CN109612459A - 基于动力学模型的四旋翼飞行器惯性传感器容错导航方法 - Google Patents

基于动力学模型的四旋翼飞行器惯性传感器容错导航方法 Download PDF

Info

Publication number
CN109612459A
CN109612459A CN201811357271.7A CN201811357271A CN109612459A CN 109612459 A CN109612459 A CN 109612459A CN 201811357271 A CN201811357271 A CN 201811357271A CN 109612459 A CN109612459 A CN 109612459A
Authority
CN
China
Prior art keywords
moment
formula
fault
axis
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811357271.7A
Other languages
English (en)
Other versions
CN109612459B (zh
Inventor
刘士超
吕品
赖际舟
王炳清
许晓伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201811357271.7A priority Critical patent/CN109612459B/zh
Publication of CN109612459A publication Critical patent/CN109612459A/zh
Application granted granted Critical
Publication of CN109612459B publication Critical patent/CN109612459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,包括以下步骤:步骤1:周期获取四旋翼飞行器机载传感器信息;步骤2:计算加速度、角加速度;步骤3:预测角速度、四元数、速度和位置;步骤4:判断各检测滤波器的故障结果,并对故障进行定位;步骤5:隔离故障传感器信息,通过联邦卡尔曼滤波器对角速度、四元数、速度、位置进行校正;步骤6:对各检测滤波器进行重置更新。本发明提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的优点在于:当惯性传感器故障时,通过动力学模型代替惯性传感器进行导航解算,解决惯性传感器失效时的导航问题,提高了四旋翼飞行器的导航可靠性。

Description

基于动力学模型的四旋翼飞行器惯性传感器容错导航方法
技术领域
本发明涉及容错导航技术领域,尤其涉及基于动力学模型的四旋翼飞行器惯性传感器容错导航方法。
背景技术
四旋翼飞行器具有体积小、结构简单、可悬停和垂直起降等优点,特别适合在近地面环境(如室内、城区和丛林等)中执行监视、侦察等任务,具有广阔的军事和民用前景。导航系统为四旋翼飞行器提供其飞行控制系统所必须的导航信息,是其完成各种复杂飞行任务的必要保障。
目前四旋翼飞行器常用的传感器包括惯性传感器、GNSS(卫星导航系统)、磁传感器、气压高度计,其中惯性传感器包括陀螺仪与加速度计。受成本、体积所限,四旋翼飞行器中选用的惯性传感器精度、可靠性较低,易受外界温度、振动干扰而产生性能下降,甚至失效。此时,会导致导航系统精度下降,影响飞行安全。目前,尚未有针对惯性传感器的容错导航方案。
发明内容
本发明所要解决的技术问题在于提供一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法。
本发明是通过以下技术方案解决上述技术问题的:
通过对四旋翼飞行器的气动力和气动力矩分析,建立四旋翼飞行器的气动力模型,包括X轴阻力模型、Y轴阻力模型、升力模型,气动力矩模型,包括横滚力矩模型、俯仰力矩模型、扭矩模型,形成惯性传感器的冗余信息,将动力学模型、惯性传感器、量测传感器,三者两两组合,形成一种“互表决式”的故障检测系统,突破惯性传感器无故障的假设。该检测系统中采用的故障检测方法为卡方检测,但卡方检测对于量测传感器故障敏感,对状态输入量故障不敏感,为了实现对状态输入量故障的快速故障检测,提出使用n步预测卡方检测,在该检测方法中,状态预测在n步之内进行累积,不使用量测进行校准,为了避免检测器发散,在第n步时使用联邦滤波器的状态估计结果对检测器进行状态重置更新。在状态输入量发生故障时,在第n步的状态重置时,导致状态输入量故障的重新累积,为了避免累积过程中,检测结果的不断切换和误检测,引入故障隔离周期概念。当状态输入量检测到故障后,故障隔离周期开始计输,在故障隔离周期内认为系统一直存在故障。在隔离周期内再次检测到故障时,隔离周期重置。联邦卡尔曼滤波器根据故障定位结果,隔离故障传感器信息,使用无故障传感器进行状态融合估计。该方案通过故障检测系统及相应的故障隔离和系统重构措施,解决了惯性传感器失效时的导航问题。
本发明提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的优点在于:可以在不假设惯性传感器的无故障条件下,实现对惯性传感器、量测传感器、动力学模型的故障检测,并且当惯性传感器故障时,可以使用动力学模型代替故障的惯性传感器,完成惯性传感器故障情况下四旋翼飞行器角速度、四元数、速度、位置的解算,提高了四旋翼飞行器的导航可靠性。
附图说明
图1是本发明的实施例所提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的流程图;
图2是本发明的实施例所提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的系统结构框图;
图3是本发明的实施例所提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的滤波框图;
图4是本发明的实施例所提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的故障检测框图;
图5是本发明的实施例所提供的基于动力学模型的四旋翼飞行器惯性传感器容错导航方法的四旋翼飞行器轨迹图;
图6是本发明的实施例所提供的在四旋翼飞行器的X、Y、Z轴陀螺中注入故障后的故障检测结果;
图7是本发明的实施例所提供的在四旋翼飞行器的X、Y、Z轴陀螺中注入故障后的,X、Y、Z轴角速度、横滚角估计结果;
图8是本发明的实施例所提供的在四旋翼飞行器的X、Y、Z轴加速度计中注入故障后的故障检测结果;
图9是本发明的实施例所提供的在四旋翼飞行器的横滚力矩模型、俯仰力矩模型、扭矩模型、X轴阻力模型、Y轴阻力模型、升力模型中注入故障后的故障检测结果;
图10是本发明的实施例所提供的在四旋翼飞行器的磁传感器、GPS气压计中注入故障后的故障检测结果。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
如图1所示,一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,包括以下步骤:
步骤1:周期获取k时刻四旋翼飞行器机载传感器信息;
以当前时刻载体的重心位置为原点构建机体坐标系,其中X轴、Y轴与Z轴分别与当前时刻载体的前向、右向和地向重合;以初始时刻载体的位置为原点构建导航坐标系,其中X轴、Y轴与Z轴分别与当地水平面的北向、东向、地向重合;
机载传感器信息包括旋翼转速传感器信息ω1(k)、ω2(k)、ω3(k)、ω4(k),其分别为四个旋翼的转速;惯性传感器信息ωgx(k)、ωgy(k)、ωgz(k)、fax(k)、fay(k)、faz(k),其分别为机体坐标系下X、Y、Z轴陀螺角速度输出和加速度计输出;GPS信息VNG(k)、VEG(k)、VDG(k),其分别为北向速度、东向速度、地向速度,PNG(k)、PEG(k),其分别为北向位置、东向位置;气压高度计信息hb(k);磁传感器信息ψm(k)。
步骤2:计算k时刻四旋翼飞行器的加速度、角加速度;
加速度信息通过下式进行计算:
式中,为k时刻机体系相对于导航系的加速度在机体系X、Y、Z轴上的分量;kHx0、kHx1、kHx2、kHy0、kHy1、kHy2、kT0、kT1为模型参数; 为k-1时刻机体系相对于导航系的线速度在机体系X、Y轴上的分量;为k-1时刻机体系相对于导航系的角加速度在机体系X、Y轴上的分量;
角加速度信息通过下式计算:
式中,为k时刻机体系相对于导航系的角速度在机体系X、Y、Z轴上的分量,分别是的微分,即角加速度;kR0、kR1、kR2、kP0、kP1、kP2、kQ0、kQ1、kQ2为模型参数,所述模型参数均为常数,通过离线辨识方法获得。
步骤3:预测k时刻四旋翼飞行器的角速度、四元数、速度和位置;
1)角速度预测:
式中,为k-1时刻机体系相对于导航系的角速度在机体系X、Y、Z轴上的分量;ΔT为离散采样周期;
2)四元数预测:
式中,q0(k)、q1(k)、q2(k)、q3(k)为k时刻的四元数;
3)速度预测:
式中,为k时刻机体系相对于导航系的线速度在机体系X、Y、Z轴上的分量;g为重力加速度;
4)位置预测:
式中,pn(k)、pe(k)、pd(k)分别为k时刻的北向位置、东向位置、地向高度。
步骤4:判断k时刻各检测滤波器的故障结果,并对故障进行定位;
故障检测的方法如下:
4.1模型/惯性传感器检测滤波器
4.1.1计算X轴阻力模型/X轴加速度计检测滤波器检测结果:
①计算统计参数λd11(k):
式中,λd11(k)为k时刻的统计参数;
②计算检测函数J11(k):
式中,T11是阈值,当J11(k)=1时,X轴阻力模型或X轴加速度计故障,当J11(k)=0时,X轴阻力模型或X轴加速度计均无故障;
4.1.2计算Y轴阻力模型/Y轴加速度计检测滤波器检测结果:
①计算统计参数λd12(k):
式中,λd12(k)为k时刻的统计参数;
②计算检测函数J12(k):
式中,T12是阈值,当J12(k)=1时,Y轴阻力模型或Y轴加速度计故障,当J12(k)=0时,Y轴阻力模型或Y轴加速度计均无故障;
4.1.3计算升力模型/Z轴加速度计检测滤波器检测结果:
①计算统计参数λd13(k):
式中,λd13(k)为k时刻的统计参数,
②计算检测函数J13(k):
式中,T13是阈值,当J13(k)=1时,升力模型或Z轴加速度计故障,当J13(k)=0时,升力模型或Z轴加速度计均无故障;
4.1.4计算横滚力矩模型/X轴陀螺检测滤波器检测结果:
①计算统计参数λd14(k):
λd14(k)=ed14(k)Pdr14(k)-1ed14(k)T
式中,λd14(k)是k时刻的统计参数,ed14(k)为k时刻残差,Pdr14为k时刻残差方差;
Yd14(k)=ωgx(k)
Hd14(k)=1
为k时刻X轴陀螺噪声;
Ad14(k)=1
Gd14(k-1)=ΔT
式中,R14(k)为k时刻量测噪声,为k时刻X轴陀螺噪声;Wd14(k-1)为k-1时刻状态噪声,为k-1时刻横滚力矩模型噪声;
②计算检测函数J14(k):
式中,T14是阈值,当J14(k)=1时,横滚力矩模型或X轴陀螺故障,当J14(k)=0时,横滚力矩模型或X轴陀螺均无故障;
4.1.5计算俯仰力矩模型/Y轴陀螺检测滤波器检测结果:
①计算统计参数λd15(k):
λd15(k)=ed15(k)Pdr15(k)-1ed15(k)T
式中,λd15(k)为k时刻的统计参数,ed15(k)为k时刻残差,Pdr15(k)为k时刻残差方差;
Yd15(k)=ωgy(k)
Hd15(k)=1
Ad15(k)=1
Gd15(k-1)=ΔT
式中,R15(k)为k时刻量测噪声,为k时刻Y轴陀螺噪声;Wd15(k-1)为k-1时刻状态噪声,为k-1时刻俯仰力矩模型噪声;
②计算检测函数J15(k):
式中,T15是阈值,当J15(k)=1时,俯仰力矩模型或Y轴陀螺故障,当J15(k)=0时,俯仰力矩模型或Y轴陀螺均无故障;
4.1.6计算扭矩模型/Z轴陀螺检测滤波器检测结果:
①计算统计参数λd16(k):
λd16(k)=ed16(k)Pdr16(k)-1ed16(k)T
式中,λd16(k)为k时刻的统计参数,ed16(k)为k时刻残差,Pdr16为k时刻残差方差;
Yd16(k)=ωgz(k)
Hd16(k)=1
Ad16(k)=1
Gd16(k-1)=ΔT
式中,R16(k)为k时刻量测噪声,为k时刻Z轴陀螺噪声;Wd16(k-1)为k-1时刻状态噪声,为k-1时刻扭矩模型噪声;
②计算检测函数J16(k):
式中,T16是阈值,当J16(k)=1时扭矩模型或Z轴陀螺故障,当J16(k)=0时,扭矩模型或Z轴陀螺均无故障;
4.2模型/量测传感器检测滤波器
4.2.1计算动力学模型/磁传感器检测滤波器检测结果:
①计算统计参数λd21(k):
λd21(k)=ed21(k)Pdr21(k)-1ed21(k)T
式中,λd21(k)为k时刻的统计参数,ed21(k)为k时刻残差;Pdr21为k时刻残差方差;
Yd21(k)=ψm(k)
R21(k)=wψm(k)
式中,Wd21(k-1)为k-1时刻状态噪声;R21(k)为k时刻量测噪声;为k时刻磁传感器噪声;
②计算检测函数J21(k):
式中,T21是阈值,当J21(k)=1时动力学模型或磁传感器故障,当J21(k)=0时,动力学模型或磁传感器均无故障;
4.2.2计算动力学模型/GPS检测滤波器检测结果:
①计算统计参数λd22(k):
λd22(k)=ed22(k)Pdr22(k)-1ed22(k)T
式中,λd22(k)为k时刻的统计函数,ed22(k)为k时刻残差;Pdr22(k)为时刻残差方差;
Yd22(k)=[VNG(k) VEG(k)]T
Hd22(k)=[02×7 ξ2×3]
式中,Wd22(k-1)为k-1时刻状态噪声,分别为k-1时刻机体系X、Y、Z轴速度噪声;R22(k)为k时刻量测噪声,分为k时刻GPS北向速度、东向速度噪声;
②计算检测函数J22(k):
式中,T22是阈值,当J22(k)=1时动力学模型或GPS故障,当J22(k)=0时,动力学模型或GPS均无故障;
4.2.3计算动力学模型/气压计检测滤波器检测结果:
①计算统计参数λd23(k):
λd23(k)=ed23(k)Pdr23(k)-1ed23(k)T
式中,λd23(k)为k时刻的统计参数,ed23(k)为k时刻残差;Pdr23为k时刻残差方差;
Z1×3=[2ΔT(q1(k)q3(k)-q0(k)q2(k))2ΔT(q2(k)q3(k)+q0(k)q1(k))ΔT(q0 2(k)-q1 2(k)-q2 2(k)+q3 2(k))]
式中,Wd23(k-1)为k-1时刻状态噪声,为k-1时刻地向高度噪声;为k时刻量测噪声,为k时刻气压计噪声。
②计算检测函数J23(k):
式中,T23是阈值,当J23(k)=1时,动力学模型或气压计故障,当J23(k)=0时,动力学模型或气压计均无故障;
4.3惯性传感器/量测传感器检测滤波器
4.3.1计算惯性传感器/磁传感器检测滤波器检测结果:
①计算统计参数λd31(k):
λd31(k)=ed31(k)Pdr31(k)-1ed31(k)T
式中,λd31(k)为k时刻的统计参数,ed31(k)为k时刻残差;Pdr31为k时刻残差方差;
Yd31(k)=ψm(k)
Ad31(k)=Τ
Gd31(k-1)=Θ4×3
式中,Wd31(k-1)为k-1时刻的状态噪声;R31(k)为k时刻的量测噪声;
②计算检测函数J31(k):
式中,T31是阈值,当J31(k)=1时,惯性传感器或磁传感器故障,当J31(k)=0时,惯性传感器或磁传感器均无故障;
4.3.2计算惯性传感器/GPS检测滤波器检测结果:
①计算统计参数λd32(k):
λd32(k)=ed32(k)Pdr32(k)-1ed32(k)T
式中,λd32(k)为k时刻检测滤波器统计参数;为k时刻残差;为k时刻残差方差;
Yd32(k)=[VNG(k) VEG(k)]T
Hd32(k)=[02×3 ξ2×3]
式中,Wd32(k-1)为k-1时刻的状态噪声;R32(k)为k时刻的量测噪声;
②计算检测函数J32(k):
式中,T32是阈值,当J32(k)=1时,惯性传感器或GPS故障,当J32(k)=0时,惯性传感器或GPS均无故障;
4.3.3计算惯性传感器/气压计检测滤波器检测结果:
①计算统计参数λd33(k):
λd33(k)=ed33(k)Pdr33(k)-1ed33(k)T
式中,λd33(k)为k时刻的统计参数;ed33(k)为k时刻残差;Pdr33(k)为k时刻残差方差;
Yd33(k)=hb(k)
Hd33(k)=-1
式中,R33(k)为k时刻量测噪声;Wd33(k-1)为k-1时刻状态噪声;
②计算检测函数J33(k):
式中,T33是阈值,当J33(k)=1时,惯性传感器或气压计故障,当J33(k)=0时,惯性传感器或气压计均无故障。
对故障位置进行定位的函数如下:
步骤5:根据步骤4的故障检测结果,隔离故障传感器信息,通过联邦卡尔曼滤波器对k时刻四旋翼飞行器的角速度、四元数、速度、位置进行校正,校正方法如下:
无故障情况下,采用如下过程对k时刻四旋翼飞行器的角速度、四元素、速度、位置进行校正:
1)计算滤波器的一步预测均方误差PC(k|k-1):
PC(k|k-1)=AC(k|k-1)PC(k-1)AC(k|k-1)T+GC(k-1)WC(k-1)GC(k-1)T
式中,AC(k|k-1)为滤波器k-1时刻到k时刻的滤波器一步转移矩阵,上标T表示转置;PC(k-1)为k-1时刻的状态估计均方差,PC(k|k-1)为k-1时刻到k时刻的一步预测均方差;
式中,GC(k-1)为滤波器k-1时刻的滤波器噪声系数矩阵;WC(k-1)为k-1时刻状态噪声;
2)计算k时刻第i个子滤波器扩展卡尔曼滤波器滤波增益KCi(k):
KCi(k)=PC(k|k-1)HCi(k)T[HCi(k)PC(k|k-1)HCi(k)T+RCi(k)]-1
3)计算k时刻第i个子滤波器扩展卡尔曼滤波器状态估计值XCi(k):
XCi(k)=XCi(k|k-1)+KCi(k)[YCi(k)-hCi(XCi(k|k-1))]
式中,XCi(k)为k时刻状态量的估计值,
YCi(k)为第i个子滤波器量测量,
4)计算k时刻第i个子滤波器估计均方误差PCi(k):
PCi(k)=[I-KCi(k)HCi(k)]PCi(k|k-1)
式中,PCi(k)为k时刻估计均方误差,I为单位矩阵。
5)计算k时刻子滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k):
Xg(k)=Pg(k)[PC2(k)-1XC2(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)
+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC2(k)-1+PC3(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
情况1:状态预测输入量发生故障,采用如下方法进行系统重构:
①横滚力矩模或俯仰力矩模型或扭矩模型故障,修改角速度一步预测方程如下:
修改横滚力矩模型、俯仰力矩模型、扭矩模型状态噪声;子滤波器量测更新及主滤波器融合滤波过程与无故障情况下的滤波融合过程相同;
②加速度计故障,修改速度一步预测方程如下:
修改速度预测状态噪声,子滤波器量测更新及主滤波器融合滤波过程与无故障情况下的滤波融合过程相同;
情况2:量测传感器发生故障,采用如下方法进行系统重构:
①X轴陀螺故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:
Xg(k)=Pg(k)[PC2(k)-1XC2(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)
+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC2(k)-1+PC3(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
②Y轴陀螺故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:
Xg(k)=Pg(k)[PC1(k)-1XC1(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)
+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC1(k)-1+PC3(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
③Z轴陀螺故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:
Xg(k)=Pg(k)[PC1(k)-1XC1(k)+PC2(k)-1XC2(k)+PC4(k)-1XC4(k)
+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC1(k)-1+PC2(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
④磁传感器故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:使用冗余的磁传感器代替故障磁传感器进行主滤波器的融合滤波;
⑤:GPS故障,使用加速计代替GPS进行量测更新
a)计算k时刻第7个子滤波器扩展卡尔曼滤波器滤波增益KC7(k):
KC7(k)=PC(k|k-1)HC7(k)T[HC7(k)PC(k|k-1)HC7(k)T+RC7(k)]-1
其中,
YC7(k)=[fax(k) fay(k)]T
HC7(k)=[kHx1 kHy1]T
RC7(k)为量测噪声;
b)计算k时刻第7个子滤波器扩展卡尔曼滤波器状态估计值XC7(k):
XC7(k)=XC7(k|k-1)+KC7(k)[YC7(k)-hC7(XC7(k|k-1))]
式中,
c)计算k时刻第7个子滤波器估计均方误差PC7(k):
PC7(k)=[I-KC7(k)HC7(k)]PC7(k|k-1)
d)计算k时刻子滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k):
Xg(k)=Pg(k)[PC1(k)-1XC1(k)+PC2(k)-1XC2(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)
+PC6(k)-1XC6(k)+PC7(k)-1XC7(k)]-1
Pg(k)=[PC1(k)-1+PC2(k)-1+PC3(k)-1+PC4(k)-1+PC6(k)-1+PC7(k)-1]-1
XC(k)=Xg(k)
PC(k)=6Pg(k)
步骤6:根据步骤4的检测结果和步骤5的滤波估计结果对各检测滤波器进行重置更新:1)无故障重置方法,检测滤波器每运算n步执行一次重置:
2)有故障重置,检测滤波器的检测结果为“1”时,检测滤波器的状态及均方误差立即步骤5的方法重置,其余检测器采用n步重置法。
图6为在四旋翼飞行器的X、Y、Z轴陀螺中注入故障后的故障检测结果,故障类型为“0”,表示无故障,故障类型为“1”,表示检测到故障,可以看出故障检测系统可以检测到故障发生,在注入故障后约0.5s后检测到故障,在故障消失后,检测系统存在一个10s的延迟。
图7为在四旋翼飞行器的X、Y、Z轴陀螺中注入故障后的X、Y、Z轴角速度的参考曲线、估计曲线和横滚角、俯仰角、航向角的参考曲线、估计曲线,可以看出角速度估计和横滚角、俯仰角、航向角估计结果基本上不受影响,满足导航需求。
图8为在四旋翼飞行器的X、Y、Z轴加速度计中注入故障后的故障检测结果,故障类型为“0”,表示无故障,故障类型为“1”,表示检测到故障,可以看出故障检测系统可以检测到故障发生,在注入故障后约0.5后检测到故障,在故障消失后,检测系统存在一个10s的延迟。
图9为在四旋翼飞行器的横滚力矩模型、俯仰力矩模型、扭矩模型、X轴阻力模型、Y轴阻力模型、升力模型中注入故障后的故障检测结果,故障类型为“0”,表示无故障,故障类型为“1”,表示检测到故障,可以看出故障检测系统可以检测到故障发生。
图10为在四旋翼飞行器的磁传感器、GPS、气压计中注入故障后的故障检测结果,故障类型为“0”,表示无故障,故障类型为“1”,表示检测到故障,可以看出故障检测系统可以检测到故障发生。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,在不脱离本发明的精神和原则的前提下,本领域普通技术人员对本发明所做的任何修改、等同替换、改进等,均应落入本发明权利要求书确定的保护范围之内。

Claims (8)

1.一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:包括以下步骤:
步骤1:周期获取k时刻四旋翼飞行器机载传感器信息;
步骤2:计算k时刻四旋翼飞行器的加速度、角加速度;
步骤3:预测k时刻四旋翼飞行器的角速度、四元数、速度和位置;
步骤4:判断k时刻各检测滤波器的故障结果,并对故障进行定位;
步骤5:根据步骤4的故障检测结果,隔离故障传感器信息,通过联邦卡尔曼滤波器对k时刻四旋翼飞行器的角速度、四元数、速度、位置进行校正;
步骤6:根据步骤4的检测结果和步骤5的滤波估计结果对各检测滤波器进行重置更新。
2.根据权利要求1所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:
以当前时刻载体的重心位置为原点构建机体坐标系,其中X轴、Y轴与Z轴分别与当前时刻载体的前向、右向和地向重合;以初始时刻载体的位置为原点构建导航坐标系,其中X轴、Y轴与Z轴分别与当地水平面的北向、东向、地向重合;
步骤1中获取的机载传感器信息包括旋翼转速传感器信息ω1(k)、ω2(k)、ω3(k)、ω4(k),其分别为四个旋翼的转速;惯性传感器信息ωgx(k)、ωgy(k)、ωgz(k)、fax(k)、fay(k)、faz(k),其分别为机体坐标系下X、Y、Z轴陀螺角速度输出和加速度计输出;GPS信息VNG(k)、VEG(k)、VDG(k),其分别为北向速度、东向速度、地向速度,PNG(k)、PEG(k),其分别为北向位置、东向位置;气压高度计信息hb(k);磁传感器信息ψm(k)。
3.根据权利要求2所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:步骤2中,加速度信息通过下式进行计算:
式中,为k时刻机体系相对于导航系的加速度在机体系X、Y、Z轴上的分量;kHx0、kHx1、kHx2、kHy0、kHy1、kHy2、kT0、kT1为模型参数; 为k-1时刻机体系相对于导航系的线速度在机体系X、Y轴上的分量;为k-1时刻机体系相对于导航系的角加速度在机体系X、Y轴上的分量;
角加速度信息通过下式计算:
式中,为k时刻机体系相对于导航系的角速度在机体系X、Y、Z轴上的分量,分别是的微分,即角加速度;kR0、kR1、kR2、kP0、kP1、kP2、kQ0、kQ1、kQ2为模型参数。
4.根据权利要求3所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:步骤3中预测k时刻四旋翼飞行器的角速度、四元数、速度和位置的方法如下:
1)角速度预测:
式中,为k-1时刻机体系相对于导航系的角速度在机体系X、Y、Z轴上的分量;ΔT为离散采样周期;
2)四元数预测:
式中,q0(k)、q1(k)、q2(k)、q3(k)为k时刻的四元数;
3)速度预测:
式中,为k时刻机体系相对于导航系的线速度在机体系X、Y、Z轴上的分量;g为重力加速度;
4)位置预测:
式中,pn(k)、pe(k)、pd(k)分别为k时刻的北向位置、东向位置、地向高度。
5.根据权利要求4所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:步骤4中对各检测滤波器进行故障检测的方法如下:
4.1模型/惯性传感器检测滤波器
4.1.1计算X轴阻力模型/X轴加速度计检测滤波器检测结果:
①计算统计参数λd11(k):
式中,λd11(k)为k时刻的统计参数;
②计算检测函数J11(k):
式中,T11是阈值,当J11(k)=1时,X轴阻力模型或X轴加速度计故障,当J11(k)=0时,X轴阻力模型或X轴加速度计均无故障;
4.1.2计算Y轴阻力模型/Y轴加速度计检测滤波器检测结果:
①计算统计参数λd12(k):
式中,λd12(k)为k时刻的统计参数;
②计算检测函数J12(k):
式中,T12是阈值,当J12(k)=1时,Y轴阻力模型或Y轴加速度计故障,当J12(k)=0时,Y轴阻力模型或Y轴加速度计均无故障;
4.1.3计算升力模型/Z轴加速度计检测滤波器检测结果:
①计算统计参数λd13(k):
式中,λd13(k)为k时刻的统计参数,
②计算检测函数J13(k):
式中,T13是阈值,当J13(k)=1时,升力模型或Z轴加速度计故障,当J13(k)=0时,升力模型或Z轴加速度计均无故障;
4.1.4计算横滚力矩模型/X轴陀螺检测滤波器检测结果:
①计算统计参数λd14(k):
λd14(k)=ed14(k)Pdr14(k)-1ed14(k)T
式中,λd14(k)是k时刻的统计参数,ed14(k)为k时刻残差,Pdr14为k时刻残差方差;
Yd14(k)=ωgx(k)
Hd14(k)=1
Ad14(k)=1
Gd14(k-1)=ΔT
式中,R14(k)为k时刻量测噪声;为k时刻X轴陀螺噪声;Wd14(k-1)为k时刻状态噪声;为k-1时刻横滚力矩模型噪声;
②计算检测函数J14(k):
式中,T14是阈值,当J14(k)=1时,横滚力矩模型或X轴陀螺故障,当J14(k)=0时,横滚力矩模型或X轴陀螺均无故障;
4.1.5计算俯仰力矩模型/Y轴陀螺检测滤波器检测结果:
①计算统计参数λd15(k):
λd15(k)=ed15(k)Pdr15(k)-1ed15(k)T
式中,λd15(k)为k时刻的统计参数,ed15(k)为k时刻残差,Pdr15(k)为k时刻残差方差;
Yd15(k)=ωgy(k)
Hd15(k)=1
Ad15(k)=1
Gd15(k-1)=ΔT
式中,R15(k)为k时刻量测噪声;为k时刻Y轴陀螺噪声;Wd15(k-1)为k时刻状态噪声;为k-1时刻俯仰力矩模型噪声;
②计算检测函数J15(k):
式中,T15是阈值,当J15(k)=1时,俯仰力矩模型或Y轴陀螺故障,当J15(k)=0时,俯仰力矩模型或Y轴陀螺均无故障;
4.1.6计算扭矩模型/Z轴陀螺检测滤波器检测结果:
①计算统计参数λd16(k):
λd16(k)=ed16(k)Pdr16(k)-1ed16(k)T
式中,λd16(k)为k时刻的统计参数,ed16(k)为k时刻残差,Pdr16为k时刻残差方差;
Yd16(k)=ωgz(k)
Hd16(k)=1
Ad16(k)=1
Gd16(k-1)=ΔT
式中,R16(k)为k时刻量测噪声;为k时刻Z轴陀螺噪声;Wd16(k-1)为k时刻状态噪声;为k-1时刻扭矩模型噪声;
②计算检测函数J16(k):
式中,T16是阈值,当J16(k)=1时扭矩模型或Z轴陀螺故障,当J16(k)=0时,扭矩模型或Z轴陀螺均无故障;
4.2模型/量测传感器检测滤波器
4.2.1计算动力学模型/磁传感器检测滤波器检测结果:
①计算统计参数λd21(k):
λd21(k)=ed21(k)Pdr21(k)-1ed21(k)T
式中,λd21(k)为k时刻的统计参数,ed21(k)为k时刻残差;Pdr21为k时刻残差方差;
Yd21(k)=ψm(k)
式中,Wd21(k-1)为k-1时刻状态噪声;R21(k)为k时刻量测噪声;为k时刻磁传感器噪声;
②计算检测函数J21(k):
式中,T21是阈值,当J21(k)=1时动力学模型或磁传感器故障,当J21(k)=0时,动力学模型或磁传感器均无故障;
4.2.2计算动力学模型/GPS检测滤波器检测结果:
①计算统计参数λd22(k):
λd22(k)=ed22(k)Pdr22(k)-1ed22(k)T
式中,λd22(k)为k时刻的统计函数,ed22(k)为k时刻残差;Pdr22(k)为时刻残差方差;
Yd22(k)=[VNG(k) VEG(k)]T
Hd22(k)=[02×7 ξ2×3]
式中,Wd22(k-1)为k-1时刻状态噪声,分别为k-1时刻机体系X、Y、Z轴速度噪声;R22(k)为k时刻量测噪声,分为k时刻GPS北向速度、东向速度噪声;
②计算检测函数J22(k):
式中,T22是阈值,当J22(k)=1时动力学模型或GPS故障,当J22(k)=0时,动力学模型或GPS均无故障;
4.2.3计算动力学模型/气压计检测滤波器检测结果:
①计算统计参数λd23(k):
λd23(k)=ed23(k)Pdr23(k)-1ed23(k)T
式中,λd23(k)为k时刻的统计参数,ed23(k)为k时刻残差;Pdr23为k时刻残差方差;
Z1×3=[2ΔT(q1(k)q3(k)-q0(k)q2(k))2ΔT(q2(k)q3(k)+q0(k)q1(k))ΔT(q0 2(k)-q1 2(k)-q2 2(k)+q3 2(k))]
式中,Wd23(k-1)为k-1时刻状态噪声,为k-1时刻地向高度噪声;为k时刻量测噪声,为k时刻气压计噪声。
②计算检测函数J23(k):
式中,T23是阈值,当J23(k)=1时,动力学模型或气压计故障,当J23(k)=0时,动力学模型或气压计均无故障;
4.3惯性传感器/量测传感器检测滤波器
4.3.1计算惯性传感器/磁传感器检测滤波器检测结果:
①计算统计参数λd31(k):
λd31(k)=ed31(k)Pdr31(k)-1ed31(k)T
式中,λd31(k)为k时刻的统计参数,ed31(k)为k时刻残差;Pdr31为k时刻残差方差;
Yd31(k)=ψm(k)
Ad31(k)=Τ
Gd31(k-1)=Θ4×3
式中,Wd31(k-1)为k-1时刻的状态噪声;R31(k)为k时刻的量测噪声;
②计算检测函数J31(k):
式中,T31是阈值,当J31(k)=1时,惯性传感器或磁传感器故障,当J31(k)=0时,惯性传感器或磁传感器均无故障;
4.3.2计算惯性传感器/GPS检测滤波器检测结果:
①计算统计参数λd32(k):
λd32(k)=ed32(k)Pdr32(k)-1ed32(k)T
式中,λd32(k)为k时刻检测滤波器统计参数;为k时刻残差;为k时刻残差方差;
Yd32(k)=[VNG(k) VEG(k)]T
Hd32(k)=[02×3 ξ2×3]
式中,Wd32(k-1)为k-1时刻的状态噪声;R32(k)为k时刻的量测噪声;
②计算检测函数J32(k):
式中,T32是阈值,当J32(k)=1时,惯性传感器或GPS故障,当J32(k)=0时,惯性传感器或GPS均无故障;
4.3.3计算惯性传感器/气压计检测滤波器检测结果:
①计算统计参数λd33(k):
λd33(k)=ed33(k)Pdr33(k)-1ed33(k)T
式中,λd33(k)为k时刻的统计参数;ed33(k)为k时刻残差;Pdr33(k)为k时刻残差方差;
Yd33(k)=hb(k)
Hd33(k)=-1
式中,R33(k)为k时刻量测噪声;Wd33(k-1)为k-1时刻状态噪声;
②计算检测函数J33(k):
式中,T33是阈值,当J33(k)=1时,惯性传感器或气压计故障,当J33(k)=0时,惯性传感器或气压计均无故障。
6.根据权利要求5所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:步骤4中对故障进行定位的函数如下:
7.根据权利要求6所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:步骤5中对四旋翼飞行器的角速度、四元数、速度和位置进行校正的方法如下:
无故障情况下,采用如下过程对k时刻四旋翼飞行器的角速度、四元素、速度、位置进行校正:
1)计算滤波器的一步预测均方误差PC(k|k-1):
PC(k|k-1)=AC(k|k-1)PC(k-1)AC(k|k-1)T+GC(k-1)WC(k-1)GC(k-1)T
式中,AC(k|k-1)为滤波器k-1时刻到k时刻的滤波器一步转移矩阵,上标T表示转置;PC(k-1)为k-1时刻的状态估计均方差,PC(k|k-1)为k-1时刻到k时刻的一步预测均方差;
式中,GC(k-1)为滤波器k-1时刻的滤波器噪声系数矩阵;WC(k-1)为k-1时刻状态噪声;
2)计算k时刻第i个子滤波器扩展卡尔曼滤波器滤波增益KCi(k):
KCi(k)=PC(k|k-1)HCi(k)T[HCi(k)PC(k|k-1)HCi(k)T+RCi(k)]-1
3)计算k时刻第i个子滤波器扩展卡尔曼滤波器状态估计值XCi(k):
XCi(k)=XCi(k|k-1)+KCi(k)[YCi(k)-hCi(XCi(k|k-1))]
式中,XCi(k)为k时刻状态量的估计值,
YCi(k)为第i个子滤波器量测量,
4)计算k时刻第i个子滤波器估计均方误差PCi(k):
PCi(k)=[I-KCi(k)HCi(k)]PCi(k|k-1)
式中,PCi(k)为k时刻估计均方误差,I为单位矩阵。
5)计算k时刻子滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k):
Xg(k)=Pg(k)[PC2(k)-1XC2(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC2(k)-1+PC3(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
情况1:状态预测输入量发生故障,采用如下方法进行系统重构:
①横滚力矩模或俯仰力矩模型或扭矩模型故障,修改角速度一步预测方程如下:
修改横滚力矩模型、俯仰力矩模型、扭矩模型状态噪声;子滤波器量测更新及主滤波器融合滤波过程与无故障情况下的滤波融合过程相同;
②加速度计故障,修改速度一步预测方程如下:
修改速度预测状态噪声,子滤波器量测更新及主滤波器融合滤波过程与无故障情况下的滤波融合过程相同;
情况2:量测传感器发生故障,采用如下方法进行系统重构:
①X轴陀螺故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:
Xg(k)=Pg(k)[PC2(k)-1XC2(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC2(k)-1+PC3(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
②Y轴陀螺故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:
Xg(k)=Pg(k)[PC1(k)-1XC1(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC1(k)-1+PC3(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
③Z轴陀螺故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:
Xg(k)=Pg(k)[PC1(k)-1XC1(k)+PC2(k)-1XC2(k)+PC4(k)-1XC4(k)+PC5(k)-1XC5(k)+PC6(k)-1XC6(k)]-1
Pg(k)=[PC1(k)-1+PC2(k)-1+PC4(k)-1+PC5(k)-1+PC6(k)-1]-1
XC(k)=Xg(k)
PC(k)=5Pg(k)
④磁传感器故障时,主滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k)如下:使用冗余的磁传感器代替故障磁传感器进行主滤波器的融合滤波;
⑤:GPS故障,使用加速计代替GPS进行量测更新
a)计算k时刻第7个子滤波器扩展卡尔曼滤波器滤波增益KC7(k):
KC7(k)=PC(k|k-1)HC7(k)T[HC7(k)PC(k|k-1)HC7(k)T+RC7(k)]-1
其中,
YC7(k)=[fax(k) fay(k)]T
HC7(k)=[kHx1 kHy1]T
RC7(k)为量测噪声;
b)计算k时刻第7个子滤波器扩展卡尔曼滤波器状态估计值XC7(k):
XC7(k)=XC7(k|k-1)+KC7(k)[YC7(k)-hC7(XC7(k|k-1))]
式中,
c)计算k时刻第7个子滤波器估计均方误差PC7(k):
PC7(k)=[I-KC7(k)HC7(k)]PC7(k|k-1)
d)计算k时刻子滤波器的全局融合状态估计Xg(k)及均方误差估计Pg(k):
Xg(k)=Pg(k)[PC1(k)-1XC1(k)+PC2(k)-1XC2(k)+PC3(k)-1XC3(k)+PC4(k)-1XC4(k)+PC6(k)-1XC6(k)+PC7(k)-1XC7(k)]-1
Pg(k)=[PC1(k)-1+PC2(k)-1+PC3(k)-1+PC4(k)-1+PC6(k)-1+PC7(k)-1]-1
XC(k)=Xg(k)
PC(k)=6Pg(k)
8.根据权利要求7所述的一种基于动力学模型的四旋翼飞行器惯性传感器容错导航方法,其特征在于:步骤6中对各检测滤波器进行重置更新的方法如下:
1)无故障重置方法,检测滤波器每运算n步执行一次重置:
2)有故障重置,检测滤波器的检测结果为“1”时,检测滤波器的状态及均方误差立即步骤5的方法重置,其余检测器采用n步重置法。
CN201811357271.7A 2018-11-15 2018-11-15 基于动力学模型的四旋翼飞行器惯性传感器容错导航方法 Active CN109612459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811357271.7A CN109612459B (zh) 2018-11-15 2018-11-15 基于动力学模型的四旋翼飞行器惯性传感器容错导航方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811357271.7A CN109612459B (zh) 2018-11-15 2018-11-15 基于动力学模型的四旋翼飞行器惯性传感器容错导航方法

Publications (2)

Publication Number Publication Date
CN109612459A true CN109612459A (zh) 2019-04-12
CN109612459B CN109612459B (zh) 2023-03-17

Family

ID=66004480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811357271.7A Active CN109612459B (zh) 2018-11-15 2018-11-15 基于动力学模型的四旋翼飞行器惯性传感器容错导航方法

Country Status (1)

Country Link
CN (1) CN109612459B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196067A (zh) * 2019-05-13 2019-09-03 南京航空航天大学 一种基于无参考系统的交互式故障检测方法
CN110426032A (zh) * 2019-07-30 2019-11-08 南京航空航天大学 一种解析式冗余的飞行器容错导航估计方法
CN111397597A (zh) * 2020-04-08 2020-07-10 暨南大学 一种基于动态信息分配的非等间隔联邦滤波方法
WO2020220729A1 (zh) * 2019-04-29 2020-11-05 南京航空航天大学 基于角加速度计/陀螺/加速度计的惯性导航解算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378248A2 (en) * 2010-04-19 2011-10-19 Honeywell International Inc. Systems and methods for determining inertial navigation system faults
CN108168509A (zh) * 2017-12-06 2018-06-15 南京航空航天大学 一种升力模型辅助的四旋翼飞行器高度容错估计方法
CN108759814A (zh) * 2018-04-13 2018-11-06 南京航空航天大学 一种四旋翼飞行器横滚轴角速度和俯仰轴角速度估计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378248A2 (en) * 2010-04-19 2011-10-19 Honeywell International Inc. Systems and methods for determining inertial navigation system faults
CN108168509A (zh) * 2017-12-06 2018-06-15 南京航空航天大学 一种升力模型辅助的四旋翼飞行器高度容错估计方法
CN108759814A (zh) * 2018-04-13 2018-11-06 南京航空航天大学 一种四旋翼飞行器横滚轴角速度和俯仰轴角速度估计方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PIN LYU,ET AL.: "A novel integrated navigation system based on the quadrotor dynamic model", 《2018 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM (PLANS)》 *
SHENG BAO,ET AL.: "Aerodynamic model/INS/GPS failure-tolerant navigation method for multirotor UAVs based on federated Kalman filter", 《IEEE:2017 CHINESE AUTOMATION CONGRESS (CAC)》 *
SHICHAO LIU,ET AL.: "A fault-tolerant attitude estimation method for quadrotors based on analytical redundancy", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *
李腾等: "基于残差χ~2检测方法的联邦卡尔曼滤波", 《航天控制》 *
熊智等: "改进故障隔离的容错联邦滤波", 《航空学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220729A1 (zh) * 2019-04-29 2020-11-05 南京航空航天大学 基于角加速度计/陀螺/加速度计的惯性导航解算方法
CN110196067A (zh) * 2019-05-13 2019-09-03 南京航空航天大学 一种基于无参考系统的交互式故障检测方法
CN110426032A (zh) * 2019-07-30 2019-11-08 南京航空航天大学 一种解析式冗余的飞行器容错导航估计方法
CN110426032B (zh) * 2019-07-30 2021-05-28 南京航空航天大学 一种解析式冗余的飞行器容错导航估计方法
CN111397597A (zh) * 2020-04-08 2020-07-10 暨南大学 一种基于动态信息分配的非等间隔联邦滤波方法
CN111397597B (zh) * 2020-04-08 2022-04-08 暨南大学 一种基于动态信息分配的非等间隔联邦滤波方法

Also Published As

Publication number Publication date
CN109612459B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN109612459A (zh) 基于动力学模型的四旋翼飞行器惯性传感器容错导航方法
US20200309810A1 (en) Neural network system whose training is based on a combination of model and flight information for estimation of aircraft air data
Rhudy et al. Aircraft model-independent airspeed estimation without pitot tube measurements
CN108168509B (zh) 一种升力模型辅助的四旋翼飞行器高度容错估计方法
US9714100B2 (en) Method for detecting a failure of at least one sensor onboard an aircraft implementing a baro-inertial loop, and associated system
CN108106635A (zh) 惯性卫导组合导航系统的长航时抗干扰姿态航向校准方法
CN108981709B (zh) 基于力矩模型辅助的四旋翼横滚角、俯仰角容错估计方法
CN108981708B (zh) 四旋翼扭矩模型/航向陀螺/磁传感器容错组合导航方法
US9108745B2 (en) Method for detecting a failure of at least one sensor onboard an aircraft implementing an anemo-inertial loop, and associated system
US9828111B2 (en) Method of estimation of the speed of an aircraft relative to the surrounding air, and associated system
CN107643088A (zh) 无人机导航方法、装置、无人机及存储介质
JP7111869B2 (ja) 機首方位測定システムにおけるセンサ測定の欠如を補償するシステムと方法
CN110567457B (zh) 一种基于冗余的惯导自检测系统
CN110426032A (zh) 一种解析式冗余的飞行器容错导航估计方法
CN110007318B (zh) 风场干扰下基于卡尔曼滤波的单无人机判断gps欺骗的方法
CN109725649A (zh) 一种基于气压计/imu/gps多传感器融合的旋翼无人机定高算法
Fravolini et al. Experimental evaluation of two pitot free analytical redundancy techniques for the estimation of the airspeed of an UAV
ES2651369T3 (es) Sistema y proceso para medición y evaluación de datos aéreos e inerciales
Bao et al. Aerodynamic model/INS/GPS failure-tolerant navigation method for multirotor UAVs based on federated Kalman Filter
Hazbon et al. Digital twin concept for aircraft system failure detection and correction
US9550579B2 (en) Method of estimation of the speed of an aircraft relative to the surrounding air, and associated system
NAPOLITANO et al. Digital twin concept for aircraft sensor failure
Dołęga et al. Analytical redundancy in control systems for unmanned aircraft and optionally piloted vehicles
Yong et al. Federated filter based multi-sensor fault-tolerant altitude determination system for UAV
Chen et al. Research on Small UAV Integrated Navigation System Based on Fault Detection and Isolation Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant