CN109612601B - 一种电力设备温度和局部放电一体化检测系统及方法 - Google Patents
一种电力设备温度和局部放电一体化检测系统及方法 Download PDFInfo
- Publication number
- CN109612601B CN109612601B CN201811589536.6A CN201811589536A CN109612601B CN 109612601 B CN109612601 B CN 109612601B CN 201811589536 A CN201811589536 A CN 201811589536A CN 109612601 B CN109612601 B CN 109612601B
- Authority
- CN
- China
- Prior art keywords
- temperature
- partial discharge
- power equipment
- wavelength
- fbg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1218—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Lasers (AREA)
Abstract
本发明公开了一种电力设备温度和局部放电一体化检测系统及方法,包括:可调谐窄带激光器对FBG进行多次扫描,获得FBG的平均反射光谱,通过平均反射光谱的中心波长与温度的关系得到待测设备的温度信息;另外,在进行完温度检测后马上将FBG反射谱线性斜率最大处对应的波长值λsteep设置为可调谐窄带激光器的输出波长,能够准确检测局部放电是否发生。通过本方法能够以同一个FBG检测系统为基础,既检测电力设备温度又检测其局部放电,极大地提高了检测效率,节省了检测的成本。
Description
技术领域
本发明光学传感测量技术涉及领域,具体的说,是一种电力设备温度和局部放电一体化检测系统及方法。
背景技术
光纤布拉格光栅(FBG)是一种纤芯折射率周期性变化的光栅,其既对温度敏感又对应变敏感,可用来检测电力设备温度和局部放电,检测原理是:每次对FBG进行扫描都会得到一个反射谱,反射谱的中心波长由光栅周期和纤芯折射率决定,当环境温度发生变化时,FBG产生的热膨胀和热光效应会改变其周期和纤芯折射率,从而引起FBG反射谱偏移,利用温度和中心波长之间存在的一一对应关系,检测FBG反射谱中心波长的变化即可实现温度测量;当局部放电发生时,其产生的超声波振动作用于FBG所引起的应变变化会使光栅周期和纤芯折射率发生改变,进而导致FBG反射谱左右偏移,通过解调FBG反射谱的变化即可实现局部放电的检测。
然而,现有电力设备温度和局部放电的检测技术多是对温度和局部放电分别进行检测,尚无成熟的基于一个FBG既检测温度又检测局部放电的技术,主要原因是在于利用一个FBG既检测电力设备温度又检测局部放电时,存在交叉敏感的问题。一方面,FBG检测电力设备温度时,局部放电脉冲会使FBG反射谱出现的许多“毛刺”,容易引起谱峰值误判,而反射谱峰值与FBG中心波长对应,FBG中心波长又与温度对应,因而谱峰值的误判会影响温度检测结果;另一方面,电力设备局部放电的准确检测依赖于局部放电外的其他因素不能引起FBG反射谱偏移这一条件,而电力设备的温度变化会引起FBG反射谱偏移,进而影响局部放电检测的灵敏度。
发明内容
本发明提供一种电力设备温度和局部放电一体化检测系统及方法,实现了利用同一个FBG进行电力设备的温度和局部放电一体化的检测
本发明解决上述技术问题的技术方案如下:一种电力设备温度和局部放电一体化检测系统,包括可调谐窄带激光器、光耦合器、FBG、光电探测器、数据采集卡和计算机,其中,
所述可调谐窄带激光器用于发射检测激光对所述FBG进行扫描;
所述光耦合器用于将来自可调谐窄带激光器的激光耦合进所述FBG以及将来自所述FBG的反射光耦合进所述光电探测器;
所述FBG紧贴待测物体放置,所述FBG用于对进入其中的光束进行反射;
所述光电探测器用于将接收到的反射光转换成电压信号;
所述数据采集卡用于采集所述光电探测器的电压信号并输出至所述计算机;
所述计算机用于将所述电压信号转换成反射谱,且所述计算机基于多个反射谱计算得到平均反射谱曲线,并计算所述平均反射谱曲线的最大斜率处对应的波长,调节所述可调谐窄带激光器输出的激光波长对所述FBG进行扫描,并获得所述FBG所测得的局部放电脉冲谱图。
一种电力设备温度和局部放电一体化检测方法,包括以下步骤:
步骤1,计算机控制可调谐窄带激光器的输出激光的波长λ梯次变化对FBG进行扫描;同时光电探测器和数据采集卡采集所述FBG的反射光强度的变化,并由计算机显示为电压信号随时间变化的反射谱;
步骤2,连续进行M次步骤1,且相邻两次扫描起始时间间隔为ΔtM,获得M个所述FBG反射谱;
步骤3,根据M个所述反射谱,计算得出所述FBG的平均反射谱,并根据所述平均反射谱计算得到FBG所测到的温度Tr;
步骤4,计算所述平均反射谱的最大斜率处对应的波长λsteep,并通过计算机将可调谐窄带激光器的激光输出波长设置为λsteep;
步骤5,将所述可调谐窄带激光器的输出波长固定在所述波长λsteep,保持tPD秒,同时数据采集卡持续采集光电探测器的输出波形;
步骤6,对所述输出波形中的脉冲波形进行提取和统计,在计算机上形成局部放电脉冲统计谱图。
本发明的有益效果是:本发明通过可调谐窄带激光器发射激光对FBG进行M次扫描,再将M次扫描FBG获得的M个反射谱取平均值,根据取得的平均反射谱的中心波长能够准确计算出电力设备的温度;另外,根据平均反射谱曲线的最大斜率处对应的波长调节所述可调谐窄带激光器输出的激光波长对所述FBG进行扫描,并且通过设定局部放电的检测时间,使得检测期间温度变化引起的FBG反射谱偏移小于1pm,可以避免温度对局部放电检测的影响。因此,通过本发明提供的一体化检测方法能够在使用同一个FBG的情况下,既能准确检测电力设备温度,又能准确检测其局部放电的情况,极大地提高了检测的效率。
进一步地,所述步骤1前还包括:预先标定所述FBG的反射谱的中心波长λr与温度T的关系,波长λr与温度T关系表达式为:
λr=kT+b
其中,反射谱中心波长λr的单位为nm;温度T的单位为℃;k为斜率,单位是nm/℃;b为截距,单位是nm。
采用上述进一步方案的有益效果是:预先标定FBG的反射谱的中心波长与温度的关系,方便后续根据对FBG进行扫描获得的反射谱计算FBG检测到的温度。
进一步地,所述可调谐窄带激光器所输出激光的波长λ梯次变化满足公式:
λ(t)=λ0+n×Δλ
其中,Δλ为所述可调谐窄带激光器的波长变化步长,单位为nm;且λ(t)=λ0+n×Δt的整数n与时间t的关系满足公式:
n×Δt≤t<(n+1)×Δt(n=0,1,2,3,…,N)
N=(Tmax-Tmin)k/Δλ
λ0=Tmink+b
其中,Tmin是电力设备的历史最低温度,单位为℃,Tmax是电力设备的历史最高温度,单位为℃,Δt为时间间隔,单位为s。
采用上述进一步方案的有益效果是:可调谐窄带激光器输出激光的波长呈梯次变化,输出波长与检测时间相对应,且变化步长Δλ可根据温度检测精度和检测速度要求适当改变,具有灵活性。
进一步地,所述步骤2中连续进行M次步骤1,所述次数M满足关系式:10≤M≤20。
采用上述进一步方案的有益效果是:对所述FBG进行多次扫描,而且扫描次数M满足10≤M≤20,既保证了获得较多反射谱数据进行平均消除噪声,又避免了因扫描时间过长导致温度发生较大变化而影响检测精度。
进一步地,所述相邻两次扫描起始时间间隔ΔtM满足公式:
ΔtM=Δt×N+Δtp
其中,Np是任一正整数,工频f=50Hz,10≤NM≤20,NM是正整数,且1≤NM<M。
采用上述进一步方案的有益效果是:通过设置相邻两次扫描起始时间间隔,可将具有周期特性的局部放电干扰噪声转化成与时间无关的白噪声,同时可保证M次扫描起始时间对应的工频电压相位遍历一个工频周期NM次,最后通过将多个反射谱取平均消除局部放电干扰。
进一步地,所述步骤2至所述步骤4所用的总时间t2-4满足公式:
t2-4×Tc<T′
t2-4=t2+t3+t4
t2=M×N×Δt+(M-1)×Δtp
其中,t2-4是步骤2至步骤4所用的总时间,单位为s;Tc是温度变化速率,由电力设备一天内的温度变化决定,单位是℃/s,T′是电力设备温度检测的精度要求,单位为℃;t2、t3和t4分别是步骤2、步骤3和步骤4所用的时间,t3和t4由计算机软件计算时间决定,单位为s。
采用上述进一步方案的有益效果是:通过限定进行步骤2至步骤4所用的时间,使得所述可调谐窄带激光器在对所述FBG进行多次扫描时,避免所用时间过长导致温度变化而影响检测结果的准确度。
进一步地,所述步骤5中的时间tPD满足公式:
其中,f=50Hz,Tc是温度变化速率,由具体电力设备一天内的温度变化决定,单位是℃/s,k是公式λr=kT+b的斜率,单位是nm/℃,Δλ′是tPD秒内温度变化引起的FBG反射谱中心波长的偏移量,Δλ′=0.001nm。
采用上述进一步方案的有益效果是:局部放电检测在设定时间内完成,可以避免因检测时间过长而温度发生变化,引起FBG反射谱偏移对检测结果造成的不良影响,保证了局部放电检测的灵敏度。
进一步地,所述电力设备温度和局部放电一体化检测方法再次进行局部放电检测时,执行步骤1至步骤5,以重新设置所述可调谐窄带激光器的工作波长。
采取上述进一步方案的有益效果是:通过重新设置所述可调谐窄带激光器的工作波长以补偿温度变化对局部放电检测带来的影响,可以保证不同温度下局部放电的检测灵敏度。
附图说明
图1为本发明一种基于光纤布拉格光栅的电力设备温度和局部放电一体化检测系统结构示意图;
图2为本发明一种基于光纤布拉格光栅的电力设备温度和局部放电一体化检测方法流程示意图;
附图中,各标号所代表的部件列表如下:
1、可调谐窄带激光器,2、光耦合器,3、FBG,4、光电探测器,5、数据采集卡,6、计算机。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示,为本发明提供的一种电力设备温度和局部放电一体化检测系统的结构示意图,包括:可调谐窄带激光器1、光耦合器2、FBG3、光电探测器4、数据采集卡5和计算机6,其中,
所述可调谐窄带激光器1用于发射检测激光对所述FBG3进行扫描;
所述光耦合器2用于将来自可调谐窄带激光器1的激光耦合进所述FBG3以及将来自所述FBG3的反射光耦合进所述光电探测器4;
所述FBG3紧贴待测物体放置,所述FBG3用于对进入其中的光束进行反射;
所述光电探测器4用于将接收到的反射光转换成电压信号;
所述数据采集卡5用于采集所述光电探测器4的电压信号并输出至所述计算机6;
所述计算机6用于将所述电压信号转换成反射谱,且所述计算机6基于多个反射谱计算得到平均反射谱曲线,并计算所述平均反射谱曲线的最大斜率处对应的波长,调节所述可调谐窄带激光器1输出的激光波长对所述FBG3进行扫描,并获得所述FBG3所测得的局部放电脉冲谱图。
需要说明的是,所述可调谐窄带激光器1的输出接口通过单模光纤与所述光耦合器2的输入接口连接;所述光耦合器2的输出接口通过单模光纤与FBG3相连,所述光耦合器2的反射输出接口通过单模光纤与光电探测器4的输入接口连接;所述光电探测器4的输出接口通过电气连接线与所述数据采集卡5的输入接口连接;所述数据采集卡5的输出接口通过电气连接线与所述计算机6的数据输入接口相连接;所述计算机6的输出控制接口通过电气连接线与可调谐窄带激光器1的输入受控接口相连接。
如图2所示,一种电力设备温度和局部放电一体化检测方法,包括以下步骤:
110,计算机控制可调谐窄带激光器的输出激光的波长λ梯次变化对FBG进行扫描;同时光电探测器和数据采集卡采集所述FBG的反射光强度的变化,并由计算机显示为电压信号随时间变化的反射谱;
120,连续进行M次步骤1,且相邻两次扫描起始时间间隔为ΔtM,获得M个所述FBG反射谱;
130,根据M个所述反射谱,计算得出所述FBG的平均反射谱,并根据所述平均谱计算得到FBG所测得的温度Tr;
140,计算所述平均反射谱的最大斜率处对应的波长λsteep,并通过计算机将可调谐窄带激光器的激光输出波长设置为λsteep;
150,将所述可调谐窄带激光器的输出波长固定在所述波长λsteep,保持tPD秒,同时数据采集卡持续采集光电探测器的输出波形;
160,对所述输出波形中的脉冲波形进行提取和统计,在计算机上形成局部放电脉冲统计谱图。
需要说明的是,上述实施例中提供的一种电力设备温度和局部放电一体化检测方法实现电力设备温度检测的原理是:电力设备温度发生变化时,贴在其上的FBG反射谱的中心波长会发生漂移,通过标定实验可确定中心波长与温度之间的对应关系。所述可调谐窄带激光器1对所述FBG3每扫描一次会产生一个反射谱,将多次扫描FBG3获得的反射谱取平均值,会得到一个新的平均反射谱。由于FBG3反射谱的最大值与中心波长相对应,通过所述平均反射谱的最大值可确定中心波长,再结合中心波长与温度的对应关系即可计算出电力设备的温度。
需要说明的是,上述实施例中提供的一种电力设备温度和局部放电一体化检测方法实现电力设备局部放电检测的原理是:检测局部放电超声信号前,将所述FBG平均反射谱线性斜率最大处对应的波长值λsteep设置为可调谐窄带激光器1的输出激光波长;当局部放电超声波作用于FBG3时,其受到一定频率和幅值的应力微扰,FBG3的反射谱发生左右漂移,而光源的输出激光波长固定在λsteep,FBG3反射谱的漂移使λsteep对应的光强发生变化,进而导致数据采集卡5采集到电压信号发生变化,该电压信号在计算机6上显示,由电压信号的变化即可判断电力设备局部放电是否发生。
需要说明的是,步骤130的具体计算方法是:找到平均反射谱的谱值随时间t变化的曲线Uave(t)的最大值Umax及Umax所对应的时间tmax;然后根据公式nmax×Δt≤tmax<(nmax+1)×Δt计算得到tmax对应的整数nmax;进而结合预先标定的FBG反射谱的中心波长与温度的关系,根据公式Tr=(λ0+nmax×Δλ-b)/k计算出FBG3所测到的温度Tr。
需要说明的是,步骤140的具体运算是:根据公式ΔUm=|Uave(m×Δt)-Uave(m×Δt+Δt)|(m=0,1,2,3,…,N)计算曲线Uave(t)的斜率ΔUm;比较得到最大斜率ΔUmax及其所对应的变量m所取的数值mmax;然后根据公式λsteep=λ0+mmax×Δλ计算出最大斜率ΔUmax所对应的波长λsteep。
FBG需要说明的是,FBG3的反射光强随时间的变化在计算机6上显示为电压信号U和时间t的函数关系,而时间t和可调谐窄带激光器1的输出激光波长相对应,故电压信号U和时间t的关系与FBG3的反射光强与可调谐窄带激光器1的输出激光波长的关系一致,即与FBG3的反射谱是一致的。
具体地,所述步骤1前还包括:预先标定所述FBG的反射谱的中心波长λr与温度T的关系,波长λr与温度T关系表达式为:
λr=kT+b
其中,反射谱中心波长λr的单位为nm,温度T的单位为℃;k为斜率,单位是nm/℃;b为截距,单位是nm。
需要说明的是,标定所述FBG的反射谱的中心波长λr与温度T的关系,可以将FBG3置于恒温槽中,用波长计测得其反射光谱的中心波长,记录恒温槽不同温度值及其对应的FBG3反射光谱的中心波长,利用最小二乘法对测量数据进行拟合即可标定中心波长与温度的关系。
具体地,步骤1中所述可调谐窄带激光器输出的激光的波长λ梯次变化满足公式:
λ(t)=λ0+n×Δλ
其中,Δλ为所述可调谐窄带激光器的波长变化步长,单位为nm;且λ(t)=λ0+n×Δt的整数n与时间t的关系满足公式:
n×Δt≤t<(n+1)×Δt(n=0,1,2,3,…,N)
N=(Tmax-Tmin)k/Δλ
λ0=Tmink+b
其中,Tmin是电力设备的历史最低温度,单位为℃,Tmax是电力设备的历史最高温度,单位为℃,Δt为时间间隔,单位为s。
具体地,所述步骤2中连续进行M次步骤1,所述次数M满足关系式:10≤M≤20。
需要说明的是,对FBG进行多次扫描是要获取多个所述FBG的反射谱,通过多个反射谱计算平均反射谱来检测所述FBG测到的温度;设置扫描次数M满足10≤M≤20,既保证了能够获得较多反射谱数据进行平均计算,又避免了因扫描时间过长导致温度发生较大变化而影响检测精度。
具体地,所述相邻两次扫描起始时间间隔ΔtM满足公式:
ΔtM=Δt×N+Δtp
其中,Np是任一正整数,工频f=50Hz,10≤NM≤20,NM是正整数,且1≤NM<M。
需要说明的是,设置了相邻两次扫描起始时间间隔中的NM满足1≤NM<M,可以将具有周期特性的局部放电干扰转换成白噪声,且保证M次扫描起始时间对应的工频电压相位遍历一个工频周期NM次,再通过多个反射谱平均法将获取的局部放电干扰予以消除,。
具体地,所述步骤2至所述步骤4所用的总时间t2-4满足公式:
t2-4×Tc<T′
t2-4=t2+t3+t4
t2=M×N×Δt+(M-1)×Δtp
其中,t2-4是步骤2至步骤4所用的总时间,单位为s;Tc是温度变化速率,由电力设备一天内的温度变化决定,单位是℃/s,T′是电力设备温度检测的精度要求,单位为℃;t2、t3和t4分别是步骤2、步骤3和步骤4所用的时间,t3和t4由计算机软件计算时间决定,单位为s。
需要说明的是,本发明实现局部放电检测的原理是:检测局部放电超声信号前,将所述FBG平均反射谱线性斜率最大处对应的波长值λsteep设置为可调谐窄带激光器1的输出波长;当局部放电超声波作用于FBG3时,其受到一定频率和幅值的应力微扰,FBG3的反射谱发生左右漂移,而光源的输出波长固定在λsteep,FBG反射谱的漂移使λsteep对应的光强发生变化,进而导致数据采集卡5采集到电压信号发生变化,该电压信号在计算机6上显示,由电压信号的变化即可判断电力设备局部放电是否发生。所以设定步骤2至步骤4的执行时间是为了避免时间过长温度变化过大引起局部放电检测结果不准确。
具体地,所述步骤5中的时间tPD满足公式:
其中,f=50Hz,Tc是温度变化速率,由具体电力设备一天内的温度变化决定,单位是℃/s,k是公式λr=kT+b的斜率,单位是nm/℃,Δλ′是tPD秒内温度变化引起的FBG反射谱中心波长的偏移量,Δλ′=0.001nm。
具体地,所述电力设备温度和局部放电一体化检测方法再次进行局部放电检测时,执行步骤1至步骤5,以重新设置所述可调谐窄带激光器的工作波长。
需要说明的是,重新设置所述可调谐窄带激光器的工作波长是要避免温度变化对局部放电检测的影响,从而保证不同温度下进行局部放电检测的灵敏度。
另外,需要说明的是,本发明中可调谐窄带激光器1发出的激光光谱的带宽远远小于FBG3的反射谱带宽,可以看作是单一波长光源。
在实际应用中,将FBG3粘于待检测的电力设备上,检测的电力设备可以是电缆、铜排、变压器、机壳箱等电站的设备,由于FBG3紧贴待测物体,所以检测到的温度就是待测物体的实际温度。
测量时,通过计算机6控制可调谐窄带激光器1的波长对FBG3进行多次扫描,所输出的激光通过光耦合器2传输到FBG3;FBG3的反射光经过光耦合器2传输到光电探测器4,光电探测器4将接收到的反射光强转换成电压信号,传输到数据采集卡5,计算机6接收到来自数据采集卡5信号,从而获得电压信号的大小,进而通过计算机6可得FBG3反射光的中心波长。根据反射谱中心波长与温度的变化关系可以计算出待测物体的具体温度信息。
需要说明的是本发明提供的一种电力设备温度和局部放电一体化检测系统及方法中的FBG3的数量可以是一个或多个。
需要说明的是,本发明提供的一种电力设备温度和局部放电一体化检测系统及方法是利用同一个FBG可以同时检测待测电力设备的温度以及局部放电是否发生,也可以利用多个FBG同时对多个待测设备进行检测。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.一种电力设备温度和局部放电一体化检测方法,其特征在于,包括以下步骤:
步骤1,计算机控制可调谐窄带激光器的输出激光的波长λ梯次变化对FBG进行扫描;同时光电探测器和数据采集卡采集所述FBG的反射光强度的变化,并由计算机显示为电压信号随时间变化的反射谱;
步骤2,连续进行M次步骤1,且相邻两次扫描起始时间间隔为ΔtM,获得M个所述反射谱;
步骤3,根据M个所述反射谱,计算得出所述FBG的平均反射谱,并根据所述平均反射谱计算得到FBG所测得的温度Tr;
步骤4,计算所述平均反射谱的最大斜率处对应的波长λsteep,并通过计算机将可调谐窄带激光器的激光输出波长设置为λsteep;
步骤5,将所述可调谐窄带激光器的输出波长固定在所述波长λsteep,保持tPD秒,同时数据采集卡持续采集光电探测器的输出波形;
步骤6,对所述输出波形中的脉冲波形进行提取和统计,在计算机上形成局部放电脉冲统计谱图。
2.根据权利要求1所述的电力设备温度和局部放电一体化检测方法,其特征在于,所述步骤1前还包括:预先标定所述FBG的反射谱的中心波长λr与温度T的关系,波长λr与温度T关系表达式为:
λr=kT+b
其中,反射谱中心波长λr的单位为nm;温度T的单位为℃;k为斜率,单位是nm/℃;b为截距,单位是nm。
3.根据权利要求1所述的电力设备温度和局部放电一体化检测方法,其特征在于,所述可调谐窄带激光器输出的激光的波长λ梯次变化满足公式:
λ(t)=λ0+n×Δλ
其中,Δλ为所述可调谐窄带激光器的波长变化步长,单位为nm;且λ(t)=λ0+n×Δt的整数n与时间t的关系满足公式:
n×Δt≤t<(n+1)×Δt(n=0,1,2,3,…,N)
N=(Tmax-Tmin)k/Δλ
λ0=Tmink+b
其中,Tmin是电力设备的历史最低温度,单位为℃,Tmax是电力设备的历史最高温度,单位为℃,Δt为时间间隔,单位为s。
4.根据权利要求1所述的电力设备温度和局部放电一体化检测方法,其特征在于,所述步骤2中连续进行M次步骤1,所述次数M满足关系式:10≤M≤20。
6.根据权利要求1所述的电力设备温度和局部放电一体化检测方法,其特征在于,所述步骤2至所述步骤4所用的总时间t2-4满足公式:
t2-4×Tc<T′
t2-4=t2+t3+t4
t2=M×N×Δt+(M-1)×Δtp
其中,t2-4是步骤2至步骤4所用的总时间,单位为s;Tc是温度变化速率,由电力设备一天内的温度变化决定,单位是℃/s,T′是电力设备温度检测的精度要求,单位为℃;t2、t3和t4分别是步骤2、步骤3和步骤4所用的时间,t3和t4由计算机软件计算时间决定,单位为s。
8.根据权利要求1所述的电力设备温度和局部放电一体化检测方法,其特征在于,所述电力设备温度和局部放电一体化检测方法再次进行局部放电检测时,执行步骤1至步骤5,以重新设置所述可调谐窄带激光器的工作波长。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811589536.6A CN109612601B (zh) | 2018-12-25 | 2018-12-25 | 一种电力设备温度和局部放电一体化检测系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811589536.6A CN109612601B (zh) | 2018-12-25 | 2018-12-25 | 一种电力设备温度和局部放电一体化检测系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109612601A CN109612601A (zh) | 2019-04-12 |
CN109612601B true CN109612601B (zh) | 2020-11-13 |
Family
ID=66012029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811589536.6A Active CN109612601B (zh) | 2018-12-25 | 2018-12-25 | 一种电力设备温度和局部放电一体化检测系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109612601B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112255517A (zh) * | 2020-11-18 | 2021-01-22 | 云南电网有限责任公司临沧供电局 | 一种开关柜的局部放电和温度联合在线监测系统 |
CN114200272B (zh) * | 2022-02-17 | 2022-04-26 | 山东汇能电气有限公司 | 基于局放检测的开关柜健康状态运行反馈系统 |
CN115711684A (zh) * | 2022-11-15 | 2023-02-24 | 深圳技术大学 | 一种平面温度异常区域检测方法及检测系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4421229B2 (ja) * | 2003-07-11 | 2010-02-24 | 株式会社東芝 | ファイバブラッググレーティング物理量計測方法および装置 |
CN1818625A (zh) * | 2004-05-28 | 2006-08-16 | 关柏鸥 | 光纤光栅声发射和温度传感器 |
CN104808125B (zh) * | 2015-05-04 | 2018-05-25 | 华北电力大学 | 基于光纤布喇格光栅的变压器油中局部放电检测系统 |
CN105510732A (zh) * | 2015-11-26 | 2016-04-20 | 国家电网公司 | 电力变压器监测系统及方法 |
CN105547456B (zh) * | 2015-12-24 | 2018-05-25 | 华北电力大学 | 一种ps-fbg超声检测系统的互相关温度补偿法 |
-
2018
- 2018-12-25 CN CN201811589536.6A patent/CN109612601B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN109612601A (zh) | 2019-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7268884B2 (en) | Wavelength reference system for optical measurements | |
US8348611B2 (en) | Wind turbine having a sensor system for detecting deformation in a wind turbine rotor blade and corresponding method | |
CA2509187C (en) | Optical wavelength determination using multiple measurable features | |
CN109612601B (zh) | 一种电力设备温度和局部放电一体化检测系统及方法 | |
US9810556B2 (en) | Apparatus for measuring optical signals from multiple optical fiber sensors | |
US7573021B2 (en) | Method and apparatus for multiple scan rate swept wavelength laser-based optical sensor interrogation system with optical path length measurement capability | |
US20110040497A1 (en) | Method for sensing strain in a component in a wind turbine, optical strain sensing system and uses thereof | |
JP4421229B2 (ja) | ファイバブラッググレーティング物理量計測方法および装置 | |
US20130333476A1 (en) | Method of measuring acoustic distribution and distributed acoustic sensor | |
EP2980537B1 (en) | Multi-peak reference grating | |
EP2696182A1 (en) | Optical sensor and method for measuring the pressure of a fluid | |
CN103674079A (zh) | 基于光纤布拉格光栅传感器测量系统的实时测量方法 | |
WO2014186539A1 (en) | Time division multiplexing and wavelength division multiplexing fast-sweep interrogator | |
CN106352905A (zh) | 一种光纤光栅解调系统及解调仪 | |
JP4660113B2 (ja) | ファイバブラッググレーティング物理量計測装置 | |
CN105241482A (zh) | 一种有源光纤光栅传感器波长解调系统及方法 | |
WO2001071398A1 (en) | Method and apparatus for estimating chromatic dispersion in fibre bragg gratings | |
CN105806374A (zh) | 一种光纤光栅波长的解调方法 | |
RU2602998C1 (ru) | Способ контроля спектральных параметров волоконной брэгговской решетки | |
CN111257283B (zh) | 折射率传感测量装置及方法 | |
KR101752853B1 (ko) | 센서 장치 | |
CN110967120B (zh) | 一种基于斜坡滤波器的高精度激光波长测量仪 | |
JP2525980B2 (ja) | 光ファイバ式温度分布測定装置 | |
Buck et al. | Performance analysis of interrogators for fiber Bragg grating sensors based on arrayed waveguide gratings | |
WO2018056208A1 (ja) | 光波長測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |