酯、聚酰亚胺、聚氨酯、聚二甲基硅氧烷、聚甲基丙烯酸甲酯和聚碳酸酯中的一种。
作为优选,步骤(3)中,所述的乙醇胺为单乙醇胺、二乙醇胺和三乙醇胺中的至少一种。
作为优选,步骤(3)中,所述的金属银盐为四氟硼酸银、硝酸银、醋酸银、三氟甲基磺酸银和2-乙基己酸银中的至少一种。
作为优选,步骤(4)中,所述的溶剂由去离子水和亲水性有机小分子混合而成,所述的亲水性有机小分子为乙醇、乙二醇、乙二醇甲醚、一缩二乙二醇、异丙醇和丙二醇中的至少一种。聚丙烯酸/银纳米颗粒复合敏感材料中,银纳米颗粒由聚丙烯酸包裹。该由聚丙烯酸包裹的银纳米颗粒在去离子水中有较高的溶解度,亲水性有机小分子可以调节聚丙烯酸/银纳米颗粒复合敏感材料的粘度和表面张力,以更好地满足喷墨打印的要求。
作为优选,步骤(4)中,所述的表面活性剂为聚乙烯吡咯烷酮、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵和吐温20中的一种。表面活性剂用于调节聚丙烯酸/银纳米颗粒复合敏感材料和银导电墨水的表面张力,使其进一步满足喷墨打印的要求。
作为优选,步骤(2)中,在柔性基底上丝网印刷或喷墨打印导电银浆或银导电墨水之前,预先在柔性基底上喷墨打印阳离子聚合物调节剂。阳离子聚合物调节剂可以控制叉指电极层上沉积的聚丙烯酸的量,确保氨气传感器具有良好的导电性能。
进一步地,所述的阳离子聚合物调节剂为质量百分比浓度0.1~1%的聚二烯丙基二甲基氯化铵溶液。
与现有技术相比,本发明的优点在于:
1、本发明将敏感材料制备为适合普通喷墨打印机打印的墨水形式,利用简单的合成方法合成聚丙烯酸/银纳米颗粒(即PAA/AgNPs)复合敏感材料,通过喷墨打印方法可方便地控制沉积的氨气敏感材料层的厚度、形状,制备出具有较好性能的氨气传感器,且喷墨打印方式可按需沉积,能够有效减少原料的浪费,降低传感器的制作成本,同时有利于传感器的大规模制造,便于工业化生产;
2、本发明在较低的温度下,以聚丙烯酸为包覆材料,利用乙醇胺还原金属银盐制备得到聚丙烯酸/银纳米颗粒复合敏感材料,该聚丙烯酸/银纳米颗粒复合敏感材料为核壳结构,其以聚丙烯酸为包覆材料、以银纳米颗粒为核,解决了聚丙烯酸材料不导电的特性,可有效控制敏感材料的导电性能,并对氨气具有较好的响应性能;
3、本发明制备方法工艺简单、生产成本低,制备的氨气传感器,其性能相对于传统的氨气传感器,得到大幅度的提高;制备的氨气传感器在室温下对不同浓度的氨气均具有较好的响应,在100ppm氨气的响应为电阻下降75%,且检测范围宽,同时具有响应时间短、稳定性高和气体选择性好的特点,适合在室温下对氨气进行高灵敏的检测,且柔性好、工作温度低,可结合可穿戴设备应用于人体周围环境氨气检测。
附图说明
图1为实施例1中PAA/AgNPs复合柔性氨气传感器暴露于浓度100ppm氨气氛围中的响应曲线。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1的PAA/AgNPs复合柔性氨气传感器的制备方法,包括以下步骤:
(1)准备聚酰亚胺柔性基底,分别采用乙醇和丙酮对该柔性基底超声清洗10分钟,之后在80℃温度下热处理20分钟;
(2)在柔性基底上喷墨打印银导电墨水,之后在100℃温度下热处理10分钟,在柔性基底上制备得到银叉指电极层;
(3)称量3g分子量为5000的聚丙烯酸和40g二乙醇胺放入50mL去离子水中,磁力搅拌2小时,得到溶液A;称量15g硝酸银放入20mL去离子水中,超声震荡5分钟,之后缓慢滴加入搅拌中的溶液A中,得到溶液B,然后在30℃温度下反应17小时,再在70℃温度下反应6小时,得到溶液C;再将200mL乙醇加入溶液C中,得到沉淀物,将沉淀物在70℃温度下干燥20小时,即得到固态聚丙烯酸/银纳米颗粒;
(4)称取2g固态聚丙烯酸/银纳米颗粒,与8mL去离子水混合,再加入1mL乙二醇和0.05g十二烷基硫酸钠,之后超声震荡60分钟,得到聚丙烯酸/银纳米颗粒复合敏感材料;
(5)将聚丙烯酸/银纳米颗粒复合敏感材料通过喷墨打印沉积于步骤(2)得到的银叉指电极层的表面,之后在80℃温度下热处理120分钟,在银叉指电极层上沉积得到氨气敏感材料层,从而制备得到实施例1的PAA/AgNPs复合柔性氨气传感器。
实施例1的PAA/AgNPs复合柔性氨气传感器暴露于浓度100ppm氨气氛围中的响应曲线见图1。从图1可见,该传感器对氨气具有较好的响应,在100ppm氨气的响应为电阻下降75%。
实施例2的聚丙烯酸/银颗粒复合材料为基的柔性氨气传感器的制备方法,包括以下步骤:
(1)准备聚对苯二甲酸乙二醇酯柔性基底,分别采用乙醇和丙酮对该柔性基底超声清洗10分钟,之后在80℃温度下热处理10分钟;
(2)在柔性基底上喷墨打印银导电墨水,之后在100℃温度下热处理10分钟,在柔性基底上制备得到银叉指电极层;
(3)称量1g分子量为5000的聚丙烯酸和8g单乙醇胺放入50mL去离子水中,磁力搅拌1小时,得到溶液A;称量6g醋酸银放入10mL去离子水中,超声震荡5分钟,之后缓慢滴加入搅拌中的溶液A中,得到溶液B,然后在40℃温度下反应10小时得到溶液C;再将120mL乙醇加入溶液C中,得到沉淀物,将沉淀物在60℃温度下干燥25小时,即得到固态聚丙烯酸/银纳米颗粒;
(4)称取1g固态聚丙烯酸/银纳米颗粒,与8mL去离子水混合,再加入0.5mL乙丙醇和0.02g聚乙烯吡咯烷酮,之后超声震荡10分钟,得到聚丙烯酸/银纳米颗粒复合敏感材料;
(5)将聚丙烯酸/银纳米颗粒复合敏感材料通过喷墨打印沉积于步骤(2)得到的银叉指电极层的表面,之后在60℃温度下热处理15分钟,在银叉指电极层上沉积得到氨气敏感材料层,从而制备得到实施例2的PAA/AgNPs复合柔性氨气传感器。
以上实施例步骤(2)中,在柔性基底上丝网印刷或喷墨打印导电银浆或银导电墨水之前,可预先在柔性基底上喷墨打印阳离子聚合物调节剂,该阳离子聚合物调节剂可选用质量百分比浓度0.1~1%的聚二烯丙基二甲基氯化铵溶液。阳离子聚合物调节剂可以控制叉指电极层上沉积的聚丙烯酸的量,确保氨气传感器具有良好的导电性能。

Claims (6)

1.一种PAA/AgNPs复合柔性氨气传感器的制备方法,其特征在于,包括以下步骤:
(1)准备一柔性基底,分别采用乙醇和丙酮对该柔性基底超声清洗10~30分钟,之后在80~200℃温度下热处理10~100分钟;
(2)在柔性基底上丝网印刷或喷墨打印导电银浆或银导电墨水,之后在40~200℃温度下热处理10~200分钟,在柔性基底上制备得到银叉指电极层;
(3)称量1~5g聚丙烯酸和5~60g乙醇胺放入40~80mL去离子水中,磁力搅拌2~3小时,得到溶液A;称量5~30g金属银盐放入10~30mL去离子水中,超声震荡5~10分钟,之后缓慢滴加入搅拌中的溶液A中,得到溶液B,然后在30~70℃温度下反应10~50小时得到溶液C;再将100~300mL乙醇加入溶液C中,得到沉淀物,将沉淀物在50~80℃温度下干燥10~30小时,即得到固态聚丙烯酸/银纳米颗粒;
(4)将固态聚丙烯酸/银纳米颗粒、溶剂、表面活性剂以(12~21):(50~78):(0.2~1)的质量比混合,之后超声震荡10~60分钟,得到聚丙烯酸/银纳米颗粒复合敏感材料;所述的溶剂由去离子水和亲水性有机小分子混合而成,所述的亲水性有机小分子为乙醇、乙二醇、乙二醇甲醚、一缩二乙二醇、异丙醇和丙二醇中的至少一种;所述的表面活性剂为聚乙烯吡咯烷酮、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵和吐温20中的一种;
(5)将聚丙烯酸/银纳米颗粒复合敏感材料通过喷墨打印沉积于步骤(2)得到的银叉指电极层的表面,之后在40~100℃温度下热处理5~120分钟,在银叉指电极层上沉积得到氨气敏感材料层,从而制备得到PAA/AgNPs复合柔性氨气传感器。
2.根据权利要求1所述的一种PAA/AgNPs复合柔性氨气传感器的制备方法,其特征在于,步骤(1)中所述的柔性基底为聚对苯二甲酸乙二醇酯、聚酰亚胺、聚氨酯、聚二甲基硅氧烷、聚甲基丙烯酸甲酯和聚碳酸酯中的一种。
3.根据权利要求1所述的一种PAA/AgNPs复合柔性氨气传感器的制备方法,其特征在于,步骤(3)中,所述的乙醇胺为单乙醇胺、二乙醇胺和三乙醇胺中的至少一种。
4.根据权利要求1所述的一种PAA/AgNPs复合柔性氨气传感器的制备方法,其特征在于,步骤(3)中,所述的金属银盐为四氟硼酸银、硝酸银、醋酸银、三氟甲基磺酸银和2-乙基己酸银中的至少一种。
5.根据权利要求1所述的一种PAA/AgNPs复合柔性氨气传感器的制备方法,其特征在于,步骤(2)中,在柔性基底上丝网印刷或喷墨打印导电银浆或银导电墨水之前,预先在柔性基底上喷墨打印阳离子聚合物调节剂。
6.根据权利要求5所述的一种PAA/AgNPs复合柔性氨气传感器的制备方法,其特征在于,所述的阳离子聚合物调节剂为质量百分比浓度0.1~1%的聚二烯丙基二甲基氯化铵溶液。
CN201811339796.8A 2018-11-12 2018-11-12 一种PAA/AgNPs复合柔性氨气传感器的制备方法 Active CN109632890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811339796.8A CN109632890B (zh) 2018-11-12 2018-11-12 一种PAA/AgNPs复合柔性氨气传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811339796.8A CN109632890B (zh) 2018-11-12 2018-11-12 一种PAA/AgNPs复合柔性氨气传感器的制备方法

Publications (2)

Publication Number Publication Date
CN109632890A CN109632890A (zh) 2019-04-16
CN109632890B true CN109632890B (zh) 2021-07-30

Family

ID=66067792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811339796.8A Active CN109632890B (zh) 2018-11-12 2018-11-12 一种PAA/AgNPs复合柔性氨气传感器的制备方法

Country Status (1)

Country Link
CN (1) CN109632890B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715958A (zh) * 2019-09-10 2020-01-21 中国科学院宁波材料技术与工程研究所 以聚偏二氟乙烯/碳纳米管-聚苯胺复合柔性膜柔性膜氨气传感器及其制备方法
CN110715957A (zh) * 2019-09-10 2020-01-21 中国科学院宁波材料技术与工程研究所 聚苯乙烯磺酸掺杂的聚苯胺复合柔性膜为基的高效氨气传感器及其制备方法
GB2594235A (en) * 2019-11-14 2021-10-27 Mbi Wales Ltd Ammonia sensor
CN113970582B (zh) * 2021-10-18 2023-07-21 嘉兴学院 柔性氨气传感器的全程温和的制备方法及氨气传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308560A (zh) * 2013-06-04 2013-09-18 中国科学院微电子研究所 一种室温检测nh3的气体传感器的制作方法
CN103698369A (zh) * 2012-09-27 2014-04-02 森斯瑞股份公司 化学传感器
CN105588856A (zh) * 2014-10-19 2016-05-18 吴振武 柔性印刷粪尿传感器
CN105866175A (zh) * 2016-03-28 2016-08-17 上海交通大学 一种可印刷柔性氨气传感器及其制备方法
CN108426924A (zh) * 2018-05-03 2018-08-21 吉林大学 一种基于PANI@Au-In2O3敏感材料的NH3气体传感器、制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131201A1 (en) * 2012-11-12 2014-05-15 Jamia Millia Islamia Process for making ammonia gas indicator using single wall carbon nanotube/alumina composite thick film
US10830722B2 (en) * 2017-01-09 2020-11-10 King Abdullah Unviersity Of Science And Technology Gas sensors and methods of detecting gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698369A (zh) * 2012-09-27 2014-04-02 森斯瑞股份公司 化学传感器
CN103308560A (zh) * 2013-06-04 2013-09-18 中国科学院微电子研究所 一种室温检测nh3的气体传感器的制作方法
CN105588856A (zh) * 2014-10-19 2016-05-18 吴振武 柔性印刷粪尿传感器
CN105866175A (zh) * 2016-03-28 2016-08-17 上海交通大学 一种可印刷柔性氨气传感器及其制备方法
CN108426924A (zh) * 2018-05-03 2018-08-21 吉林大学 一种基于PANI@Au-In2O3敏感材料的NH3气体传感器、制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Flexible Ammonia Sensof Based on PEDOT:PSS/Silver Nanowire Composite Film for Meat Freshness Monitoring;Siying Li et.al;《IEEE electron device letters》;20170731;第38卷(第7期);第975-978页 *
Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive traks on paper with high conductivity;Qijin Huang et. al;《Materials Chemistry and Physics》;20140606;第147卷;第551页左栏倒数第1段至右栏第1段 *
喷墨法纸基氨气传感器制备及性能分析;王琪等;《仪表技术与传感器》;20181031(第10期);第18页左栏第4段至右栏倒数第2段 *

Also Published As

Publication number Publication date
CN109632890A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109632890B (zh) 一种PAA/AgNPs复合柔性氨气传感器的制备方法
Li et al. Preparation and application of 2D MXene-based gas sensors: A review
Madani et al. Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes
Li et al. Recent developments on graphene-based electrochemical sensors toward nitrite
Chen et al. Ti3C2T x-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis
Chen et al. Formation process of silver− polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly (vinylpyrrolidone)
Kokulnathan et al. Praseodymium vanadate-decorated sulfur-doped carbon nitride hybrid nanocomposite: the role of a synergistic electrocatalyst for the detection of metronidazole
Wang et al. One unique 1D silver (I)-bromide-thiol coordination polymer used for highly efficient chemiresistive sensing of ammonia and amines in water
Abinaya et al. In situ synthesis, characterization, and catalytic performance of polypyrrole polymer-incorporated Ag2MoO4 nanocomposite for detection and degradation of environmental pollutants and pharmaceutical drugs
Sahoo et al. Freeze-casting of multifunctional cellular 3D-graphene/Ag nanocomposites: synergistically affect supercapacitor, catalytic, and antibacterial properties
Terán-Alcocer et al. Electrochemical sensors based on conducting polymers for the aqueous detection of biologically relevant molecules
Wu et al. Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor
Feng et al. Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine
Sun et al. Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor
Srivastava et al. Sonochemical synthesis of mesoporous tin oxide
Rahman et al. CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications
Pal et al. Conducting carbon dot–polypyrrole nanocomposite for sensitive detection of picric acid
Sadasivuni et al. Silver nanoparticles and its polymer nanocomposites—Synthesis, optimization, biomedical usage, and its various applications
Yu et al. A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis
Ahmed et al. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review
CN102504533B (zh) 生物分子功能化石墨烯/金纳米粒子复合薄膜及制备方法
Mutharani et al. One-pot sustainable synthesis of Ce2S3/gum arabic carbon flower nanocomposites for the detection of insecticide imidacloprid
Sriram et al. Well-designed construction of yttrium orthovanadate confined on graphitic carbon nitride sheets: electrochemical investigation of dimetridazole
CN111678623B (zh) 基于可印刷纳米复合材料的超长寿命自修复应力传感器及其制备方法
Muench et al. 4-(Dimethylamino) pyridine as a powerful auxiliary reagent in the electroless synthesis of gold nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant