CN109613555A - 验证双频LiDAR探测仪的海陆一体化检校场布设方法 - Google Patents
验证双频LiDAR探测仪的海陆一体化检校场布设方法 Download PDFInfo
- Publication number
- CN109613555A CN109613555A CN201811328824.6A CN201811328824A CN109613555A CN 109613555 A CN109613555 A CN 109613555A CN 201811328824 A CN201811328824 A CN 201811328824A CN 109613555 A CN109613555 A CN 109613555A
- Authority
- CN
- China
- Prior art keywords
- sea
- land
- calibration field
- control point
- seabed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000010354 integration Effects 0.000 title abstract 3
- 238000005259 measurement Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000006855 networking Effects 0.000 claims description 3
- 238000002310 reflectometry Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000012876 topography Methods 0.000 abstract description 6
- 239000003653 coastal water Substances 0.000 abstract 1
- 238000012937 correction Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000013598 vector Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 3
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开一种验证双频LiDAR探测仪的海陆一体化检校场布设方法,包括以下步骤:步骤1,在近海域范围内,采集水文环境参数,从中选定海域检校场;制作若干个个靶标,作为控制点,将靶标平均放置在海底部;另在海底布设激光发射器,也在中心放置应答器,步骤2,测量海底控制点三维坐标以及海底地形数据;步骤3,建立陆域检校场,并在陆域检校场内部布设靶标作为控制点,步骤4,将步骤3中所得出的控制点坐标信息与步骤2所测得的海陆检校场地形数据进行区域网平差,得到地形数据并将坐标基准统一,以此构建海陆一体化检校场。本发明能够准确的确保LiDAR探测仪扫描地形的精度,以满足LiDAR探测仪海底地形测量的要求。
Description
技术领域
本发明属于海洋地形测绘技术领域,特别是涉及到一种验证双频LiDAR探 测仪的海陆一体化检校场布设方法。
背景技术
目前,利用双频激光雷达(LiDAR)探测仪对海底地形测量仅仅只能够依 靠其他相关技术对所测出的海底地形数据来验证精度,受到其他技术的限制较 大,不能够很好的验证双频LiDAR探测仪对海底地形测量的精度,也就间接的 影响到LiDAR海底地形测量技术的发展。因此,如何能够准确的确保LiDAR 探测仪扫描地形的精度,以满足LiDAR探测仪海底地形测量的要求,是我们当 前急需解决的一个问题。
发明内容
本发明针对LiDAR探测仪海底地形测量技术无法准确验证精度的问题,提 供了一种海陆一体化检校场布设方法。
本发明提供的技术方案包括以下步骤:
步骤1,在近海域范围内,采集多个区域内的水文环境参数,包括有水色、 透明度、水深、含沙量,从中选定一块10km×2km的合适区域作为海域检校场; 采用耐腐蚀、反射率高的材料制作若干个个靶标,在靶标中心放置应答器,作 为控制点,将靶标平均放置在检校场内不同深度的海底部;另在海底布设若干 个个532波段激光发射器,也在中心放置应答器,能够实时向LiDAR接收系统 发射激光束;
步骤2,采用测量船搭载多波束测深系统测量及船载换能器通过自由网平 差得出海底控制点三维坐标以及海底地形数据;
步骤3,同时在海域检校场周围选取地形地貌多变,拥有多种类的复杂地 物类型的约10km×4km的地区建立陆域检校场,并在陆域检校场内部均匀布设 2m×2m的靶标作为控制点。同时采用GPS静态观测和无人机得出陆域控制点 的精确三维坐标及陆域检校场的地形数据。将陆域控制点点位信息作为已知值, 海域检校场通过自由网获取的控制点为初始值,进行海陆一体化联网平差,解 算得出海陆一体化控制点三维坐标。
步骤4,将步骤3中所得出的海陆一体控制点坐标信息与步骤3及步骤2所 测得的海陆检校场地形数据进行区域网平差,得到更高精度的地形数据并将坐 标基准统一,以此构建海陆一体化检校场。
本发明通过上述步骤实现海陆一体化检校场的构建,实现双频LiDAR探测 仪精度的验证,用于双频LiDAR探测仪的检校,确保LiDAR探测仪扫描地形 的精度,避免依赖其他技术进行验证,大大促进LiDAR海底地形测量技术的发 展。
附图说明
图1为本发明实施的流程图;
具体实施方式
参见图1所示双频LiDAR探测仪海陆检校场布设方法流程图,以下针对实 施例流程中的各步骤,对本发明方法做进一步详细描述。
步骤1,双频LiDAR探测仪的测量精度和水质密切相关,为了更好的验证 探测仪的精度,需要选定一块典型区域作为检校场。采用透明度盘、水色仪、 测深仪到北海涠洲岛附近海域测量出各个不同区域的透明度、水色及深度数据, 并且在各个区域采样,测量出海水的含沙量、盐度及PH值数据。综合所有测 出的水文环境数据,选定一块10km×21km的海域作为后续验证探测仪精度的海 域检校场。首先,采用耐腐蚀、反射率高的材料制作若干个个靶标,靶标设计 为楼梯形状、金字塔形或波浪形,可以达到模拟地形的效果,用皮尺精确测量 出各个靶标的尺寸参数,并且可以为后续验证精度提供参考数据。利用大型船 只及起重机将靶标放置到不同区域、不同深度的检校场内,在靶标中心放置应 答器,作为控制点,同时,在海底均匀布设若干个532波段的激光发射器,作 为海底控制点,当激光LiDAR工作时,开启激光器。并且在激光器旁安置水下 应答器,用测距仪测量出激光器与应答器之间的距离参数。
步骤2,采用一艘测量船,围绕不同水下应答器以半径30m的圆周测距. 在圆周上每个航迹点,获取船载换能器的GPS坐标及船载换能器到水下应答器 之间距离,并利用压力传感器获得船载换能器的到水下应答器的深度.将船载 换能器与水下应答器的深度差作为附加约束,采用距离交会定位原理确定每个 控制点的三维坐标.完成上述测量后,借助水下控制点上应答器,开展应答器 间相互测距,获得控制点间的三维距离观测值.获得所有观测信息后,将开展 水下控制网点的坐标确定。
欲将海底三维自由网约束在绝对坐标框架内,须为其提供1个三维绝对坐 标基准及3个方位基准,即至少需要3个已知坐标的控制点。假设水下控制网 由m个控制点组成,其中m1个为已知控制点,m2个为待求控制点.则观测边 总个数为必要观测数3(m-m1),多余观测数为
设第i条观测边的两端点分别为Ai和Bi,声波在两端的应答器间的单程传 播时间为ti,由于应答器在海底的深度近似相等,传播过程中速度v可近似认 为相等,则观测斜距Si=vti;若两端点应答器的初始坐标分别为和则观测方程为:
式中,为两端点应答器间几何距离,由 两端点应答器坐标反算得到;分别为声速等效误差和时延等效误差; εi为随机误差。
由于两端点应答器基本处于同温层,声线传播速度基本不变,可忽略, 经过外部设备改正后,观测边的误差方程为
三维约束平差模型中的观测方程总个数为C=C1+C2,其中:
式中:C1为两端点Ai和Bi均为待求控制点的观测边个数,则第i条边的误 差方程如式(1)所示;C2为只有一端Ai为待求控制点的观测边个数,则根据式(1) 其误差方程为:
综合上述两种情况可建立C个误差方程,其矩阵形式如:
V=Bdx-l (6)
式中:B为系数矩阵;v为观测值改正数向量;l为观测值与反算距离的差向 量。
根据水下控制点坐标可以确定为
x=x0+dx (9)
式中:P为观测值权阵,Q为待求点坐标的协因数阵。
多次迭代直至||dx||2小于设定线插eps,即可获得其余应答器的高质量定位 解。
第j个水下应答器的内符合精度可用下式来评估:
再采用测量船搭载多波束测深系统,采集布设好的海底检校场地形数据、 靶标数据以及控制点数据。并且,基于前文中采集的靶标尺寸以及控制点数据 验证海底检校场的地形数据,得出高精度的海底检校场地形数据。
步骤3,同时在海域检校场周围选取地形地貌多变,拥有多种类的复杂地 物类型的约10km×4km的地区作为陆域检校场建址。定制2m×2m的水泥靶标, 于其中心安置测量标志作为控制点,并将若干个靶标均匀布设于陆域检校场内。 应用GPS静态控制测量解算靶标控制点三维坐标。。在陆域控制点进行静态观 测以及数据后处理后得到的控制点点位信息作为已知值,海域检校场通过自由 网获取的控制点为初始值,进行海陆一体化联网平差,解算得到海域检校场控 制点更高精度的点位信息。
设L1,L2分别表示陆域控制网相互独立观测值向量,V1,V2表示它们的 改正数向量,P1,P2表示它们的权阵,Xa,Xb分别表示海域控制网内部各点 上的初始值,而已Y表示公共点上的未知数。则误差方程可以表示为:
V1=A1Xa+B1Y+l1
V2=A2Xb+B2Y+l2 (12)
根据间接平差原理,联合平差的法方程可以表示为:
(13)式中,
联合平差是将(13)式进行整体解算,由该方程组的第一式和第二式得:
将(14)式代入(12)式的第三式,得到联合平差时消去Xa和Xb后的约 化方程
[Nλt]Y+[Wλt]=0 (15)
其中,
于是解的联系待定量Y为
将(17)式代回至(14)式求得海域控制网的内部待定量Xa和Xb。
接着应用无人机对检校场范围进行航摄,获取高分辨率(4cm)的航片, 通过后处理得到该区域正射影像和高精度DEM数据。正射影像用于辅助机载 LiDAR相邻航带重叠区同名点匹配,高精度DEM数据用于检核陆域校正后的 机载LiDAR点云数据精度。
步骤4,将步骤3中所得出的海陆一体控制点坐标信息与步骤3及步骤2所 测得的海陆检校场地形数据进行区域网平差,得到更高精度的地形数据并将坐 标基准统一,以此构建海陆一体化检校场。
无人机搭载中小幅面数字传感器,其成像模型与传统航测面阵相机相同, 即共线条件方程,如式(18)所示。未知数包括遥感影像外方位元素和待定点 三维坐标,共9个未知数。光束法平差是一种非线性优化求解方法,式(18) 的误差方程形式见式(19)。
式中,为外方位元素的改正数;A、B为系 数矩阵;dt=|ΔX ΔY ΔZ|T为待定点的坐标改正数。
光束法区域网平差采用最小二乘优化求解,即vTpv=min,则N如式20所 示。
式中, 法方程矩阵的子块N12为稀疏矩阵,其稀疏程度由待定点的重叠度决定。
多波束测深系统获取的数据采用的是WGS84坐标系,高程系统采用的是 大地高系统,所以要利用测区内分布均匀的首级控制点,运用布尔沙模型计算 出七参数,将激光点云从WGS84坐标系转换到工程坐标系下。
式中:ΔX0,ΔY0,ΔZ0为三个平移参数,εX,εY,εZ为三个旋转参数,m为尺 度变化参数。
高程拟合利用沿线的首级控制点计算出其高程异常值,采用解析内插与三 次样条函数法将点云高程由大地高转换为正常高,得到工程坐标系下的点云成 果。
然后在对点云数据进行高精度纠正。
1、平面位置高精度纠正
基于沿高速公路路肩布设靶标控制点,采用分段仿射变换方法对点云平面 坐标进行改正。点云平面坐标校正方法:
式中,(X,Y)T为校正后点云平面坐标,(x0,y0)T为校正前点云平面坐标, a,b,c,d,dx,dy为仿射变换参数。
2、高程高精度就纠正
为保证点云数据的高程精度,在完成点云的平面位置纠正后,就需要对点 云的高程进行高精度纠正。点云高程高精度纠正采用三角网的方法进行。该方 法要求先计算各个靶标控制点处点云高程与靶标点的高差值dz,并自动生成覆 盖点云数据的最小外接矩形,以靶标控制点和外接矩形的四个顶点构成三角网, 建立高程改正模型。
假设点云在三角网模型中三个顶点的坐标为(x1,y1,z1),,(x2,y2,z2) (x3,y3,z3),由于海底靶标控制点间距在1km以内,距离较短,可认为在每个三 角形范围内高程异常呈线性变化,则可得:
由上式可得点云数据改正值:
式中,x,y为点云平面坐标,dz为点云高程改正值, xi,yi(i=1,2,3);dzi(i=1,2,3)为三角形顶点点云高程与控制点高程差值。
基于以上步骤可以实现利用海陆一体化检校场验证双频LiDAR探测仪精度 的目的。
本文中所描述的具体实例仅仅是对本发明精神作举例说明。本发明所属技 术领域的技术人员可以对所描述的具体实例做各种各样的修改或补充或采用类 似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的 范围。
Claims (1)
1.一种验证双频LiDAR探测仪的海陆一体化检校场布设方法,其特征在于包括以下步骤:
步骤1,在近海域范围内,采集多个区域内的水文环境参数,包括有水色、透明度、水深、含沙量,从中选定一块10km×2km的合适区域作为海域检校场;采用耐腐蚀、反射率高的材料制作若干个个靶标,在靶标中心放置应答器,作为控制点,将靶标平均放置在检校场内不同深度的海底部;另在海底布设若干个个532波段激光发射器,也在中心放置应答器,能够实时向LiDAR接收系统发射激光束;
步骤2,采用测量船搭载多波束测深系统测量及船载换能器通过自由网平差得出海底控制点三维坐标以及海底地形数据;
步骤3,同时在海域检校场周围选取地形地貌多变,拥有多种类的复杂地物类型的约10km×4km的地区建立陆域检校场,并在陆域检校场内部均匀布设2m×2m的靶标作为控制点,同时采用GPS静态观测和无人机得出陆域控制点的精确三维坐标及陆域检校场的地形数据,将陆域控制点点位信息作为已知值,海域检校场通过自由网获取的控制点为初始值,进行海陆一体化联网平差,解算得出海陆一体化控制点三维坐标;
步骤4,将步骤3中所得出的海陆一体控制点坐标信息与步骤3及步骤2所测得的海陆检校场地形数据进行区域网平差,得到更高精度的地形数据并将坐标基准统一,以此构建海陆一体化检校场。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811328824.6A CN109613555B (zh) | 2018-11-09 | 2018-11-09 | 验证双频LiDAR探测仪的海陆一体化检校场布设方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811328824.6A CN109613555B (zh) | 2018-11-09 | 2018-11-09 | 验证双频LiDAR探测仪的海陆一体化检校场布设方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109613555A true CN109613555A (zh) | 2019-04-12 |
CN109613555B CN109613555B (zh) | 2022-12-02 |
Family
ID=66003991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811328824.6A Active CN109613555B (zh) | 2018-11-09 | 2018-11-09 | 验证双频LiDAR探测仪的海陆一体化检校场布设方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109613555B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110542893A (zh) * | 2019-09-05 | 2019-12-06 | 桂林理工大学 | 一种机载双频激光雷达三通道光学接收装置 |
CN112652064A (zh) * | 2020-12-07 | 2021-04-13 | 中国自然资源航空物探遥感中心 | 海陆一体三维模型构建方法、装置、存储介质和电子设备 |
CN113819892A (zh) * | 2021-07-01 | 2021-12-21 | 山东大学 | 基于半参数估计和附加深度约束的深海基准网平差方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100157736A1 (en) * | 2007-06-15 | 2010-06-24 | University Of Limerick | Method and apparatus for determining the topography of a seafloor and a vessel comprising the apparatus |
CN101833081A (zh) * | 2010-04-23 | 2010-09-15 | 哈尔滨工程大学 | 深海海底应答器绝对位置的精确标校方法 |
CN103106339A (zh) * | 2013-01-21 | 2013-05-15 | 武汉大学 | 同步航空影像辅助的机载激光点云误差改正方法 |
CN103217688A (zh) * | 2013-04-16 | 2013-07-24 | 铁道第三勘察设计院集团有限公司 | 一种基于不规则三角网机载激光雷达点云平差计算方法 |
CN104820217A (zh) * | 2015-04-14 | 2015-08-05 | 同济大学 | 一种多法向平面的多元线阵探测成像激光雷达的检校方法 |
CN105444779A (zh) * | 2015-11-24 | 2016-03-30 | 山东科技大学 | 一种船载水上水下一体化测量系统野外实时校准方法 |
CN105866791A (zh) * | 2016-05-20 | 2016-08-17 | 中铁第勘察设计院集团有限公司 | 采用靶标控制网提高车载LiDAR点云数据精度的方法 |
-
2018
- 2018-11-09 CN CN201811328824.6A patent/CN109613555B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100157736A1 (en) * | 2007-06-15 | 2010-06-24 | University Of Limerick | Method and apparatus for determining the topography of a seafloor and a vessel comprising the apparatus |
CN101833081A (zh) * | 2010-04-23 | 2010-09-15 | 哈尔滨工程大学 | 深海海底应答器绝对位置的精确标校方法 |
CN103106339A (zh) * | 2013-01-21 | 2013-05-15 | 武汉大学 | 同步航空影像辅助的机载激光点云误差改正方法 |
CN103217688A (zh) * | 2013-04-16 | 2013-07-24 | 铁道第三勘察设计院集团有限公司 | 一种基于不规则三角网机载激光雷达点云平差计算方法 |
CN104820217A (zh) * | 2015-04-14 | 2015-08-05 | 同济大学 | 一种多法向平面的多元线阵探测成像激光雷达的检校方法 |
CN105444779A (zh) * | 2015-11-24 | 2016-03-30 | 山东科技大学 | 一种船载水上水下一体化测量系统野外实时校准方法 |
CN105866791A (zh) * | 2016-05-20 | 2016-08-17 | 中铁第勘察设计院集团有限公司 | 采用靶标控制网提高车载LiDAR点云数据精度的方法 |
Non-Patent Citations (4)
Title |
---|
MARTIN J等: "IMU Calibration and Validation in a Factory,Remote on Land and at Sea", 《2014 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM - PLANS 2014》 * |
孔令尧: "机载激光雷达检校场布设及检校方法浅析", 《经纬天地》 * |
王薇薇 等: "机载激光雷达测量检校场布设及检校精度探讨", 《北京测绘》 * |
谢春喜: "机载Lidar点云精度检测及误差控制措施", 《铁道勘察》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110542893A (zh) * | 2019-09-05 | 2019-12-06 | 桂林理工大学 | 一种机载双频激光雷达三通道光学接收装置 |
CN112652064A (zh) * | 2020-12-07 | 2021-04-13 | 中国自然资源航空物探遥感中心 | 海陆一体三维模型构建方法、装置、存储介质和电子设备 |
CN112652064B (zh) * | 2020-12-07 | 2024-02-23 | 中国自然资源航空物探遥感中心 | 海陆一体三维模型构建方法、装置、存储介质和电子设备 |
CN113819892A (zh) * | 2021-07-01 | 2021-12-21 | 山东大学 | 基于半参数估计和附加深度约束的深海基准网平差方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109613555B (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110779498B (zh) | 基于无人机多视点摄影的浅水河流水深测绘方法及系统 | |
Hodúl et al. | Satellite derived photogrammetric bathymetry | |
Buckley et al. | Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations | |
KR101099484B1 (ko) | 3차원지형측량제어모듈을 통한 3차원 지도 모델링 데이터 생성장치 및 방법 | |
KR101965965B1 (ko) | 위성영상과 제공 rpc로부터 제작된 수치표고모델의 자동 오차보정 방법 | |
CN104407332B (zh) | 一种地基sar更新dem的校正方法 | |
Nagihara et al. | Use of a three‐dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolution | |
CN109613555B (zh) | 验证双频LiDAR探测仪的海陆一体化检校场布设方法 | |
CN105716581B (zh) | 基于双介质摄影技术的水下物点坐标确定方法和装置 | |
KR20130004227A (ko) | Sar 영상 내의 픽셀의 지리 좌표를 결정하기 위한 방법 | |
RU2519269C1 (ru) | Способ съемки рельефа дна акватории и устройство для съемки рельефа дна акватории | |
CN105488852B (zh) | 一种基于地理编码和多维校准的三维图像拼接方法 | |
KR20150101765A (ko) | 연안지역 정밀 지형도 제작방법 | |
Dix et al. | Accuracy evaluation of terrestrial LiDAR and multibeam sonar systems mounted on a survey vessel | |
González-Aguilera et al. | 3D Modelling and accuracy assessment of granite quarry using unmmanned aerial vehicle | |
Stateczny et al. | Multibeam echosounder and LiDAR in process of 360-degree numerical map production for restricted waters with HydroDron | |
Scaioni et al. | Technical aspects related to the application of sfm photogrammetry in high mountain | |
Liu et al. | Close range digital photogrammetry applied to topography and landslide measurements | |
Triglav-Čekada et al. | A simplified analytical model for a-priori LiDAR point-positioning error estimation and a review of LiDAR error sources | |
Prempraneerach et al. | Hydrographical survey using point cloud data from laser scanner and echo sounder | |
Popescu et al. | An overall view of LiDAR and Sonar systems used in geomatics applications for hydrology. | |
Lee et al. | Generation of Dense and High-Precision Digital Elevation Model Using Low-Cost Unmanned Aerial Vehicle and Space-Borne TanDEM-X to Measure Exposed Area Change Due to Tidal Invasion | |
Shin et al. | A study on airborne LiDAR calibration and operation techniques for bathymetric survey | |
Passoni et al. | The Estimation of Precisions in the Planning of Uas Photogrammetric Surveys | |
Wu et al. | Improvement of LiDAR data accuracy using 12-parameter affine transformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |