CN109608623A - 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法 - Google Patents

一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法 Download PDF

Info

Publication number
CN109608623A
CN109608623A CN201811584042.9A CN201811584042A CN109608623A CN 109608623 A CN109608623 A CN 109608623A CN 201811584042 A CN201811584042 A CN 201811584042A CN 109608623 A CN109608623 A CN 109608623A
Authority
CN
China
Prior art keywords
follows
high molecular
phenylacetylene base
base high
molecular polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811584042.9A
Other languages
English (en)
Inventor
孔彪
李继超
刘家庆
魏化震
王丹勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Material Institute of Shandong Academy of Sciences
Shandong Non Metallic Material Research Institute
Original Assignee
New Material Institute of Shandong Academy of Sciences
Shandong Non Metallic Material Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Material Institute of Shandong Academy of Sciences, Shandong Non Metallic Material Research Institute filed Critical New Material Institute of Shandong Academy of Sciences
Priority to CN201811584042.9A priority Critical patent/CN109608623A/zh
Publication of CN109608623A publication Critical patent/CN109608623A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/413Heck reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法,其结构通式为其中,n为大于零的自然数,R为碳数大于3的烷基。该聚合物对直径12~15nm,长度3~12μm的多壁碳纳米管具有良好的分散性,对此尺寸的碳纳米管的分散度介于1~6%范围。

Description

一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备 方法
技术领域
本发明涉及一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法。
背景技术
这里的陈述仅提供与本发明有关的背景信息,而不必然构成现有技术。
碳纳米管是一种以六边形结构为主要连接基团的纳米材料,具有优异的力学、电学和化学性能。碳纳米管有单壁的和多壁的,碳纳米管尺寸范围分布比较大,常见的直径在2~100nm,长度在10~200μm。由于管壁之间存在较强的范德华力,碳纳米管常呈团聚、缠绕或打结状态,限制了其力学等性能的发挥,也制约了碳纳米管的工业使用。
郑伟玲关于《聚苯乙炔包覆多壁碳纳米管的制备及其分散性》的研究,用苯乙炔合成聚苯乙炔(PPA),对多壁碳纳米管进行纯化、氧化,然后将多壁碳纳米管与PPA一起在甲苯中超声分散。结果显示氧化多壁碳纳米管已被PPA包覆且能够稳定分散于甲苯溶液中,一个多月不沉降。分别采用傅立叶变换红外(FTIR)光谱、酸碱滴定、拉曼光谱分析氧化后多壁碳纳米管的结构变化。利用高分辨透射电镜(HRTEM)分别观察纯化、氧化、PPA包覆多壁碳纳米管的分散情况。
孙晓妍等关于《碳纳米管的分散性研究》指出:碳纳米管具有独特的结构和优异的物理化学性能,但碳管间易相互缠绕而发生团聚。碳纳米管在基体中的分散性对其发挥功能性有重要影响。目前碳纳米管的分散方法主要包括机械分散法、超声处理法、表面修饰法、氮掺杂、超临界流体膨胀法、接枝法、电场诱导法等。
发明内容
为了解决现有技术的不足,本发明的提供一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法,该聚合物对直径12~15nm,长度3~12μm的多壁碳纳米管具有良好的分散性,对此尺寸的碳纳米管的分散度介于1~6%范围。
为了实现上述目的,本发明的技术方案为:
本发明一方面提供了一种间苯乙炔基高分子聚合物,其结构通式如下:
其中,n为大于零的自然数,R为碳数大于3的烷基。
本发明另一方面提供了一种上述间苯乙炔基高分子聚合物的制备方法,将端炔与双卤代双酚醚进行Sonogashira反应,即可获得间苯乙炔基高分子聚合物;
端炔的结构式为:
双卤代双酚醚的结构式为:
反应过程如下:
其中,X为氟、氯、溴或碘,R为碳数大于3的烷基,n为大于零的自然数。
本发明第三方面提供了一种上述间苯乙炔基高分子聚合物在分散碳纳米管中的应用。
本发明第四方面提供了一种碳纳米管分散体系,所述分散体系中的功能物质为上述的间苯乙炔基高分子聚合物。
本发明第五方面提供了一种上述间苯乙炔基高分子聚合物在制备碳纳米管复合材料中的应用。
本发明的有益效果为:
(1)本发明所提供的间苯乙炔基高分子聚合物与碳纳米管之间发生主链吸附,侧链缠绕作用,通过π-π作用,在不破坏碳纳米管的前提下,实现对碳纳米管的分散,根据聚合物结构和碳纳米管尺寸的不同,分散度介于1~6%之间。
(2)为了保证碳纳米管的本征特性,在不破坏碳纳米管表面结构的前提下增进碳纳米管的分散性,本发明提供了一种基于苯乙炔的高分子聚合物,该聚合物在常规有机溶剂的作用下,能有效的分散碳纳米管,从而可推动碳纳米管在复合材料中的应用,在仪器设备、医疗器械、武器装备领域具有较大应用潜力。
(3)本发明的合成方法简单,易操作,工艺参数便于控制,原料及仪器设备成本低廉。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为实施例1制备的中间体3a的核磁共振氢谱图;
图2为实施例1制备的5a的核磁共振氢谱图;
图3为实施例1制备的聚合物6a的核磁共振氢谱图,其中,a是化学位移为10ppm以下的谱图,b是化学位移为0~180ppm的谱图;
图4为实施例2制备的中间体3b的核磁共振氢谱图;
图5为实施例2制备的5b的核磁共振氢谱图;
图6为实施例2制备的聚合物6b的核磁共振氢谱图,a是化学位移为10ppm以下的谱图,b是化学位移为0~180ppm的谱图;
图7为实施例3的步骤过程照片,a加入10mg聚合物后的照片,b从左至右依次加入2mg、4mg、6mg、8mg、10mg碳纳米管后的照片,c加入5mL四氢呋喃后的照片,d超声并静置12小时后的照片;
图8为扫描电镜(SEM)照片,a为未加入聚合物,b为加入聚合物;
图9为透射电镜(TEM)照片。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
Sonogashira反应是一种Pd/Cu催化的芳卤或烯基卤代物和端基炔进行偶联的反应。
正如背景技术所介绍的,现有技术中存在现有碳纳米管易团聚难分散的不足,为了解决如上的技术问题,本公开提出了一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法。
本公开的一种典型实施方式,提供了一种间苯乙炔基高分子聚合物,其结构通式如下:
其中,n为大于零的自然数,R为碳数大于3的烷基。
当R为碳数小于或等于3时,侧链长度过短,侧链无法起到缠绕作用,无法实现对碳纳米管的分散。
该实施方式的一种或多种实施例中,R为丁基或己基。
该实施方式的一种或多种实施例中,n为50~200。
本公开的另一种实施方式,提供了一种上述间苯乙炔基高分子聚合物的制备方法,将端炔与双卤代双酚醚进行Sonogashira反应,即可获得间苯乙炔基高分子聚合物;
端炔的结构式为:
双卤代双酚醚的结构式为:
反应过程如下:
其中,X为氟、氯、溴或碘,R为碳数大于3的烷基,n为大于零的自然数。
该实施方式的一种或多种实施例中,Sonogashira反应的过程为:在惰性气体保护下,将端炔、双卤代双酚醚、CuI、四三苯基膦钯、三苯基膦、三乙胺加入至溶剂中,加热反应。所述惰性气体为能够防止氧气氧化的气体,例如氮气、氩气等。为了降低成本,选择氮气为进行保护。选择甲苯作为溶剂,分散性能更好。
该系列实施例中,加热温度至70~75℃。
为了将聚合物从Sonogashira反应后的物料中提取出来,该系列实施例中,将Sonogashira反应后的物料依次萃取、干燥、浓缩处理得到黄色粘液,再经甲醇/四氢呋喃沉淀法得到黄色固体粉末。
本公开中的双卤代双酚醚和端炔均可以参照Denise Zornik,RobertM.Meudtner,Tamer El Malah,Christina M.Thiele,Stefan Hecht.DesigningStructural Motifs for Clickamers:
Exploiting the 1,2,3-Triazole Moiety to Generate ConformationallyRestricted Molecular
Architectures.Chem.Eur.J.2011,17,1473-1484.报道的步骤进行。
该实施方式的一种或多种实施例中,其过程为:
将间苯二酚与卤代烷烃反应获得双酚醚,再将双酚醚与卤代反应获得双卤代双酚醚,双卤代双酚醚与三甲基硅基乙炔反应得到中间体,然后脱除中间体的三甲基硅基团(TMS)获得端炔,最后将端炔与双卤代双酚醚进行Sonogashira反应,即可获得间苯乙炔基高分子聚合物;
双酚醚的结构式为:
双卤代双酚醚的结构式为:
中间体的结构式为:
端炔的结构式为:
其中,X为氟、氯、溴或碘,R为碳数大于3的烷基。
反应过程如下:
其中,X’为氟、氯、溴或碘,X为氟、氯、溴或碘,R为碳数大于3的烷基,n为大于零的自然数。
该系列实施例中,X’为溴。反应效果最好。
该系列实施例中,所述双酚醚为1,3-二丁氧基苯或1,3-二己氧基苯。
该系列实施例中,采用的卤单质进行卤代反应,卤单质为溴,双酚醚与溴的摩尔比为1:(2.0~2.5)。
本公开的第三种实施方式,提供了一种上述间苯乙炔基高分子聚合物在分散碳纳米管中的应用。
本公开的第四种实施方式,提供了一种碳纳米管分散体系,所述分散体系中的功能物质为上述的间苯乙炔基高分子聚合物。
本公开的第五种实施方式,提供了一种上述间苯乙炔基高分子聚合物在制备碳纳米管复合材料中的应用。
为了使得本领域技术人员能够更加清楚地了解本公开的技术方案,以下将结合具体的实施例详细说明本公开的技术方案。
实施例1
制备过程如下:
中间体2a~5a的合成参照Denise Zornik,Robert M.Meudtner,Tamer El Malah,Christina M.Thiele,Stefan Hecht.Designing Structural Motifs for Clickamers:Exploiting the1,2,3-Triazole Moiety to Generate Conformationally RestrictedMolecular Architectures.Chem.Eur.J.2011,17,1473-1484.报道的步骤进行。制得的中间体3a为白色固体。1H NMR(500MHz,Chloroform-d),如图1所示,δ7.70(s,1H),6.59(s,1H),3.96(t,J=6.1Hz,4H),1.80–1.74(m,4H),1.59–1.39(m,4H),0.96(t,J=7.6Hz,6H).
中间体5a,白色固体。1H NMR(500MHz,Chloroform-d),如图2所示,δ7.67(s,1H),6.60(s,1H),3.99(t,J=6.0Hz,4H),3.21(s,2H),1.84–1.73(m,4H),1.54–1.44(m,4H),0.96(t,J=7.6Hz,6H).
聚合物6a:在氮气保护下,向干燥的250mL三口烧瓶中加入中间体3a(3.8g,10mmol),中间体5a(2.7g,10mmol),加入CuI(0.19g,1mmol),四三苯基膦钯(0.24g,0.2mmol)三苯基膦(0.13g,0.5mmol),再加入干燥甲苯100mL,三乙胺20mL,氮气置换三次后于70度下反应24小时,待反应体系降至室温后,再经萃取、干燥、旋蒸浓缩,得到黄色粘液,再经甲醇/四氢呋喃沉淀法得到黄绿色固体粉末3.4g。1H NMR(500MHz,Chloroform-d),如图3所示,δ7.65–7.57(m,4H),6.49(t,J=1.2Hz,4H),4.09–3.91(m,16H),1.93(s,3H),1.82–1.76(m,16H),1.59–1.37(m,16H),1.02–0.84(m,24H).13C NMR(125MHz,Chloroform-d)δ161.7,161.6,159.2,136.8,136.6,105.9,105.0,97.6,92.8,89.8,80.0,69.5,31.2,19.1,13.8.
实施例2
制备过程如下:
中间体2b~5b的合成参照Denise Zornik,Robert M.Meudtner,Tamer El Malah,Christina M.Thiele,Stefan Hecht.Designing Structural Motifs for Clickamers:Exploiting the1,2,3-Triazole Moiety to Generate Conformationally RestrictedMolecular Architectures.Chem.Eur.J.2011,17,1473-1484.报道的步骤进行。制得的中间体3b为白色固体。1H NMR(500MHz,Chloroform-d),如图4所示,δ7.71(s,1H),6.63(s,1H),3.89(t,J=6.1Hz,4H),1.84–1.76(m,4H),1.50–1.40(m,4H),1.37–1.29(m,8H),0.93–0.84(m,6H).
中间体5b,白色固体。1H NMR(500MHz,Chloroform-d),如图5所示,δ7.64(s,1H),6.56(s,1H),3.98(t,J=6.1Hz,4H),3.20(s,2H),1.85–1.68(m,4H),1.54–1.38(m,4H),1.38–1.19(m,8H),0.99–0.81(m,6H).
聚合物6b:在氮气保护下,向干燥的250mL三口烧瓶中加入中间体3b(4.3g,10mmol),中间体5b(3.3g,10mmol),加入CuI(0.19g,1mmol),四三苯基膦钯(0.24g,0.2mmol)三苯基膦(0.13g,0.5mmol),再加入干燥甲苯100mL,三乙胺20mL,氮气置换三次后于70度下反应24小时,待反应体系降至室温后,再经萃取、干燥、旋蒸浓缩,得到黄色粘液,再经甲醇/四氢呋喃沉淀法得到黄绿色固体粉末4.2g。1H NMR(500MHz,Chloroform-d),如图6所示,δ7.70–7.64(m,4H),6.55(t,J=1.8Hz,4H),4.02–3.88(m,16H),2.10(s,3H),1.86–1.67(m,16H),1.54–1.19(m,48H),0.96–0.88(m,24H).13C NMR(125MHz,Chloroform-d)δ161.7,161.6,159.2,136.8,136.6,105.9,105.1,97.6,92.8,89.8,80.0,69.6,31.3,25.5,22.6,14.0.
实施例3
精确称量五个10mg的聚合物6b样品分别放具塞玻璃瓶中,如图7a所示,再分别加入2mg、4mg、6mg、8mg、10mg管径为5~50nm,长度为20~100μm的多壁碳纳米管配制成具有浓度梯度的聚合物/碳纳米管待分散混合物,如图7b所示,然后加入5mL四氢呋喃(如图7c所示)并在200W功率下超声30分钟,再将聚合物/碳纳米管的超声液静置12h,结果如图7d所示。
SEM拍摄的5.00μm尺度下的照片如图8所示,加入高分子官能聚合物分散前,图8a中的碳纳米管明显呈团聚、缠绕及打结状态,一团乱麻。经加入高分子官能聚合物进行超声分散后,直径50~100μm左右的大型团聚态“碳管球”消失不见,分散后的图8b(聚合物/碳纳米管为10mg/2mg)中出现5~15μm左右的小型“碳管球”,说明间苯乙炔基高分子聚合物对团聚态碳纳米管具有较好的分散功能。此外,图8a中,大型团聚态“碳管球”表面可明显看到较多的缠绕状、打结状碳纳米管,未看到游离状单根的碳纳米管,在进行分散处理后的图8b中缠绕状、打结状碳纳米管大大减少,游离状的单根碳纳米管清晰可见,说明间苯乙炔基高分子聚合物对碳纳米管具有良好的分散作用。
图9中展示的是碳纳米管/高分子官能聚合物(聚合物/碳纳米管为10mg/2mg)的复合物在200nm尺度下的形态,在此尺度下,高分子官能聚合物的轮廓清晰可见,处在高分子官能聚合物覆盖范围之外的碳纳米管可分辨出是多壁结构,与高分子官能聚合物接触的碳纳米管部分,从接触角、连续性角度看,二者均发生了有效的相互作用,进一步表明聚合物对碳纳米管实现了良好的分散。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

1.一种间苯乙炔基高分子聚合物,其特征是,结构通式如下:
其中,n为大于零的自然数,R为碳数大于3的烷基。
2.如权利要求1所述的聚合物,其特征是,R为丁基或己基;
或,n为。
3.一种权利要求1或2所述的间苯乙炔基高分子聚合物的制备方法,其特征是,将端炔与双卤代双酚醚进行Sonogashira反应,即可获得间苯乙炔基高分子聚合物;
端炔的结构式为:
双卤代双酚醚的结构式为:
4.如权利要求3所述的制备方法,其特征是,Sonogashira反应的过程为:在惰性气体保护下,将端炔、双卤代双酚醚、CuI、四三苯基膦钯、三苯基膦、三乙胺加入至溶剂中,加热反应;
优选的,加热温度至70~75℃;
优选的,将Sonogashira反应后的物料依次萃取、干燥、浓缩处理得到黄色粘液,再经甲醇/四氢呋喃沉淀法得到黄色固体粉末。
5.如权利要求3所述的制备方法,其特征是,其过程为:
将间苯二酚与卤代烷烃反应获得双酚醚,再将双酚醚与卤代反应获得双卤代双酚醚,双卤代双酚醚与三甲基硅基乙炔反应得到中间体,然后脱除中间体的三甲基硅基团(TMS)获得端炔,最后将端炔与双卤代双酚醚进行Sonogashira反应,即可获得间苯乙炔基高分子聚合物;
双酚醚的结构式为:
双卤代双酚醚的结构式为:
中间体的结构式为:
端炔的结构式为:
其中,X为氟、氯、溴或碘,R为碳数大于3的烷基。
6.如权利要求5所述的制备方法,其特征是,X’为溴;
或,所述双酚醚为1,3-二丁氧基苯或1,3-二己氧基苯。
7.如权利要求5所述的制备方法,其特征是,采用的卤单质进行卤代反应,卤单质为溴,双酚醚与溴的摩尔比为1:(2.0~2.5)。
8.一种权利要求1或2所述的间苯乙炔基高分子聚合物在分散碳纳米管中的应用。
9.一种碳纳米管分散体系,其特征是,所述分散体系中的功能物质为权利要求1或2所述的间苯乙炔基高分子聚合物。
10.一种权利要求1或2所述的间苯乙炔基高分子聚合物在制备碳纳米管复合材料中的应用。
CN201811584042.9A 2018-12-24 2018-12-24 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法 Pending CN109608623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811584042.9A CN109608623A (zh) 2018-12-24 2018-12-24 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811584042.9A CN109608623A (zh) 2018-12-24 2018-12-24 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法

Publications (1)

Publication Number Publication Date
CN109608623A true CN109608623A (zh) 2019-04-12

Family

ID=66011804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811584042.9A Pending CN109608623A (zh) 2018-12-24 2018-12-24 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN109608623A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194831A (zh) * 2019-06-05 2019-09-03 复旦大学 可与碳纳米管有序超组装的噻吩乙炔基聚合物及制备方法
CN110283303A (zh) * 2019-06-05 2019-09-27 复旦大学 可与碳基材料超组装的3,4-乙烯二氧噻吩聚合物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515598A (zh) * 2002-05-02 2004-07-28 聚合物和用该聚合物非共价官能化纳米管的方法
CN1239604C (zh) * 2002-05-02 2006-02-01 塞威公司 聚合物和用该聚合物加溶纳米管的方法
US20060041104A1 (en) * 2004-08-18 2006-02-23 Zyvex Corporation Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
CN1813023A (zh) * 2003-05-22 2006-08-02 塞威公司 纳米复合材料和生产方法
CN101314634A (zh) * 2008-07-04 2008-12-03 南京邮电大学 折线型水溶性聚芳撑乙炔及其制备方法和应用
WO2010090603A1 (en) * 2009-02-04 2010-08-12 National University Of Singapore Soluble polymer with multi-stable electric states and products comprising such polymer
CN104477873A (zh) * 2014-11-17 2015-04-01 西安医学院 半金属特性碳纳米管(12,6)的简单高效分离方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515598A (zh) * 2002-05-02 2004-07-28 聚合物和用该聚合物非共价官能化纳米管的方法
CN1239604C (zh) * 2002-05-02 2006-02-01 塞威公司 聚合物和用该聚合物加溶纳米管的方法
CN1813023A (zh) * 2003-05-22 2006-08-02 塞威公司 纳米复合材料和生产方法
US20060041104A1 (en) * 2004-08-18 2006-02-23 Zyvex Corporation Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
US7296576B2 (en) * 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
CN101314634A (zh) * 2008-07-04 2008-12-03 南京邮电大学 折线型水溶性聚芳撑乙炔及其制备方法和应用
WO2010090603A1 (en) * 2009-02-04 2010-08-12 National University Of Singapore Soluble polymer with multi-stable electric states and products comprising such polymer
CN104477873A (zh) * 2014-11-17 2015-04-01 西安医学院 半金属特性碳纳米管(12,6)的简单高效分离方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAN CHEN等: "Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers", 《J. AM. CHEM. SOC.》 *
UWE H. F. BUNZ: "Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications", 《CHEM. REV.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194831A (zh) * 2019-06-05 2019-09-03 复旦大学 可与碳纳米管有序超组装的噻吩乙炔基聚合物及制备方法
CN110283303A (zh) * 2019-06-05 2019-09-27 复旦大学 可与碳基材料超组装的3,4-乙烯二氧噻吩聚合物及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications
Kim et al. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies
Xu et al. Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers
CN104010965B (zh) 利用烃前体材料生产石墨烯碳颗粒
Li et al. Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs)
Chen et al. Preparation of poly (acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique
Zhang et al. PEGylation of carbon nanotubes via mussel inspired chemistry: preparation, characterization and biocompatibility evaluation
CN109608623A (zh) 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法
Zeng et al. Surface modification of nanodiamond through metal free atom transfer radical polymerization
US20200362093A1 (en) Organic polyspirogrid nano polymer material and preparation method therefor
Okutan et al. Synthesis of a dendrimeric phenoxy-substituted cyclotetraphosphazene and its non-covalent interactions with multiwalled carbon nanotubes
US20230024121A1 (en) 3,4-ethylenedioxythiophene (edot) polymer capable of superassembling with carbon-based materials, and its preparation method
Wang et al. Synthesis of core-shell particles by batch emulsion polymerization of styrene and octavinyl polyhedral oligomeric silsesquioxane
Teoh et al. Preparation of polyaniline-Al2O3 composites nanofibers with controllable conductivity
Park et al. Tailoring graphene nanosheets for highly improved dispersion stability and quantitative assessment in nonaqueous solvent
Jing et al. Fluorescent probe for Fe (III) based on pyrene grafted multiwalled carbon nanotubes by click reaction
CN110194831A (zh) 可与碳纳米管有序超组装的噻吩乙炔基聚合物及制备方法
Shabanian et al. New poly (ether-imide)/MWCNT nanocomposite: flammability, thermal and electrical properties
Georgakilas et al. Tuning the Dispersibility of Carbon Nanostructures from Organophilic to Hydrophilic: Towards the Preparation of New Multipurpose Carbon‐Based Hybrids
Faghihi et al. Polyimide–silver nanocomposite containing phosphine oxide moieties in the main chain: synthesis and properties
JP2009023886A (ja) カーボンナノチューブ分散液およびその製造方法、並びにその利用
CN109666091A (zh) 一种用于碳纳米管分散的苯乙炔基多官能聚合物及其制备方法
Krishnamurthy et al. ‘Click’polymer of carbon nanotubes for superhydrophobic glass and leather
Du et al. Tailoring structure and surface chemistry of hollow allophane nanospheres for optimization of aggregation by facile methyl modification
Ramirez Leyva et al. Mechanism of hierarchical porosity development in hexagonal boron nitride nanocrystalline microstructures for biomedical and industrial applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190412

RJ01 Rejection of invention patent application after publication