CN109575915B - 一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法 - Google Patents

一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法 Download PDF

Info

Publication number
CN109575915B
CN109575915B CN201811538671.8A CN201811538671A CN109575915B CN 109575915 B CN109575915 B CN 109575915B CN 201811538671 A CN201811538671 A CN 201811538671A CN 109575915 B CN109575915 B CN 109575915B
Authority
CN
China
Prior art keywords
aunps
amphiphilic
organic mercury
mercury
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811538671.8A
Other languages
English (en)
Other versions
CN109575915A (zh
Inventor
刘训恿
边杰
刘毅
朱晨雪
戴雨晴
刘军深
郭磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201811538671.8A priority Critical patent/CN109575915B/zh
Publication of CN109575915A publication Critical patent/CN109575915A/zh
Application granted granted Critical
Publication of CN109575915B publication Critical patent/CN109575915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种两亲性聚合物修饰的AuNPs的制备方法及其对有机汞的检测应用。通过亲油的脂肪酰氯对超支化聚乙烯亚胺(HPEI)进行改性,制备了具有核壳结构的两亲性超支化聚合物。该两亲性超支化聚合物基于酸碱相互作用可将水相中的氯金酸转移到有机相中,并借助于HPEI胺基的还原能力可原位还原制备出稳定性较高的AuNPs。该两亲性聚合物修饰的AuNPs与有机汞通过形成Au‑Hg合金,可使体系发生颜色和紫外‑可见吸收光谱变化,实现对有机汞的高选择性检测,其最低检出限可以达到1×10‑6 M。此探针通过相转移可富集有机汞,使得该探针能够应用于分布散、浓度低的海水、土壤等体系中有机汞的高灵敏、高选择性检测。

Description

一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法
技术领域
本发明属于分析化学科学领域,涉及一种应用于有机汞检测的两亲性超支化聚合物/金纳米粒子复合物探针的制备方法。
背景技术
汞是一种广泛存在于自然界的人体非必需元素。随着工业的发展,全世界每年有近 5000 吨不同形态的汞被排放,对环境和人的健康危害极大。各种形态的汞及其化合物都会对机体造成以神经毒性和肾脏毒性为主的多系统损害。其中有机汞具有亲脂性、生物积累效应和生物放大效应,其毒性往往是无机汞的几百倍。因此,快速检测汞离子具有重要意义,可有效防控或避免其对环境和人体的危害。目前,汞离子的检测方法主要包括冷原子吸收、原子荧光、冷原子荧光等。相比以上仪器检测法,基于金纳米粒子(AuNPs)变色引起紫外-可见吸收光谱变化的比色检测法,由于操作方便、可现场实时快速检测而受到青睐。但是基于AuNPs的比色检测方法主要用于无机汞的检测,而应用于有机汞的检测却鲜有报道。这是因为AuNPs是水溶性的,易与无机汞离子结合,从而引起AuNPs聚集产生颜色变化,而有机汞由于络合了烷基、炔基、芳香基等基团,而难与水溶性的AuNPs作用,无法实现对有机汞的高灵敏、高选择性检测,这也是目前所有基于AuNPs 的探针在比色检测有机汞应用中所面临的一个极具挑战性的问题。
同时,海水、土壤等体系受有机汞污染后,由于分布散、浓度低极难检测。因此,本发明为了解决以上问题,拟制备有机相中稳定存在的AuNPs探针,通过探针对有机汞的相转移富集及比色效应实现对有机汞,尤其是海水、土壤等体系中有机汞的高灵敏、高选择性检测。
本发明为了提高有机相中AuNPs的稳定性,选用两亲性超支化聚合物为稳定剂,其中超支化聚合物较大的空间位阻、较多的官能团以及超支化聚合物的类球型结构可大大增加AuNPs的空间位阻,避免其发生聚集,从而提高AuNPs的稳定性。同时,超支化聚合物既可以作为稳定剂又可以用作还原剂,避免了传感器复杂的制备过程和后期纯化过程。此外,两亲性超支化聚合物可将有机汞富集转移至有机相中,有利于低浓度有机汞的检测。因此,基于两亲性超支化聚合物稳定的AuNPs对有机汞的检测具有重要意义和应用价值。
发明内容
本发明的目的是提供一种能够快速、高效检测有机汞的比色传感器,解决现有比色检测方法对有机汞尤其是海水、土壤等体系中有机汞不能检测或灵敏度低、选择性差等问题。
本发明的目的通过下述技术方案予以实现:
一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法,按照下述步骤进行:
1. 比色探针的制备
将两亲性超支化聚合物溶解在三氯甲烷中,并与氯金酸水溶液混合震荡,体系出现分层,取下层有机相液体,加入硫酸镁吸水干燥,然后离心分离,35-50 ℃反应2-6 h,制备出两亲性超支化聚合物修饰的AuNPs比色探针。
其中所述反应温度优选为35-55 ℃,最优为45-50 ℃,反应时间优选为2-6 h,最优为4-6 h。
所述两亲性超支化聚合物为具有相同分子量的超支化聚乙烯亚胺(HPEI)亲水性核、不同支化程度的疏水壳或不同分子量的HPEI亲水性核、相同支化度的疏水壳。HPEI分子量为600、1800和10000,疏水碳链长度为8、12、14和16。
2. 比色探针的应用
取适量两亲性超支化聚合物修饰AuNPs的三氯甲烷溶液,加入一定量的有机汞水溶液,震荡2-5 min后,取下层有机相液体,加入硼氢化钠/甲醇溶液,最后用甲醇定容,静止1-5 min后,拍照并测试其紫外-可见吸收光谱。
干扰离子影响考察:取适量两亲性超支化聚合物修饰AuNPs的三氯甲烷溶液,分别加入含Hg2+,Ag+,Mg2+, Ba2+,Sr2+,Pb2+,Mn2+,Zn2+,Cs+,Ni2+,Cu2+,K+等离子的溶液,震荡2-5min后,然后加入硼氢化钠/甲醇溶液,最后用甲醇定容,静止1-5 min后,拍照并测试其紫外-可见吸收光谱。
其中所述有机汞水溶液其溶质有机汞为络合了烷基、炔基、芳香基等的汞试剂,溶剂为蒸馏水、海水或土壤处理液。
所述两亲性超支化聚合物修饰AuNPs/三氯甲烷溶液中AuNPs的浓度范围为1.08×10-5-4.87×10-4 M。
所述有机汞的浓度范围为1.0×10-6-1.0×10-1 M。
所述硼氢化钠的浓度范围为2.3×10-1-1.2×101 g/L。
本发明的特点和有益效果在于:
(1)通过改变核壳分子量、壳密度及疏水链长度等因素,可调控两亲性聚合物的亲疏水性质,借助于胺基核与氯金酸的酸碱作用,可将氯金酸固定于亲水核内,同时胺基的还原作用可实现AuNPs的原位制备,借助于壳的亲油性质,可将AuNPs稳定于有机相中。
(2)借助于两亲性聚合物的亲油性,可以使两亲性聚合物和有机汞中的烷基、炔基、芳香基等更好地作用,能够将有机汞转移至有机相,不但可以避免其它水溶性离子的干扰,还可以通过相转移对有机汞进行富集,实现较低浓度下有机汞的比色检测。
(3)基于此两亲性聚合物稳定的AuNPs,在有机汞存在下可以使体系发生由红到黄的颜色变化,能够实现对有机汞的比色检测。这种颜色变化不同于传统的AuNPs聚集引起红到蓝的颜色变化机理,而是因为形成能够稳定存在的Au-Hg合金,从而使体系由AuNPs的红色变成了Au-Hg合金的黄色。这种颜色是Au-Hg合金的本身颜色,所以不宜受其它因素干扰,使探针具有较高的检测专一性。
(4)颜色变化后,形成的Au-Hg合金能够长期稳定存在,所以此探针可以在更长的时间范围内观察和记录比色现象,而传统基于AuNPs聚集引起颜色变化的探针只能在很短时间内来观察和记录,因为AuNPs聚集体是不稳定的,极易聚沉下来而使体系失去颜色。
附图说明
图1不同浓度有机汞存在时比色体系的紫外-可见吸收光谱(A)和其线性关系拟合图(B)。
具体实施方式
以下结合实例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。首先根据文献制备方法合成两亲性超支化聚合物,以两亲性聚合物(HPEI-D1-C16)为例:基于二羟甲基丙酸(BHP)的羟基和棕榈酰氯(C16)进行的酯化反应,先合成具有一个支化点(D1)和两条长碳链的小分子树形基元D1-C16,然后再与HPEI反应而最终合成HPEI-D1-C16。将0.44 g(0.044 mmol)的HPEI溶于无水三氯甲烷,充分溶解后,逐滴滴加0.45 g(0.44 mmol)三乙胺(TEA),然后在25 ℃下搅拌,将2.32 g的酰氯化D1-C16逐滴滴加到PEI的溶液中反应12 h。反应结束后,用饱和食盐水萃取洗涤反应物,重复洗涤3-5次直至溶液呈中性。最后离心分离,真空干燥制备出两亲性超支化聚合物。
按照以上所述步骤合成了几种不同的两亲性超支化聚合物,以其为稳定剂和还原剂可制备在有机相中能够稳定存在的AuNPs,实施本发明的技术方案。
实施例1 HPEI-D1-C16/AuNPs的制备
称取30 mg两亲性超支化聚合物HPEI-D1-C16溶解于6 mL三氯甲烷中,与6 mL氯金酸水溶液混合震荡,待体系分层后,取下层有机相液体,加入0.5 g硫酸镁干燥,然后离心分离,45 ℃下反应3 h,制备出两亲性超支化聚合物HPEI-D1-C16稳定修饰的AuNPs比色探针。
实施例2 HPEI-D1-C16/AuNPs对有机汞检测灵敏度考察
在本发明中,以两亲性超支化聚合物稳定化AuNPs作为比色探针,检测有机汞的存在。在检测过程中,当存在有机汞时,由肉眼可以观察到体系会由原来的红色变为黄色,紫外吸收光谱的特征吸收峰发生红移,从而实现对有机汞的比色检测。
取4.0 mL HPEI-D1-C16/AuNPs的三氯甲烷溶液,加入0.5 mL不同浓度的氯化乙基汞溶液和3.5 mL水,震荡2-5 min后,取下层有机相液体,加入1.0 mL 1.0×10-3 M硼氢化钠/甲醇溶液,最后用甲醇定容至6 mL,静止2 min后,拍照并测试其紫外-可见吸收光谱(图1A)。
由图1可知,两亲性超支化聚合物稳定的AuNPs的特征吸收峰强度随有机汞浓度变化而线性增加,其R 2=0.9924,该两亲性超支化聚合物稳定的AuNPs对有机汞的最低检测浓度为1.0×10-6 M。基于此线性关系,以海水、土壤样品为应用实例,对比原子吸收光谱检测结果,该比色检测法检出率分别在97-105%和95-106%。
实施例3 HPEI-D1-C16/AuNPs对有机汞检测选择性考察
在两亲性超支化聚合物稳定化AuNPs作为比色探针检测氯化乙基汞的实验中,同时选用多种金属离子(Hg2+,Ag+,Mg2+, Ba2+,Sr2+,Pb2+,Mn2+,Zn2+,Cs+,Ni2+,Cu2+,K+)作为干扰离子来考察比色探针的检测选择性。取4.0 mL HPEI-D1-C16/AuNPs的三氯甲烷溶液(13份),分别加入0.5 mL 浓度为1.0×10-5M 的氯化乙基汞和0.5 mL浓度为1.0×10-4M 的Hg2 +,Ag+,Mg2+,Ba2+,Sr2+,Pb2+,Mn2+,Zn2+,Cs+,Ni2+,Cu2+,K+溶液,震荡3 min后,取下层有机相液体,加入1.0 mL 1.0×10-3 M硼氢化钠/甲醇溶液,最后用甲醇定容至6 mL,静止2 min后,拍照并测试其紫外-可见吸收光谱。
通过记录颜色和紫外吸收光谱变化来考察比色探针对有机汞检测的选择性。实验结果表明,只有含氯化乙基汞的体系发生了颜色和紫外-可见吸收光谱变化,而其它无机水溶性离子均未导致体系变色或紫外-可见吸收光谱变化。因此,本发明的比色探针可实现对有机汞的高专一性检测。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的相关内容和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法,其特征在于,步骤如下:将两亲性超支化聚合物溶解于三氯甲烷中,并与氯金酸水溶液混合震荡,体系出现分层,取下层有机相液体,加入硫酸镁吸水干燥,然后离心分离,35-50 ℃反应2-6 h,制备出两亲性超支化聚合物修饰的AuNPs比色探针;取适量两亲性超支化聚合物修饰AuNPs的三氯甲烷溶液,加入一定量的有机汞水溶液,震荡2-5 min后,取下层有机相液体,加入硼氢化钠/甲醇溶液,最后用甲醇定容,静止1-5 min后,拍照并测试其紫外-可见吸收光谱;所述两亲性超支化聚合物为HPEI-D1-C16:基于二羟甲基丙酸BHP的羟基和棕榈酰氯C16进行的酯化反应,先合成具有一个支化点D1和两条长碳链的小分子树形基元D1-C16,然后再与超支化聚乙烯亚胺HPEI反应而最终合成HPEI-D1-C16;所述有机汞水溶液其溶质有机汞为氯化乙基汞,溶剂为蒸馏水、海水或土壤处理液。
2.根据权利要求1所述的一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法,其特征在于,反应温度为35-55 ℃,反应时间为2-6 h。
3.根据权利要求1所述的一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法,其特征在于,所述两亲性超支化聚合物修饰AuNPs/三氯甲烷溶液中AuNPs的浓度范围为1.08×10-5-4.87×10-4 M。
4.根据权利要求1所述的一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法,其特征在于,所述有机汞的检测浓度范围为1.0×10-6-1.0×10-1 M。
5.根据权利要求1所述的一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法,其特征在于,还原剂硼氢化钠所使用的浓度范围为2.3×10-1-1.2×101 g/L。
CN201811538671.8A 2018-12-17 2018-12-17 一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法 Active CN109575915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811538671.8A CN109575915B (zh) 2018-12-17 2018-12-17 一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811538671.8A CN109575915B (zh) 2018-12-17 2018-12-17 一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法

Publications (2)

Publication Number Publication Date
CN109575915A CN109575915A (zh) 2019-04-05
CN109575915B true CN109575915B (zh) 2021-08-24

Family

ID=65930348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811538671.8A Active CN109575915B (zh) 2018-12-17 2018-12-17 一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法

Country Status (1)

Country Link
CN (1) CN109575915B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392738B (zh) * 2022-01-25 2023-01-10 同济大学 共价杂配体、炔基化超支化聚乙撑亚胺矿化法调制金纳米簇和方法、应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017696A (ja) * 2008-07-14 2010-01-28 National Institute Of Advanced Industrial & Technology 金属ナノ粒子触媒及び酸素酸化方法
CN101665691A (zh) * 2009-09-04 2010-03-10 上海交通大学 利用两亲性超支化聚合物制备量子点的方法
CN101881734A (zh) * 2010-06-07 2010-11-10 中国科学院宁波材料技术与工程研究所 金属离子的检测方法
CN102374986A (zh) * 2010-08-13 2012-03-14 国家纳米科学中心 一种利用表面改性的金纳米颗粒检测汞离子的方法
CN103833944A (zh) * 2014-02-22 2014-06-04 湖南科技大学 一种检测汞离子的两亲性聚合物纳米粒子、制备方法及应用
CN104209539A (zh) * 2014-09-28 2014-12-17 中南大学 基于聚酰胺胺超分子超支化聚合物制备金纳米粒子的方法
CN105784612A (zh) * 2016-03-07 2016-07-20 安徽师范大学 通过组装金纳米棒检测汞离子的方法
KR20160089217A (ko) * 2015-01-19 2016-07-27 한국과학기술연구원 폴리에틸렌 이민으로 개질된 금 나노입자를 이용한 수은 이온(ii) 및 유기 수은의 비색 검출 방법
CN108828047A (zh) * 2018-07-02 2018-11-16 北京师范大学 一种检测水体中汞离子的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017696A (ja) * 2008-07-14 2010-01-28 National Institute Of Advanced Industrial & Technology 金属ナノ粒子触媒及び酸素酸化方法
CN101665691A (zh) * 2009-09-04 2010-03-10 上海交通大学 利用两亲性超支化聚合物制备量子点的方法
CN101881734A (zh) * 2010-06-07 2010-11-10 中国科学院宁波材料技术与工程研究所 金属离子的检测方法
CN102374986A (zh) * 2010-08-13 2012-03-14 国家纳米科学中心 一种利用表面改性的金纳米颗粒检测汞离子的方法
CN103833944A (zh) * 2014-02-22 2014-06-04 湖南科技大学 一种检测汞离子的两亲性聚合物纳米粒子、制备方法及应用
CN104209539A (zh) * 2014-09-28 2014-12-17 中南大学 基于聚酰胺胺超分子超支化聚合物制备金纳米粒子的方法
KR20160089217A (ko) * 2015-01-19 2016-07-27 한국과학기술연구원 폴리에틸렌 이민으로 개질된 금 나노입자를 이용한 수은 이온(ii) 및 유기 수은의 비색 검출 방법
CN105784612A (zh) * 2016-03-07 2016-07-20 安徽师范大学 通过组装金纳米棒检测汞离子的方法
CN108828047A (zh) * 2018-07-02 2018-11-16 北京师范大学 一种检测水体中汞离子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol;Yi Liu et al.,;《J. Mater. Chem.》;20120822;第22卷;第21173-21182页 *

Also Published As

Publication number Publication date
CN109575915A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
Yang et al. Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol
Li et al. Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO−/SCN− and anti-counterfeiting
Es’haghi et al. Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique: Hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry
Wang et al. Polydiacetylene liposome-encapsulated alginate hydrogel beads for Pb 2+ detection with enhanced sensitivity
Qin et al. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of Cefixime
Li et al. Colorimetric sensor strips for lead (II) assay utilizing nanogold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets
Lin et al. L-Histidine-protected copper nanoparticles as a fluorescent probe for sensing ferric ions
Zhang et al. Highly selective and sensitive nanoprobes for Hg (II) ions based on photoluminescent gold nanoclusters
Liu et al. Highly selective, colorimetric detection of Hg2+ based on three color changes of AuNPs solution from red through sandy beige to celandine green
Mariño‐Lopez et al. Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters
Hashemi et al. Molecularly imprinted stir bar sorptive extraction coupled with atomic absorption spectrometry for trace analysis of copper in drinking water samples
ul Hoque et al. Modification of Amberlite XAD-4 resin with 1, 8-diaminonaphthalene for solid phase extraction of copper, cadmium and lead, and its application to determination of these metals in dairy cow’s milk
Parvizi et al. Preconcentration and ultra-trace determination of hexavalent chromium ions using tailor-made polymer nanoparticles coupled with graphite furnace atomic absorption spectrometry: ultrasonic assisted-dispersive solid-phase extraction
Li et al. Solid-phase pink-to-purple chromatic strips utilizing gold probes and nanofibrous membranes combined system for lead (II) assaying
Sharma et al. Recyclable macromolecular thermogels for Hg (II) detection and separation via sol-gel transition in complex aqueous environments
CN109575915B (zh) 一种两亲性聚合物修饰的AuNPs比色检测有机汞的方法
Liu et al. A simple and feasible fluorescent approach for rapid detection of hexavalent chromium based on gold nanoclusters
Mortada et al. Cloud point extraction for the determination of trace amounts of Pt (IV) by graphite furnace atomic absorption spectrometry
Tolan et al. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater
Kumar et al. Curcumin immobilized metal organic framework based fluorescent nanoprobe for selective sensing and bioimaging of Fe (II)
Arslan et al. Ion-imprinted CDs-Pc nanohybrid sensor for ratiometric fluorescence and electrochemical detection of Pd (II)
Eliwa et al. Sonochemical synthesis and characterization of novel copper based metal-organic framework: Its application as electrochemical sensor for determination of Cd (II) ion in real water samples
Shi et al. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice
Uttam et al. Selective Sensing and Removal of Mercury Ions by Encapsulating Dansyl Appended Calix [4] Conjugate in a Zeolitic Imidazolate Framework as an Organic–Inorganic Hybrid Nanomaterial
Li et al. Rational design of a functionalized metal–organic framework for ratiometric fluorimetric sensing of Hg 2+ in environmental water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant