CN109632594B - 一种基于高压压汞多尺度表征致密储层孔喉特征的方法 - Google Patents

一种基于高压压汞多尺度表征致密储层孔喉特征的方法 Download PDF

Info

Publication number
CN109632594B
CN109632594B CN201711026567.6A CN201711026567A CN109632594B CN 109632594 B CN109632594 B CN 109632594B CN 201711026567 A CN201711026567 A CN 201711026567A CN 109632594 B CN109632594 B CN 109632594B
Authority
CN
China
Prior art keywords
mercury
pore
throat
pressure
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711026567.6A
Other languages
English (en)
Other versions
CN109632594A (zh
Inventor
张云峰
严强
姜美玲
李易霖
臧起彪
付晗
郝芮
郭明翰
王军
随淑玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201711026567.6A priority Critical patent/CN109632594B/zh
Publication of CN109632594A publication Critical patent/CN109632594A/zh
Application granted granted Critical
Publication of CN109632594B publication Critical patent/CN109632594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0886Mercury porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明提供了一种基于高压压汞多尺度表征致密储层孔喉特征的方法,包括:测定岩心在原始地层覆压情况下的渗透率K和孔隙度Φ;对岩心进行高压压汞实验,得到外加进汞压力Pi、在进汞压力为Pi时进汞的孔喉半径ri和进汞压力由Pi‑1变为Pi时的进汞饱和度增量ΔSi;计算各级孔隙和喉道的相关新参数、各级孔喉的比例,然后与孔隙度Φ和渗透率K做相关性分析,确定储层渗透性的主控因素;利用扫描电镜的验证各级孔喉的真实存在,测量其孔径的宽度,同用以上算法所得到的孔径分布做对比。该方法基于高压压汞所提供的数据,应用数学、物理等理论公式处理相关压汞数据,从而形成一种新的算法表征其微观孔喉特征及流体在其中的渗透性。

Description

一种基于高压压汞多尺度表征致密储层孔喉特征的方法
技术领域
本发明属于非常规油气勘探开发技术领域,具体涉及一种基于高压压汞多尺度表征致密储层孔喉特征的方法。
背景技术
在研究微观世界当中,扫描电镜一直是人们探索其中奥妙的利器,而压汞法也一直广泛应用于石油天然气地质学当中。早在1976年,Wardiaw便通过实验认为在退汞的过程中,喉道的毛细管压力大于孔隙的毛细管压力,故水银主要由喉道退出,而空隙中任然充满水银。
压汞法是在外加压力的作用下将汞注入到被抽真空的岩石孔隙体系中,当外加压力与毛细管压力达平衡时便可计算出对应级别的孔喉半径,采用汞饱和度增量便可计算出该级别孔喉的分布情况。针对致密砂岩储层,高压压汞法(最高压力可达400MPa)几乎可以表征所有的有效孔隙,最高精度可达到3nm,但考虑到纳微级孔喉内表面有少量的吸附水及超高压力对微观孔喉的破坏作用,必然会有一定的误差,同时也无法直接得到流体在其中的渗流特征和验证各级孔喉的真实存在。
发明内容
为了克服上述现有技术存在的不足,本发明提供了一种基于高压压汞多尺度表征致密储层孔喉特征的方法。
为了实现上述目的,本发明提供如下技术方案:
一种基于高压压汞多尺度表征致密储层孔喉特征的方法,包括以下步骤:
步骤1:采用全自动覆压孔渗仪测定岩心在原始地层覆压情况下的渗透率K和孔隙度Φ;
步骤2:采用全自动孔径分析仪对岩心进行高压压汞实验,得到外加进汞压力Pi、在进汞压力为Pi时进汞的孔喉半径ri和进汞压力由Pi-1变为Pi时的进汞饱和度增量ΔSi
具体地,在进汞的过程中,当毛细管压力与进汞压力平衡时,毛细管的阻力包括以下三种:水银处于静止状态时的阻力P1i、水银欲运动时的阻力P2i及附加阻力P3i
Figure BDA0001448501530000021
Figure BDA0001448501530000022
式中:Pr—孔喉半径为ri时对应的毛细管压力,Pa;
σ—水银表面的张力系数,N/m;
θ—水银的润湿接触角;
ri—孔喉半径,nm;
θ″—水银充注过程中前液面两相接触面切线与孔喉壁的夹角;
θ'—水银充注过程中后液面两相接触面切线与孔喉壁的夹角;
由于进汞很慢,故汞的前后液面变化极小,阻力P2i和P3i均较小,可忽略,故(1)式可简化为:
Figure BDA0001448501530000023
设定水银的润湿接触角θ为146°,即cosθ≈0.688,利用测高仪测出水银表面的张力系数σ:
Figure BDA0001448501530000024
式中:d水银—水银密度;
g—重力加速度,取值9.8N/kg;
h—毛细管内外水银面高度差;
r—毛细玻璃管的半径:
通过以上公式计算得到σ=461.44×10-3N/m;
将σ和θ的值带入(2)式中并结合单位换算结果,得出:
Figure BDA0001448501530000031
式中:pi单位为MPa,ri单位为nm;
从而建立进汞压力与孔喉半径的关系式,依据(4)式得到实际孔喉大小及分布情况,包括微纳米级孔喉;为了经一步高精度直观的反映孔喉分布情况,对退汞变化量dv做如下算法:
dv/d(logd)(5)
式中:dv—退汞变化量;
d(logd)—两相邻喉道半径取对数后的变化;
由于喉道中的毛细管压力远大于孔隙中的毛细管压力,故汞是从喉道中退出,孔隙中仍然充满汞,据此结合压汞曲线计算出孔喉体积比:
Figure BDA0001448501530000032
式中:bt为平均孔喉体积比;
Sr为残余汞饱和度,%;
Smax为最大进汞饱和度,%;
引进数学上的期望和方差分层段、分级别的处理孔喉分布,对不同级别的孔隙半径和喉道半径加权处理得到不同级别的孔喉半径的期望值和方差值:
Figure BDA0001448501530000033
Figure BDA0001448501530000034
式中:
Figure BDA0001448501530000035
—某一级别孔喉的平均半径;
ΔSHgi—进汞饱和度增量;
j与k分别代表某一级别孔喉的上限与下限,i表示此区间其中的一点;
s2为方差—表示某一级孔喉半径分布的均值程度;;
经过期望处理得到各级孔隙和喉道的相关新参数,利用公式(6)算出各级孔喉的比例,然后与孔隙度Φ和渗透率K做相关性分析,确定储层渗透性的主控因素;
步骤3:相关性分析之后,利用扫描电镜的超高分辨率镜下验证各级孔喉的真实存在,测量其孔径的宽度,同步骤2所得到的孔径分布做对比。
优选地,引入数学上的期望与方差公式可以定量表征各级孔喉半径的大小及分布的非均质性强弱,同渗透率做相关性分析,可得出渗透率的主控因素。
优选地,所述孔渗仪为全自动覆压孔渗仪—PoroPDP-200,所述全自动孔径分析仪为PoreMaster系列高压压汞仪。
本发明提供的基于高压压汞多尺度表征致密储层孔喉特征的方法基于高压压汞所提供的数据,应用数学、物理等学科的理论公式处理相关压汞数据,在此基础上将数学上的期望、方差等相关公式应用到微观孔喉特征的表征上,同时结合压汞法最基本的原理,从而形成一种新的算法表征其孔喉分布及流体在其中的渗透性,通过分级别的处理得到的分级参数
Figure BDA0001448501530000041
和s2,进一步降低了高压压汞的超高压力对孔喉的破坏及微细孔喉中的束缚水所造成的实验误差,同时也可确定各级孔隙和喉道对孔隙度和渗透率的贡献值,探讨渗透性的主控因素。最后结合扫描电镜的高分辨率多尺度、多级别的观察、分析各级孔喉的镜下特征,进一步提高算法的真实性与可靠性,表征更加准确、全面。
附图说明
图1为本发明实施例1的基于高压压汞多尺度表征致密储层孔喉特征的方法的流程图;
图2为孔喉分布图;
图3为喉道分布图;
图4为高压压汞曲线解释图;
图5为喉道分级参数与孔渗相关性分析图;
图6为各级喉道所占比例与孔渗相关性分析图;
图7为电镜下的各级孔喉。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
以胜利油田某地区三千多米深度的致密砂岩储层样品为例,进行高压压汞、覆压孔渗、扫描电镜等相关实验来说明本发明的具体技术方案:
一种基于高压压汞多尺度表征致密储层孔喉特征的方法,具体如图1所示,包括以下步骤:
步骤1:采用全自动覆压孔渗仪—PoroPDP-200的标准测试方法,测定岩心在原始地层覆压情况下的渗透率K和孔隙度Φ;
步骤2:采用全自动孔径分析仪—PoreMaster系列高压压汞仪的标准测试方法,对岩心进行高压压汞实验,从而得到相关压汞数据,包括外加进汞压力Pi、在进汞压力为Pi时进汞的孔喉半径ri和进汞压力由Pi-1变为Pi时的进汞饱和度增量ΔSi
具体地,在进汞的过程中,当毛细管压力与进汞压力平衡时,毛细管的阻力包括以下三种:水银处于静止状态时的阻力P1i、水银欲运动时的阻力P2i及附加阻力P3i
Figure BDA0001448501530000051
Figure BDA0001448501530000052
式中:Pr—孔喉半径为ri时对应的毛细管压力,Pa;
σ—水银表面的张力系数,N/m;
θ—水银的润湿接触角;
ri—孔喉半径,nm;
θ″—水银充注过程中前液面两相接触面切线与孔喉壁的夹角;
θ'—水银充注过程中后液面两相接触面切线与孔喉壁的夹角;
由于进汞很慢,故汞的前后液面变化极小,阻力P2i和P3i均较小,可忽略,故(1)式可简化为:
Figure BDA0001448501530000061
设定水银的润湿接触角θ为146°,即cosθ≈0.688,利用测高仪测出水银表面的张力系数σ:
Figure BDA0001448501530000062
式中:d水银—水银密度;
g—重力加速度,取值9.8N/kg;
h—毛细管内外水银面高度差;
r—毛细玻璃管的半径:
通过以上公式计算得到σ=461.44×10-3N/m,σ为一个常数;
将σ和θ的值带入(2)式中并结合单位运算结果,得出:
Figure BDA0001448501530000063
式中:pi单位为MPa,ri单位为nm;
从而建立进汞压力与孔喉半径的关系式,依据(4)式得到样品实际孔喉大小及分布情况,包括微纳米级孔喉;为了经一步高精度直观的反映孔喉分布情况,对退汞变化量dv做如下算法:
dv/d(logd) (5)
式中:dv—退汞变化量;
d(logd)—两相邻喉道半径取对数后的变化;
由于喉道中的毛细管压力远大于孔隙中的毛细管压力,故汞是从喉道中退出,孔隙中仍然充满汞,据此结合压汞曲线计算出孔喉体积比:
Figure BDA0001448501530000071
式中:bt为平均孔喉体积比;
Sr为残余汞饱和度,%;
Smax为最大进汞饱和度,%;
引进数学上的期望和方差分层段、分级别的处理孔喉分布,对不同级别(纳米级、微纳米级、亚微米级、微米级和常规孔隙这五类(见图2))的孔隙半径和喉道半径加权处理得到不同级别的孔喉半径的期望值和方差值:采用喉道分布图将研究区喉道分为纳米级喉道和微米级喉道(见图3);
Figure BDA0001448501530000072
Figure BDA0001448501530000073
式中:
Figure BDA0001448501530000074
—某一级别孔喉的平均半径;
ΔSHgi—进汞饱和度增量;
j与k分别代表某一级别孔喉的上限与下限,i表示此区间其中的一点;
s2为方差—表示某一级孔喉半径分布的均值程度;
以各级喉道为例:
利用步骤2中的公式(7)和公式(8),分别计算出纳米级喉道和微米级喉道的分级参数(表1和表2),基于压汞曲线(图4)并结合公式(6),可确定各级喉道所占的比例(表3):
表1 各级喉道分级参数
Figure BDA0001448501530000081
Figure BDA0001448501530000082
表2 各级喉道分级参数s2
Figure BDA0001448501530000083
表3 各级喉道所占比例bt
Figure BDA0001448501530000084
经过期望处理得到各级孔隙和喉道的相关新参数
Figure BDA0001448501530000085
然后与孔隙度Φ和渗透率K做相关性分析,确定储层渗透性的主控因素;
步骤3:相关性分析之后,利用扫描电镜的超高分辨率镜下验证各级孔喉的真实存在,测量其孔径的宽度,同步骤2所得到的孔径分布做对比,具体为,基于表1和表2,将分级参数
Figure BDA0001448501530000091
以及各级孔喉所占比例bt同孔隙度Φ和渗透率K做相关性分析(图5和图6),具体的,图5中a为孔隙度与渗透率关系图,b为微米级喉道平均半径与孔隙度关系图,c为纳米级喉道半径与渗透率关系图,d为微米级喉道半径与渗透率关系图;图6中a为孔喉体积比与渗透率关系图,b为纳米级喉道所占比例与渗透率关系图,c为微米级喉道所占比例与孔隙度关系图,d为微米级喉道所占比例与渗透率关系图,确定纳米级喉道对渗透率K的具有重要的控制作用,微米级喉道更多的贡献于孔隙度,而分级参数s2反映了该区喉道的非均质请较强,且纳米级喉道的非均质性强于微米级喉道,利用扫描电镜的超高分辨率镜下验证各级孔喉的真实存在,如图7所示,a为常规粒间孔,b为常规溶蚀孔,c为微米级孔隙,d为亚微米级孔隙,e为微纳米级孔隙,f为纳米级孔隙,由附图7进一步证实了纳米级、微纳米级、亚微米级、微米级及常规孔喉的大量发育,测量其孔径的宽度,同用以上算法所得到的孔径分布做对比,进一步提高算法的真实性与可靠性。
以上所述实施例仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换,均属于本发明的保护范围。

Claims (2)

1.一种基于高压压汞多尺度表征致密储层孔喉特征的方法,其特征在于,包括以下步骤:
步骤1:采用全自动覆压孔渗仪测定岩心在原始地层覆压情况下的渗透率K和孔隙度Φ;
步骤2:采用全自动孔径分析仪对岩心进行高压压汞实验,得到外加进汞压力Pi、在进汞压力为Pi时进汞的孔喉半径ri和进汞压力由Pi-1变为Pi时的进汞饱和度增量ΔSHgi
具体地,在进汞的过程中,当毛细管压力与进汞压力平衡时,毛细管的阻力包括以下三种:水银处于静止状态时的阻力P1i、水银欲运动时的阻力P2i及附加阻力P3i
Figure FDA0003463427470000011
Figure FDA0003463427470000012
式中:Pi—孔喉半径为ri时对应的毛细管压力,Pa;
σ—水银表面的张力系数,N/m;
θ—水银的润湿接触角;
ri—孔喉半径,nm;
θ″—水银充注过程中前液面两相接触面切线与孔喉壁的夹角;
θ'—水银充注过程中后液面两相接触面切线与孔喉壁的夹角;
由于进汞很慢,故汞的前后液面变化极小,阻力P2i和P3i均较小,可忽略,故(1)式可简化为:
Figure FDA0003463427470000013
设定水银的润湿接触角θ为146°,即|cosθ|≈0.829,利用测高仪测出水银表面的张力系数σ:
Figure FDA0003463427470000014
式中:d水银—水银密度;
g—重力加速度,取值9.8N/kg;
h—毛细管内外水银面高度差;
r—毛细玻璃管的半径:
通过以上公式计算得到σ=461.44×10-3N/m;
将σ和θ的值带入(2)式中并结合单位换算结果,得出:
Figure FDA0003463427470000021
式中:pi单位为MPa,ri单位为nm;
从而建立进汞压力与孔喉半径的关系式,依据(4)式得到实际孔喉大小及分布情况,包括微纳米级孔喉;
为了进 一步高精度直观的反映孔喉分布情况,对退汞变化量dv做如下算法:
dv/d(logd) (5)
式中:dv—退汞变化量;
d(logd)—两相邻喉道半径取对数后的变化;
由于喉道中的毛细管压力远大于孔隙中的毛细管压力,故汞是从喉道中退出,孔隙中仍然充满汞,据此结合压汞曲线计算出孔喉体积比:
Figure FDA0003463427470000022
式中:bt为孔喉体积比;
Sr为残余汞饱和度;
Smax为最大进汞饱和度;
引进数学上的期望和方差分层段、分级别的处理孔喉分布,对不同级别的孔隙半径和喉道半径加权处理得到不同级别的孔隙半径和喉道半径的期望值和方差值:
Figure FDA0003463427470000023
Figure FDA0003463427470000024
式中:
Figure FDA0003463427470000025
为期望—某一级别孔隙或喉道的平均半径;
ΔSHgi—进汞饱和度增量;
j与k分别代表某一级别孔隙或喉道的上限与下限,i表示此区间其中的一点;
s2为方差—表示某一级孔隙半径或喉道半径分布的均值程度;
经过上述计算得到各级孔隙和各级喉道的相关性参数
Figure FDA0003463427470000031
及s2,基于压汞曲线并结合公式(6)算出各级喉道所占的比例,然后与孔隙度Φ和渗透率K做相关性分析,确定储层渗透性的主控因素;
步骤3:相关性分析之后,利用扫描电镜的超高分辨率镜下验证各级孔喉的真实存在,测量其孔径的宽度,同步骤2所得到的孔径分布做对比。
2.如权利要求1所述的基于高压压汞多尺度表征致密储层孔喉特征的方法,其特征在于,所述孔渗仪为全自动覆压孔渗仪—PoroPDP-200,所述全自动孔径分析仪为PoreMaster系列高压压汞仪。
CN201711026567.6A 2017-10-27 2017-10-27 一种基于高压压汞多尺度表征致密储层孔喉特征的方法 Active CN109632594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711026567.6A CN109632594B (zh) 2017-10-27 2017-10-27 一种基于高压压汞多尺度表征致密储层孔喉特征的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711026567.6A CN109632594B (zh) 2017-10-27 2017-10-27 一种基于高压压汞多尺度表征致密储层孔喉特征的方法

Publications (2)

Publication Number Publication Date
CN109632594A CN109632594A (zh) 2019-04-16
CN109632594B true CN109632594B (zh) 2022-03-18

Family

ID=66050788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711026567.6A Active CN109632594B (zh) 2017-10-27 2017-10-27 一种基于高压压汞多尺度表征致密储层孔喉特征的方法

Country Status (1)

Country Link
CN (1) CN109632594B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132796B (zh) * 2019-05-22 2020-05-08 中国石油大学(北京) 页岩三维接触角及润湿非均质性评价系统
CN110702580B (zh) * 2019-10-21 2022-02-11 西安石油大学 一种基于信息熵的致密砂岩储层孔喉非均质性表征方法
CN111398116B (zh) * 2020-03-04 2020-12-29 中国地质大学(武汉) 一种利用特定方向压汞法表征页岩各向异性的方法
CN111521539B (zh) * 2020-05-14 2021-04-06 中国地质大学(武汉) 一种致密砂砾岩储层中不同类型孔隙结构定量表征方法
CN112304841B (zh) * 2020-09-24 2023-04-25 中国石油大学(华东) 一种岩石孔隙结构仿真测试系统及模拟试验方法
CN112966455B (zh) * 2021-05-18 2021-07-27 西南石油大学 基于常规压汞资料建立低渗透砂岩孔隙网络模型的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900942A (zh) * 2014-01-10 2014-07-02 中国石油大学(华东) 基于高压压汞分析的储层微观孔喉参数的连续表征方法
CN104458525A (zh) * 2013-09-13 2015-03-25 中国石油天然气股份有限公司 一种常规压汞曲线表征微观孔隙喉道特征的采集处理方法
CN104634718A (zh) * 2015-03-05 2015-05-20 中国石油大学(华东) 应用核磁共振表征致密砂岩孔径分布的标定方法
CN105574320A (zh) * 2014-11-07 2016-05-11 中国石油化工股份有限公司 低渗砂岩储层有效渗流能力的评价方法
CN107132171A (zh) * 2017-04-13 2017-09-05 东北石油大学 一种基于压汞‑氮吸附联测数据确定致密储层孔径分布的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458525A (zh) * 2013-09-13 2015-03-25 中国石油天然气股份有限公司 一种常规压汞曲线表征微观孔隙喉道特征的采集处理方法
CN103900942A (zh) * 2014-01-10 2014-07-02 中国石油大学(华东) 基于高压压汞分析的储层微观孔喉参数的连续表征方法
CN105574320A (zh) * 2014-11-07 2016-05-11 中国石油化工股份有限公司 低渗砂岩储层有效渗流能力的评价方法
CN104634718A (zh) * 2015-03-05 2015-05-20 中国石油大学(华东) 应用核磁共振表征致密砂岩孔径分布的标定方法
CN107132171A (zh) * 2017-04-13 2017-09-05 东北石油大学 一种基于压汞‑氮吸附联测数据确定致密储层孔径分布的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China;Jian Xiong et al.;《Journal of Natural Gas Science and Engineering》;20150108;第22卷;第530-539页 *
压汞—恒速压汞在致密储层微观孔喉结构定量表征中的应用——以鄂尔多斯盆地华池—合水地区长7储层为例;喻建 等;《石油实验地质》;20151130;第37卷(第6期);第789-795页 *
致密砂岩储集空间多尺度表征——以松辽盆地齐家地区高台子油层为例;李易霖 等;《石油与天然气地质》;20161231;第37卷(第6期);第915-922页 *

Also Published As

Publication number Publication date
CN109632594A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109632594B (zh) 一种基于高压压汞多尺度表征致密储层孔喉特征的方法
Gao et al. Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones
Xi et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China
CN104196524B (zh) 一种欠饱和煤储层开发的气水产出动态相渗曲线测量方法
CN108518212A (zh) 一种计算页岩气藏复杂裂缝网络非稳态产量的方法
Zhang et al. Experimental and numerical studies of spontaneous imbibition with different boundary conditions: case studies of middle bakken and berea cores
CN110296931B (zh) 一种致密砂岩油水相对渗透率信息的表征方法及系统
CN106525684B (zh) 一种基于孔喉结构的致密砂岩克氏渗透率的校正方法
CN110927035A (zh) 一种低渗致密砂岩束缚水饱和度计算方法
CN108133086A (zh) 一种应力敏感储层中产水压裂气井裂缝半长反演方法
CN103575631A (zh) 岩石渗透性测试系统及测试方法
Xiao et al. A full-scale characterization method and application for pore-throat radius distribution in tight oil reservoirs
CN107132171A (zh) 一种基于压汞‑氮吸附联测数据确定致密储层孔径分布的方法
CN106383221A (zh) 一种地层应力敏感实验测试方法及装置
CN110470584B (zh) 一种评价渗吸和水锁综合效应的方法
CN106777515B (zh) 一种基于岩心实验资料分析致密气井产能的方法
CN110487693A (zh) 一种确定泥页岩不同类型孔隙度的方法
Xu et al. Pore structure characterization of tight sandstone from Sbaa Basin, Algeria: investigations using multiple fluid invasion methods
CN110095584B (zh) 一种储层油水饱和度校正方法
CN110309611B (zh) 基于气水厚度分布的气水两相渗流规律预测方法及系统
CN115559715A (zh) 一种超高压低渗透气藏储层产水评价方法
CN114370269B (zh) 深层碳酸盐岩气藏有效储层物性下限综合确定方法
Zhu et al. Multi-scale characterization of organic matter pore space in deep marine shale combined with mathematical morphology
Yang et al. Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory
CN111577264A (zh) 裂缝孔隙型油藏水平井产能预测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant