CN109575363A - 一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂 - Google Patents

一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂 Download PDF

Info

Publication number
CN109575363A
CN109575363A CN201811618847.0A CN201811618847A CN109575363A CN 109575363 A CN109575363 A CN 109575363A CN 201811618847 A CN201811618847 A CN 201811618847A CN 109575363 A CN109575363 A CN 109575363A
Authority
CN
China
Prior art keywords
2mgob
flame retardant
rgo
composite nanometer
nanometer flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811618847.0A
Other languages
English (en)
Other versions
CN109575363B (zh
Inventor
刘志宏
郭睿凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201811618847.0A priority Critical patent/CN109575363B/zh
Publication of CN109575363A publication Critical patent/CN109575363A/zh
Application granted granted Critical
Publication of CN109575363B publication Critical patent/CN109575363B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂,该复合阻燃剂是在还原氧化石墨烯(RGO)表面负载2MgO·B2O3·H2O纳米带,RGO的质量含量为5%~20%。本发明通过在水热法制备2MgO·B2O3·H2O纳米带的过程中添加GO,原位反应制备出了RGO负载2MgO·B2O3·H2O纳米带的纳米复合阻燃剂,制备方法简单,成本低廉,所制备的2MgO·B2O3·H2O/RGO纳米复合阻燃材料分散性好、粒径小,且具有较好的阻燃效果和力学性能,具有潜在的应用前景。

Description

一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂
技术领域
本发明属于阻燃技术领域,具体涉及一种阻燃和力学性能优良的2MgO·B2O3·H2O/RGO纳米复合阻燃材料。
背景技术
随着重大火灾次数的增多以及塑料焚烧造成的二次污染等问题的出现,阻燃剂的应用受到了广泛的关注。硼酸镁是一种新型高效无机阻燃剂,它具有热稳定性高、粒度细、体积质量小、易分散、无毒等显著特点,既能阻燃又能抑烟,并能消灭电弧,因此有着良好的市场前景,被广泛应用于各种纤维、树脂、橡胶制品、电器绝缘材料、电线、电缆、防锈漆等方面的阻燃。然而,硼酸镁相对大的粒径在基质中很难分散,限制了其在工业上的应用;由于纳米材料的形貌和尺寸对其阻燃性能有很大影响,对于等量的阻燃剂,其粒径愈小比表面积愈大,超细化、纳米化以后,增强了界面的相互作用,可以更均匀的分散于基质中,阻燃效果就愈好。
所以,开展硼酸镁纳米材料及其复合阻燃剂的制备和阻燃性能研究具有重要现实意义。发明人在研发过程中发现有关水合硼酸镁纳米结构的制备报道极少,虽然WanchengZhu等人提出采用水热法制备花状、纤维状纳米2MgO·B2O3·H2O,但是没有进行阻燃试验。本课题组最近报道了2MgO·B2O3·1.5H2O纳米短棒阻燃材料以及2MgO·B2O3·1.5H2O/Mg(OH)2纳米复合材料,其阻燃性能相比单一阻燃材料有了较大提升。
石墨烯(GO)作为一种高强度碳材料,由于其热稳定性高、阻隔性强、比表面吸附能力大等优点,有效地减少了传热传质,作为阻燃剂受到越来越多的关注。但是单一填充GO在聚合物中分散性并不好,其炭层不能有效形成防火体系,这说明GO的阻燃性能有待提高。为了解决这个问题,人们通常用GO作为佐剂结合其他传统无机阻燃剂如偏硼酸钠、羟基锡酸锌和硼酸锌,所有这些可以有效地提高GO在聚合物基质中的分散性和阻燃性能,而且有效地降低了填料的总体含量。本课题组大量阻燃实验表明,即使添加碱土金属硼酸盐纳米阻燃材料到聚丙烯基材中,虽然阻燃效果有了较大提高,但是材料的力学性能明显降低,仍然限制了其应用。
发明内容
本发明的目的是提供一种粒径小、分散性好、阻燃性能和力学性能优良的2MgO·B2O3·H2O/RGO纳米复合阻燃剂。
针对上述目的,本发明所采用的2MgO·B2O3·H2O/RGO纳米复合阻燃剂是表面负载2MgO·B2O3·H2O纳米带的还原氧化石墨烯,它由下述方法制备得到:
将Mg(NO3)2·6H2O、H3BO3、NaOH和石墨烯加入去离子水中,超声分散均匀,在180~260℃下水热反应12~36小时,自然冷却至室温,所得产物经抽滤、洗涤、干燥,得到2MgO·B2O3·H2O/RGO纳米复合阻燃剂。
上述Mg(NO3)2·6H2O与H3BO3、NaOH的摩尔比为1:1~4:1~5,优选Mg(NO3)2·6H2O与H3BO3、NaOH的摩尔比为1:1.5~3:2~4。
上述Mg(NO3)2·6H2O与石墨烯的质量比为1:0.003~0.1,优选Mg(NO3)2·6H2O与石墨烯的质量比为1:0.01~0.05。
上述制备方法中,进一步优选在200~240℃下水热反应18~26小时。
本发明的2MgO·B2O3·H2O/RGO纳米复合阻燃剂中,2MgO·B2O3·H2O纳米带的厚度5~15nm、宽度为30~50nm。
本发明的有益效果如下:
1、本发明考虑到石墨烯的高强度特点结合其可以作为阻燃剂,采用原位水热反应方法,制备了首例碱土金属硼酸盐2MgO·B2O3·H2O/RGO纳米复合材料。所制备的2MgO·B2O3·H2O/RGO纳米复合阻燃材料分散性好、粒径小,不但提高了阻燃性能,而且2MgO·B2O3·H2O/RGO纳米复合阻燃剂与单一2MgO·B2O3·H2O纳米带相比,抗拉强度增大,力学性能显著提高。结果表明添加10%2MgO·B2O3·H2O/RGO纳米复合材料的聚丙烯的阻燃性能比单一组分的强,表现出协同阻燃作用,特别是其保持了与聚丙烯接近的力学性能,很好地抵消了如果只添加2MgO·B2O3·H2O纳米带导致的材料力学性能的恶化。
2、本发明纳米复合阻燃剂的制备方法简单,成本低廉,且具有较好的阻燃效果和优良的力学性能,在阻燃领域具有广阔的应用前景。
附图说明
图1是实施例1制备的样品的X射线粉末衍射谱。
图2是实施例1制备的样品的EDS能谱图。
图3是实施例1制备的样品的SEM图。
图4是实施例1制备的样品的TEM图。
图5是2MgO·B2O3·H2O纳米带(曲线a)、RGO(曲线b)及2MgO·B2O3·H2O/RGO纳米复合阻燃剂(曲线c)的热重分析图。
图6是实施例2制备的样品的X射线粉末衍射谱。
图7是实施例2制备的样品的SEM图。
图8是实施例3制备的样品的X射线粉末衍射谱。
图9是实施例3制备的样品的SEM图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将3.71g(14mmol)Mg(NO3)2·6H2O、1.73g(28mmol)H3BO3、1.60g(40mmol)NaOH和0.1g GO加入10mL去离子水中,用超声清洗器在功率为100W、频率为60kHz下室温超声分散30分钟,然后转入容积为50mL的聚四氟乙烯内衬的不锈钢反应釜内,将反应釜置于烘箱中240℃保温24小时,将反应釜取出,在空气中自然冷却至室温,所得产物经抽滤、80℃的二次蒸馏水及无水乙醇洗涤、60℃干燥12小时,得到2MgO·B2O3·H2O/RGO纳米复合阻燃剂。
发明人采用X射线衍射仪、扫描电镜及透射电镜分别对实施例1所得样品进行结构和形貌表征,结果见图1~4。由图1可见,样品的XRD图谱含有2MgO·B2O3·H2O和RGO的衍射峰;从图2的EDS能谱可以看出,样品中含有B、C、O、Mg四种元素,所以样品可以被指认为2MgO·B2O3·H2O与RGO复合物;从图3、4中可以看出,2MgO·B2O3·H2O纳米带(宽度约35nm)因具有吸附作用而原位沉积在RGO表面。
对比例1
在实施例1中,不添加GO,其他步骤与实施例1相同,得到2MgO·B2O3·H2O纳米带。
发明人采用热重分析仪对RGO、对比例1制备的2MgO·B2O3·H2O纳米带、实施例1制备的2MgO·B2O3·H2O/RGO纳米复合阻燃剂进行热重分析,结果见图5。可以计算出RGO在实施例1制备的2MgO·B2O3·H2O/RGO纳米复合阻燃剂中的质量分数约为8.18%,2MgO·B2O3·H2O所占质量分数约为91.82%。
实施例2
将3.71g(14mmol)Mg(NO3)2·6H2O、1.73g(28mmol)H3BO3、1.60g(40mmol)NaOH和0.1g GO加入10mL去离子水中,用超声清洗器在功率为100W、频率为60kHz下室温超声分散30分钟,然后转入容积为50mL的聚四氟乙烯内衬的不锈钢反应釜内,将反应釜置于烘箱中200℃保温18小时,将反应釜取出,在空气中自然冷却至室温,所得产物经抽滤、80℃的二次蒸馏水及无水乙醇洗涤、60℃干燥12小时,得到2MgO·B2O3·H2O/RGO纳米复合阻燃剂。由图6和图7可见,所得样品可以被指认为2MgO·B2O3·H2O与RGO的复合物。
实施例3
将3.71g(14mmol)Mg(NO3)2·6H2O、1.20g(19mmol)H3BO3、0.95g(24mmol)NaOH和0.2g GO加入10mL去离子水中,用超声清洗器在功率为100W、频率为60kHz下室温超声分散30分钟,然后转入容积为50mL的聚四氟乙烯内衬的不锈钢反应釜内,将反应釜置于烘箱中240℃保温24小时,将反应釜取出,在空气中自然冷却至室温,所得产物经抽滤、80℃的二次蒸馏水及无水乙醇洗涤、60℃干燥12小时,得到2MgO·B2O3·H2O/RGO纳米复合阻燃剂。由图8和图9可见,所得样品可以被指认为2MgO·B2O3·H2O与RGO的复合物。
为了证明本发明的有益效果,发明人以聚丙烯(PP)为研究对象,分别向PP中添加10%(PP的质量分数为90%)实施例1制备的2MgO·B2O3·H2O/RGO纳米复合阻燃剂、2MgO·B2O3·H2O纳米带以及RGO,然后采用JF-3氧指数测定仪(南京炯雷仪器设备有限公司提供)和万能材料试验机(RGT-10)分别进行了阻燃性能和力学性能的测试,结果见表1。
表1不同阻燃剂的氧指数值和拉伸性能
由表1可见,聚丙烯中添加RGO,在不改变聚丙烯力学性能的同时也能提高样品的阻燃性能,但样品的阻燃性能提高不是很明显;在聚丙烯中添加2MgO·B2O3·H2O纳米带虽能明显提高样品的阻燃性能,但是样品的力学性能确显著降低;而添加本发明实施例1制备的2MgO·B2O3·H2O/RGO纳米复合阻燃剂,不但提高了样品的阻燃性能,而且样品的抗拉强度增大,力学性能显著提高,与纯的聚丙烯材料的力学性几乎接近。

Claims (5)

1.一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂,其特征在于:该复合阻燃剂是表面负载2MgO·B2O3·H2O纳米带的还原氧化石墨烯,它由下述方法制备得到:
将Mg(NO3)2·6H2O、H3BO3、NaOH和石墨烯加入去离子水中,超声分散均匀,在180~260℃下水热反应12~36小时,自然冷却至室温,所得产物经抽滤、洗涤、干燥,得到2MgO·B2O3·H2O/RGO纳米复合阻燃剂;
上述Mg(NO3)2·6H2O与H3BO3、NaOH的摩尔比为1:1~4:1~5;所述Mg(NO3)2·6H2O与石墨烯的质量比为1:0.003~0.1。
2.根据权利要求1所述的2MgO·B2O3·H2O/RGO纳米复合阻燃剂,其特征在于:所述的Mg(NO3)2·6H2O与H3BO3、NaOH的摩尔比为1:1.5~3:2~4。
3.根据权利要求1所述的2MgO·B2O3·H2O/RGO纳米复合阻燃剂,其特征在于:所述的Mg(NO3)2·6H2O与石墨烯的质量比为1:0.01~0.05。
4.根据权利要求1~3任意一项所述的2MgO·B2O3·H2O/RGO纳米复合阻燃剂,其特征在于:在200~240℃下水热反应18~26小时。
5.根据权利要求1所述的2MgO·B2O3·H2O/RGO纳米复合阻燃剂,其特征在于:所述2MgO·B2O3·H2O纳米带的厚度5~15nm、宽度为30~50nm。
CN201811618847.0A 2018-12-28 2018-12-28 一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂 Expired - Fee Related CN109575363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811618847.0A CN109575363B (zh) 2018-12-28 2018-12-28 一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811618847.0A CN109575363B (zh) 2018-12-28 2018-12-28 一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂

Publications (2)

Publication Number Publication Date
CN109575363A true CN109575363A (zh) 2019-04-05
CN109575363B CN109575363B (zh) 2020-12-18

Family

ID=65932236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811618847.0A Expired - Fee Related CN109575363B (zh) 2018-12-28 2018-12-28 一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂

Country Status (1)

Country Link
CN (1) CN109575363B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880254A (zh) * 2019-02-19 2019-06-14 山东盛瑞科华新材料有限公司 无卤阻燃剂、其制备方法及包含该无卤阻燃剂的电缆桥架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120308468A1 (en) * 2011-05-30 2012-12-06 Korea Institute Of Science And Technology Method for producing graphene by chemical exfoliation
CN105400069A (zh) * 2015-11-27 2016-03-16 安徽宁国市高新管业有限公司 一种耐热阻燃电力电缆保护管
CN106904627A (zh) * 2017-03-16 2017-06-30 陕西师范大学 2MgO·B2O3·1.5H2O/Mg(OH)2纳米复合阻燃材料及其原位制备方法
CN108484887A (zh) * 2018-01-23 2018-09-04 浙江省现代纺织工业研究院 一种复合pta的制备方法
CN108997768A (zh) * 2018-09-03 2018-12-14 合肥久新不锈钢厨具有限公司 一种家具用的阻燃环保型面板的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120308468A1 (en) * 2011-05-30 2012-12-06 Korea Institute Of Science And Technology Method for producing graphene by chemical exfoliation
CN105400069A (zh) * 2015-11-27 2016-03-16 安徽宁国市高新管业有限公司 一种耐热阻燃电力电缆保护管
CN106904627A (zh) * 2017-03-16 2017-06-30 陕西师范大学 2MgO·B2O3·1.5H2O/Mg(OH)2纳米复合阻燃材料及其原位制备方法
CN108484887A (zh) * 2018-01-23 2018-09-04 浙江省现代纺织工业研究院 一种复合pta的制备方法
CN108997768A (zh) * 2018-09-03 2018-12-14 合肥久新不锈钢厨具有限公司 一种家具用的阻燃环保型面板的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张志帆: "《中国优秀硕士学位论文全文数据库 工程科技I辑》", 15 January 2018 *
张汪阳等: "硼酸钙/氧化石墨烯复合微粒的制备及摩擦学性能研究", 《聊城大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880254A (zh) * 2019-02-19 2019-06-14 山东盛瑞科华新材料有限公司 无卤阻燃剂、其制备方法及包含该无卤阻燃剂的电缆桥架
CN109880254B (zh) * 2019-02-19 2021-04-20 山东盛瑞科华新材料有限公司 无卤阻燃剂、其制备方法及包含该无卤阻燃剂的电缆桥架

Also Published As

Publication number Publication date
CN109575363B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Qu et al. Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin
Song et al. Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite
Qian et al. Hydrothermal Synthesis of Lanthanum‐Doped MgAl‐Layered Double Hydroxide/Graphene Oxide Hybrid and Its Application as Flame Retardant for Thermoplastic Polyurethane
Hu et al. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide
Cui et al. Synergistic effects of layered double hydroxide with phosphorus-nitrogen intumescent flame retardant in PP/EPDM/IFR/LDH nanocomposites
CN111074544B (zh) 不同阴离子插层的镁铝水滑石阻燃改性黄麻织物的制备方法及应用
CN113999534B (zh) 一种石墨烯抗紫外光阻燃协效剂及其制备方法
CN112724462B (zh) 一种用于abs阻燃抑烟减毒的碳化钛纳米粉体及其制备方法
Wang et al. Two kinds of activated carbon spheres-supported metal oxides for reducing smoke release volume and fire hazard in flexible poly (vinyl chloride)
CN107586442B (zh) 一种β-氢氧化镍-多壁碳纳米管/不饱和聚酯树脂纳米复合阻燃材料及其制备方法
CN109517220A (zh) 一种纳米锡基膨胀阻燃剂的制备方法
Sui et al. Covalently functionalized graphene oxide wrapped by silicon–nitrogen-containing molecules: preparation and simultaneous enhancement of the thermal stability, flame retardancy and mechanical properties of epoxy resin nanocomposites
CN109575363A (zh) 一种2MgO·B2O3·H2O/RGO纳米复合阻燃剂
Wang et al. Effect of modified hydrotalcites on flame retardancy and physical properties of paper
Liu et al. Constructing a novel synergistic flame retardant by hybridization of zeolitic imidazolate framework‐67 and graphene oxide for thermoplastic polyurethane
Hu et al. Novel carbon microspheres prepared by xylose decorated with layered double hydroxide as an effective eco-friendly flame retardant for polypropylene
Wang et al. High electromagnetic interference shielding effectiveness in MgO composites reinforced by aligned graphene platelets
Cai et al. Improving flame retardancy of epoxy resin nanocomposites by carbon nanotubes grafted CuAl-layered double hydroxide hybrid
Yang et al. PGS@ B–N: an efficient flame retardant to improve simultaneously the interfacial interaction and the flame retardancy of EVA
CN106904627B (zh) 2MgO·B2O3·1.5H2O/Mg(OH)2纳米复合阻燃材料及其原位制备方法
Wang et al. Synergistic enhancement of flame retardancy of epoxy resin by layered zirconium phenylphosphate modified layered double hydroxides
CN105153464A (zh) 一种阻燃抑烟碳纳米管/镍铝层状双氢氧化物复合粉体及其制备方法和应用
CN103754900B (zh) 一种基于碳纳米管载体的单分散氢氧化镁纳米粒子制备方法及应用
CN106939166B (zh) 一种2CaO·B2O3·H2O/Mg(OH)2纳米复合阻燃剂
Li et al. Coupling silsesquioxane nanocages into Fe-Mg-Al layered metal hydroxide for enhanced flame retardancy and surface charring of silicone elastomer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201218

Termination date: 20211228

CF01 Termination of patent right due to non-payment of annual fee