CN106563634B - 一种空心指数型超声变幅杆的设计方法 - Google Patents

一种空心指数型超声变幅杆的设计方法 Download PDF

Info

Publication number
CN106563634B
CN106563634B CN201610663349.2A CN201610663349A CN106563634B CN 106563634 B CN106563634 B CN 106563634B CN 201610663349 A CN201610663349 A CN 201610663349A CN 106563634 B CN106563634 B CN 106563634B
Authority
CN
China
Prior art keywords
amplitude transformer
hollow
formula
exponential type
ultrasonic amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610663349.2A
Other languages
English (en)
Other versions
CN106563634A (zh
Inventor
高桂丽
许家勋
陈国杰
王傲
闫智博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201610663349.2A priority Critical patent/CN106563634B/zh
Publication of CN106563634A publication Critical patent/CN106563634A/zh
Application granted granted Critical
Publication of CN106563634B publication Critical patent/CN106563634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种空心指数型超声变幅杆的设计方法,属于功率超声变幅杆设计领域。本发明解决了现有变幅杆设计方法均为实心结构,缺少空心结构的,以及实心超声变幅杆的放大系数有限的问题。它包括以下步骤:步骤一、计算面积系数N、谐振长度l、蜿蜒指数βδ;步骤二、计算位移节点x 0;步骤三、计算放大系数M;步骤四、计算设应变极大点x M,进而求得到形状因数φ;步骤五、运用模拟软件依据步骤一至步骤一四中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。本发明适用于空心指数型超声变幅杆的设计。

Description

一种空心指数型超声变幅杆的设计方法
技术领域
本发明属于功率超声变幅杆设计领域,具体涉及一种空心指数型超声变幅杆的设计方法。
背景技术
功率超声在工业中应用十分广泛,超声变幅杆是超声波振动系统中一个重要的组成部分,它在振动系统中的主要作用是把机械振动的质点位移或速度放大,并将超声能量集中在较小的面积上聚能,因此也称超声变速杆或超声聚能器。超声变幅杆主要分为阶梯形、指数型、圆锥形、双曲线形等类型,在其它参数相同的情况下,阶梯形变幅杆的放大系数最大,其次是双曲线形变幅杆和指数型变幅杆;圆锥形变幅杆的形状因数最大,其次是指数型。综合考虑形状因数和放大系数,指数型超声变幅杆要优于其它类型。目前,超声变幅杆多为实心设计,并且放大系数有限,在此基础上想获得更高的放大系数,唯有增大端面直径来获得更大的放大系数,这势必造成径向振动增大,反而制约了能量在小端的聚焦,进而影响功率超声装置的整体放大系数。而空心变幅杆,在不需要增大变幅杆端面直径的条件下,便可获得更大的放大系数。此外,在材料加工领域,常常需要空心超声变幅杆,例如,带中心孔的变幅杆可以实现旋转超声加工的中心供冷却液或气体,可使其具有良好的冷却和排屑效果。然而,,变幅杆设计方法缺少相关数学模型,而且没有完整的理论体系,为此,本发明提出了一种空心超声变幅杆的设计方法。
发明内容
本发明为了解决现有变幅杆设计方法均为实心结构,缺少空心结构的,以及实心超声变幅杆的放大系数有限的问题,提出了一种空心超声变幅杆的设计方法。
一种空心指数型超声变幅杆的设计方法,它是按以下步骤实现的:
步骤一、变幅杆的母线选为指数型,设变幅杆大端面面积为,小端面面积为,圆柱形空心部分内圆面积为为变幅杆的大端端面直径,为变幅杆的小端端面直径,为变幅杆的空心直径,振动频率为,纵波波速为。指数型空心变幅杆可以类比成实心指数型变幅杆,所以空心指数型变幅杆的面积函数为:
(1)
式(1)中为蜿蜒指数,且
(2)
式(2)中N为面积系数,l为谐振长度,且
(3)
空心指数型变幅杆的直径函数为:
(4)
在已知时,联立公式(2)至公式(4)即可求出,进而求出蜿蜒指数
步骤二、将步骤一中求得的N代入位移节点公式(5)中可求出位移节点
(5)
步骤三、将步骤一中求得的N代入放大系数公式(6)中可求出计算放大系数为:
(6)
步骤四、设为应变极大点,根据步骤一求得的蜿蜒指数,按公式(7)可得到形状因数为:
(7)
步骤五、运用模拟软件依据步骤一至步骤一四中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。
附图说明
图1是一种空心指数型变幅杆的设计的示意图;
图2是空心直径为20mm的指数型变幅杆模拟结果图中的总位移云图;
图3是空心直径为20mm的指数型变幅杆模拟结果图中的位移矢量云图;
图4是实心指数型变幅杆模拟结果图中的总位移云图;
图5是实心指数型变幅杆模拟结果图中的位移矢量云图。
实施例:
下面结合实施例对具体实施方式做进一步的说明,参见附图1,给定=88mm,=20mm,=20kHz,材料选择45号钢,则 = mm/s,取一个波长,即=260mm,公式(2)至公式(4),求得=22mm,=159.4mm,N=9.03,=0.0174,进而求得=0.0138。
将求得的N代入位移节点公式(5)中,求得位移节点=48.4mm。
将求得的N代入放大系数公式(6)中,求得计算放大系数=9.03。
根据求得的,按公式(7)可求得形状因数=1.423。
用模拟软件依据上述给定的数据和求得的结果进行数值模拟,模拟结果见附图2和附图3,从附图2中可看到空心指数型变幅杆的模拟放大系数为4.5,从附图3中可看到空心指数型变幅杆的波的轴向性较好。
对照例:
为了与实心指数型变幅杆的模拟放大倍数作比较,选取同样材质的45号钢,实心指数型变幅杆的设计尺寸均与实施例的设计尺寸相同,但变幅杆为实心结构,按照具体实施方式的步骤一至步骤五进行,所得模拟结果见附图4和附图5,从附图4中可看到实心指数型变幅杆的模拟放大系数为1.8,实施例与对照例的对比结果下表所示:
从表中可以看出,空心指数型变幅杆的模拟放大系数为实心指数型变幅杆的模拟放大系数的2.5倍,远优于实心指数型变幅杆。此外,对比附图3和附图5可看出空心指数型变幅杆的波的轴向性比实心指数型变幅杆的波的轴向性好很多。

Claims (1)

1.一种空心指数型超声变幅杆的设计方法,其特征在于,它是按以下步骤实现的:
步骤一、变幅杆的母线选为指数型,设变幅杆大端面面积为,小端面面积为,圆柱形空心部分内圆面积为为变幅杆的大端端面直径, 为变幅杆的小端端面直径, 为变幅杆的空心直径,振动频率为 ,纵波波速为
空心指数型变幅杆的面积函数为:
(1)
式(1)中 为蜿蜒指数,且
(2)
式(2)中 N为面积系数, 为谐振长度,且
(3)
空心指数型变幅杆的直径函数为:
(4)
在已知 时,联立公式(2)至公式(4)即可求出,进而 求出蜿蜒指数
步骤二、将步骤一中求得的 、 N代入位移节点公式(5)中可求出位移节点
(5)
步骤三、将步骤一中求得的 N代入放大系数公式(6)中可求出计算放大系数 为:
(6)
步骤四、设 为应变极大点,根据步骤一求得的蜿蜒指数 ,按公式(7)可得到形状因数 为:
(7)
步骤五、运用模拟软件依据步骤一至步骤一四中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。
CN201610663349.2A 2016-08-15 2016-08-15 一种空心指数型超声变幅杆的设计方法 Active CN106563634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610663349.2A CN106563634B (zh) 2016-08-15 2016-08-15 一种空心指数型超声变幅杆的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610663349.2A CN106563634B (zh) 2016-08-15 2016-08-15 一种空心指数型超声变幅杆的设计方法

Publications (2)

Publication Number Publication Date
CN106563634A CN106563634A (zh) 2017-04-19
CN106563634B true CN106563634B (zh) 2019-03-22

Family

ID=58532306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610663349.2A Active CN106563634B (zh) 2016-08-15 2016-08-15 一种空心指数型超声变幅杆的设计方法

Country Status (1)

Country Link
CN (1) CN106563634B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102275B (zh) * 2021-11-19 2023-03-21 南京航空航天大学 一种适用于齿轮超声振动辅助磨削的装置及其运行工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548175A (en) * 1989-06-05 1996-08-20 Canon Kabushiki Kaisha Vibration driven motor
CN103691656A (zh) * 2013-12-18 2014-04-02 北京航空航天大学 一种可快速更换刀具的超声变幅杆

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548175A (en) * 1989-06-05 1996-08-20 Canon Kabushiki Kaisha Vibration driven motor
CN103691656A (zh) * 2013-12-18 2014-04-02 北京航空航天大学 一种可快速更换刀具的超声变幅杆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
空心变截面杆的等效网络;汪彦军,李松松,迟建卫;《声学技术》;20110831;第30卷(第4期);全文

Also Published As

Publication number Publication date
CN106563634A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN104601036B (zh) 哑铃式大功率纵扭复合超声振动装置
CN106557622B (zh) 一种大尺寸环形圆锥型超声变幅杆的设计方法
Su et al. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method
Khmelev et al. Study of the influence of secondary modes of vibrations on the uniformity of the distribution of working ring disk of ultrasonic disk radiators
CN106563634B (zh) 一种空心指数型超声变幅杆的设计方法
Mughal et al. Novel ultrasonic horn design for machining advanced brittle composites: A step forward towards green and sustainable manufacturing
CN107243446A (zh) 一种大功率多级阶梯型变幅杆
CN109582984A (zh) 一种空心抛物线型变幅杆的设计方法
Wang et al. Development of a longitudinal–torsional ultrasonic vibration-aided drilling system for drilling carbon fiber-reinforced polymer materials
CN206966068U (zh) 一种大功率多级阶梯型变幅杆
CN104028867A (zh) 一种超声电火花加工装置的压电振子
Singhatanadgid et al. Scaling laws for vibration response of anti-symmetrically laminated plates
Arora Performance analysis of parallel hub diverging casing axial annular diffuser with 20 equivalent cone angle
Mughal et al. Numerical evaluation of state of the art horn designs for rotary ultrasonic vibration assisted machining of Nomex honeycomb composite
Mughal et al. Numerical evaluation of state of the art horn designs for ultrasonic vibration assisted machining of Nomex honeycomb composite
Firouz-Abadi et al. Whirling frequencies of thin spinning cylindrical shells surrounded by an elastic foundation
Asgari Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory
Mazzei Jr On the effect of functionally graded materials on resonances of rotating beams
Norouzi et al. Forced vibration analysis of spinning disks subjected to transverse loads
Can et al. Aeroacoustic and flow field features of ultrasonic atomizer based on Hartmann resonance tube
Beirow et al. Optimization-aided forced response analysis of a mistuned compressor blisk
Li et al. A Study on the Development of Rotary Ultrasonic Machining Spindle
CN110052903A (zh) 纵-扭-径复合空间体椭圆振动超声磨削装置设计方法
Khmelev et al. Calculation features of the ultrasonic vibrating systems
Wen et al. The Ultrasonic Honing of Amplitude Transformer's Optimal Design Based on VB Platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant