CN109582984A - 一种空心抛物线型变幅杆的设计方法 - Google Patents

一种空心抛物线型变幅杆的设计方法 Download PDF

Info

Publication number
CN109582984A
CN109582984A CN201710897039.1A CN201710897039A CN109582984A CN 109582984 A CN109582984 A CN 109582984A CN 201710897039 A CN201710897039 A CN 201710897039A CN 109582984 A CN109582984 A CN 109582984A
Authority
CN
China
Prior art keywords
amplitude transformer
hollow
parabolic type
formula
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710897039.1A
Other languages
English (en)
Inventor
卫官
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201710897039.1A priority Critical patent/CN109582984A/zh
Publication of CN109582984A publication Critical patent/CN109582984A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种空心抛物线型变幅杆的设计方法,属于功率超声变幅杆设计领域。本解发明决了现有变幅杆设计方法均为实心结构,缺少空心结构以及实心放大倍数有限的问题。它包括以下步骤:步骤一、计算面积系数N、谐振长度Lp;步骤二、计算位移节点x0;步骤三、计算放大系数Mp;四、运用模拟软件依据步骤一至步骤三中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。本发明适用于空心抛物线型超声变幅杆的设计。

Description

一种空心抛物线型变幅杆的设计方法
技术领域
本发明属于功率超声变幅杆设计领域,具体涉及一种空心抛物线型变幅杆的设计方法。
背景技术
功率超声在工业中应用十分广泛,超声变幅杆是超声波振动系统中一个重要的组成部分,它在振动系统中的主要作用是把机械振动的质点位移或速度放大,并将超声能量集中在较小的面积上聚能,因此也称超声变速杆或超声聚能器。超声变幅杆主要分为阶梯形、指数型、圆锥形、双曲线形等类型,在其它参数相同的情况下,阶梯形变幅杆的放大系数最大,其次是双曲线形变幅杆和指数型变幅杆圆锥形变幅杆的形状因数最大,其次是指数型。综合考虑形状因数和放大系数,指数型超声变幅杆要优于其它类型。目前,超声变幅杆多为实心设计,并且放大系数有限,在此基础上想获得更高的放大系数,唯有增大端面直径来获得更大的放大系数,这势必造成径向振动增大,反而制约了能量在小端的聚焦,进而影响功率超声装置的整体放大系数。而空心变幅杆,在不需要增大变幅杆端面直径的条件下,便可获得更大的放大系数。此外,在材料加工领域,常常需要空心超声变幅杆,例如,带中心孔的变幅杆可以实现旋转超声加工的中心供冷却液或气体,可使其具有良好的冷却和排屑效果。然而,,变幅杆设计方法缺少相关数学模型,而且没有完整的理论体系,为此,本发明提出了一种空心超声变幅杆的设计方法。
发明内容
本发明为了解决现有变幅杆设计方法均为实心结构,缺少空心结构的,以及实心超声变幅杆的放大系数有限的问题,提出了一种空心抛物线型变幅杆的设计方法。
一种空心抛物线型超声变幅杆的设计方法,它是按以下步骤实现的:
步骤一、变幅杆的母线选为抛物线型,设变幅杆大端面面积为S1,小端面面积为S2,圆柱形空心部分内圆面积为S0,D1为变幅杆的大端端面直径,D2为变幅杆的小端端面直径,D0为变幅杆的空心直径,振动频率为f,纵波波速为C。抛物线型空心变幅杆可以类比成实心抛物线型变幅杆,所以空心抛物线型变幅杆的面积函数为
(1)
式(1)中的 γ,j为抛物线变幅杆的系数,且
(2)
式(2)中N为面积系数,l p为谐振长度,且
(3)
其中频率方程为:
(4)
空心抛物线线变幅杆的直径函数为:
(5)
在已知、D2、D0、n、C、f时,联立公式(2)至公式(5)即可求出D1l p、N,进而求出j;
步骤二、将步骤一中求得的l代入位移节点公式(6)中可求出位移节点x0
(6)
步骤三、将步骤一中求得的N代入放大系数公式(7)中可求出计算出Mp:
(7)
步骤四、运用模拟软件依据步骤一至步骤三中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。
附图说明
图1是一种空心抛物线型变幅杆的设计的示意图;
图2是空心直径为20mm的带法兰抛物线型变幅杆模拟结果图中的总位移云图;
图3是空心直径为20mm的带法兰抛物线型变幅杆模拟结果图中的节点位移图;
图4是实心抛物线型变幅杆模拟结果图中的位移云图;
图5是实心抛物线型变幅杆模拟结果图中的位移矢量云图(节点的)。
具体实施例
下面结合实施例对具体实施方式做进一步的说明,参见附图1,给定D1=52mm,D0=20mm,f=20KHz,材料选择45号钢,则C=5200m/s,n取一个波长,即n=260mm,公式(2)至公式(4),求得D2=32mm,lp=130mm ,N=1.921 ,γ= 0.0142,将求得l p、n代入位移节点公式(6)中,求得位移节点x0=39.1。将求得N代入放大系数公式(7)中,求得计算放大系数Mp= 11,用模拟软件依据上述给定的数据和求得的结果进行数值模拟,模拟结果见附图2和附图3,从附图2中可看到空心抛物线型变幅杆的模拟放大系数为6.44,从附图3中可看到空心抛物线型变幅杆的波的轴向性较好。
对照例
为了与实心抛物线型变幅杆的模拟放大倍数作比较,选取同样材质的45号钢,实心抛物线型变幅杆的设计尺寸均与实施例的设计尺寸相同,但变幅杆为实心结构,按照具体实施方式的步骤一至步骤四进行,所得模拟结果见附图4和附图5,从附图4中可看到实心抛物线型变幅杆的模拟放大系数为4.184 , 空心抛物线型变幅杆的模拟放大系数为6.44,反映的空心的抛物线型变幅杆要好实心的抛物线型变幅杆。
空心抛物线型变幅杆的模拟放大系数为抛物线指数型变幅杆的模拟放大系数1.5倍,远优于实心抛物线型变幅。此外,对比附图2和附图5可看出空心抛物线型变幅杆的波的轴向性比实心抛物线型变幅杆的波的轴向性好很多。

Claims (1)

1.一种空心抛物线型超声变幅杆的设计方法,它是按以下步骤实现的:
步骤一、变幅杆的母线选为抛物线型,设变幅杆大端面面积为S1,小端面面积为S2,圆柱形空心部分内圆面积为S0,D1为变幅杆的大端端面直径,D2为变幅杆的小端端面直径,D0为变幅杆的空心直径,振动频率为f,纵波波速为C抛物线型空心变幅杆可以类比成实心抛物线型变幅杆,所以空心抛物线型变幅杆的面积函数为:
(1)
式(1)中的 γ,j为抛物线变幅杆的系数,且
(2)
式(2)中N为面积系数,l p为谐振长度,且
(3)
其中频率方程为:
(4)
空心抛物线线变幅杆的直径函数为:
(5)
在已知、D2、D0、n、C、f时,联立公式(2)至公式(5)即可求出D1l p、N,进而求出j;
步骤二、将步骤一中求得的l代入位移节点公式(6)中可求出位移节点x0
(6)
步骤三、将步骤一中求得的N代入放大系数公式(7)中可求出计算出Mp:
(7)
步骤四、运用模拟软件依据步骤一至步骤三中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。
CN201710897039.1A 2017-09-28 2017-09-28 一种空心抛物线型变幅杆的设计方法 Pending CN109582984A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710897039.1A CN109582984A (zh) 2017-09-28 2017-09-28 一种空心抛物线型变幅杆的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710897039.1A CN109582984A (zh) 2017-09-28 2017-09-28 一种空心抛物线型变幅杆的设计方法

Publications (1)

Publication Number Publication Date
CN109582984A true CN109582984A (zh) 2019-04-05

Family

ID=65912809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710897039.1A Pending CN109582984A (zh) 2017-09-28 2017-09-28 一种空心抛物线型变幅杆的设计方法

Country Status (1)

Country Link
CN (1) CN109582984A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976260A (zh) * 2019-11-25 2020-04-10 大族激光科技产业集团股份有限公司 变幅杆及换能系统
CN114102275A (zh) * 2021-11-19 2022-03-01 南京航空航天大学 一种适用于齿轮超声振动辅助磨削的装置及其运行工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976260A (zh) * 2019-11-25 2020-04-10 大族激光科技产业集团股份有限公司 变幅杆及换能系统
CN114102275A (zh) * 2021-11-19 2022-03-01 南京航空航天大学 一种适用于齿轮超声振动辅助磨削的装置及其运行工艺

Similar Documents

Publication Publication Date Title
Fong et al. Second mode suppression in hypersonic boundary layer by roughness: design and experiments
Henderson The connection between sound production and jet structure of the supersonic impinging jet
Beirow et al. Optimization-aided forced response analysis of a mistuned compressor blisk
Luo et al. Optimal stiffener design for interior sound reduction using a topology optimization based approach
CN104601036B (zh) 哑铃式大功率纵扭复合超声振动装置
CN109582984A (zh) 一种空心抛物线型变幅杆的设计方法
CN106557622B (zh) 一种大尺寸环形圆锥型超声变幅杆的设计方法
Carrera et al. Vibration analysis of thin/thick, composites/metallic spinning cylindrical shells by refined beam models
Jin et al. Dynamic analysis of general rotationally symmetric built-up structures using a modified fourier spectral element approach
Wan et al. Low-frequency multimode vibration suppression of an acoustic black hole beam by shunt damping
Aabid et al. A critical review of supersonic flow control for high-speed applications
Wang Trailing edge perforation for interaction tonal noise reduction of a contra-rotating fan
CN106563634B (zh) 一种空心指数型超声变幅杆的设计方法
Filippi et al. Dynamic analyses of axisymmetric rotors through three-dimensional approaches and high-fidelity beam theories
Low et al. A low-dimensional approach to closed-loop control of a mach 0.6 jet
Tong et al. Highly directional acoustic waves generated by a horned parametric acoustic array loudspeaker
McAlpine et al. Sound radiation from a flanged inclined duct
Park et al. Noncontact manipulation of light objects based on parameter modulations of acoustic pressure nodes
Shu et al. The design of acoustic horns for ultrasonic aided tube double side flange making
Asgari Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory
CN210115748U (zh) 超声单激励椭圆振动磨削装置
Tenney et al. Traveling waves as a de-powdering process for additively manufactured parts
Subrahmanyam et al. Propagation of sound in inhomogeneous media: Exact, transient solutions in curvilinear geometries
Banerjee et al. Determination of transmission loss in slightly distorted circular mufflers using a regular perturbation method
Rice et al. A theoretical approach to sound propagation and radiation for ducts with suppressors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190405

WD01 Invention patent application deemed withdrawn after publication