CN109558643B - A traffic scene modeling and model single method - Google Patents
A traffic scene modeling and model single method Download PDFInfo
- Publication number
- CN109558643B CN109558643B CN201811308207.XA CN201811308207A CN109558643B CN 109558643 B CN109558643 B CN 109558643B CN 201811308207 A CN201811308207 A CN 201811308207A CN 109558643 B CN109558643 B CN 109558643B
- Authority
- CN
- China
- Prior art keywords
- cad
- scene
- map
- model
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims abstract description 10
- 102100034581 Dihydroorotase Human genes 0.000 claims description 87
- 230000008676 import Effects 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 abstract description 24
- 238000010276 construction Methods 0.000 abstract description 5
- 238000009795 derivation Methods 0.000 abstract 1
- 238000004806 packaging method and process Methods 0.000 abstract 1
- 238000007726 management method Methods 0.000 description 4
- 238000013523 data management Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
技术领域technical field
本发明涉及地理信息系统与City Engine中的交通三维场景建模技术领域,具体为一种交通场景建模及模型单体化方法。The invention relates to the technical field of three-dimensional traffic scene modeling in a geographic information system and a City Engine, in particular to a traffic scene modeling and model singulation method.
背景技术Background technique
随着大数据时代到来,城市规划以及管理需要依托数字化的信息平台对现实中的对象进行分类管理,ARCGIS平台具有强大的地理信息集成功能,其中就涵盖实体对象的地理坐标及高程信息、岩层地质信息、河流走向信息,而实体对象包括建筑、道路、桥梁和隧道等,通过对对象3D数字模型的构建,将此类对象的属性信息进行集成,即可达到对建筑及交通领域的数字化管理,而目前独有美国Auto desk公司可对建筑实体信息进行数字化建模并集成到专用的数据管理平台进行管理,其优点是可视化程度高,可集成信息覆盖面广,模型建立流程化模块化,但其缺点是动态信息集成能力较差,针对如城镇等大型场景的场景信息集成能力较弱,信息化平台搭建成本较高,为此,我们提出了一种交通场景建模及模型单体化方法,以解决上述存在的问题。With the advent of the era of big data, urban planning and management need to rely on a digital information platform to classify and manage objects in reality. The ARCGIS platform has powerful geographic information integration functions, including geographic coordinates and elevation information of physical objects, rock formation geology information and river direction information, while the entity objects include buildings, roads, bridges and tunnels. At present, the unique American Auto desk company can digitally model building entity information and integrate it into a dedicated data management platform for management. The disadvantage is that the dynamic information integration ability is poor, the scene information integration ability for large-scale scenes such as towns is weak, and the construction cost of the information platform is high. Therefore, we propose a traffic scene modeling and model integration method. to solve the above problems.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种交通场景建模及模型单体化方法,具备搭建信息化平台成本低而且信息集成能力强的优点,解决了现有技术动态信息集成能力较差,针对如城镇等大型场景的场景信息集成能力较弱,信息化平台搭建成本较高的问题。The purpose of the present invention is to provide a traffic scene modeling and model singulation method, which has the advantages of low cost of building an information platform and strong information integration ability, and solves the problem that the dynamic information integration ability of the prior art is poor. The scene information integration capability of large-scale scenes is weak, and the cost of building an information platform is relatively high.
为实现上述目的,本发明提供如下技术方案:一种交通场景建模及模型单体化方法,包括以下步骤:In order to achieve the above purpose, the present invention provides the following technical solutions: a traffic scene modeling and model singulation method, comprising the following steps:
步骤1:导入:封装CAD路线图至GIS,先导入CAD图;Step 1: Import: package the CAD roadmap to GIS, first import the CAD map;
步骤2:添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;Step 2: Add elevation: After collecting elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster;
步骤3:表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;Step 3: Surface interpolation: Use the "Interpolation Shape" tool to perform surface interpolation processing on the CAD matched on the map and the created TIN. When there is a difference, remove the irrelevant elements in the CAD image and keep the Polyline elements;
步骤4:生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;Step 4: Generate the scene: complete the CAD export of the georeferencing in the GIS system, and use the CAD to generate the scene;
步骤5:参数建模:根据CGA建模规则实现参数建模;Step 5: Parametric modeling: implement parametric modeling according to CGA modeling rules;
步骤6:导入场景:与GIS通信导入模型场景。Step 6: Import the scene: Communicate with the GIS to import the model scene.
优选的,所述在步骤1中具体在ARCGIS PRO软件中新建工程,封装后的文件将保存在该文件夹内,在插入栏中新建地图、新建场景,链接视图,按中心和比例将2D地图和3D场景同步,添加数据,将要封装的CAD图导入新建地图中,在CAD图层工具栏中定义投影,更改CAD文件的空间参考,进行地理配准,适应显示范围,调整源图层使其适应当前的显示范围,将CAD图匹配至当前地图场景,分别在CAD路线图上对应点(虚线圆框范围)添加控制点,再对GIS中对应底图部分添加控制点(地图实现圆框部分),将CAD图与新建地图进行精确配准,地理处理,利用转换工具,将CAD转至地理数据库:把匹配好的CAD图保存,利用“CAD至地理数据库”工具,将其转化为GBD格式。Preferably, in step 1, a new project is specifically created in the ArcGIS PRO software, and the packaged files will be saved in this folder. In the insert column, create a new map, create a new scene, link views, and convert the 2D map according to the center and scale. Synchronize with the 3D scene, add data, import the CAD map to be encapsulated into a new map, define the projection in the CAD layer toolbar, change the spatial reference of the CAD file, perform georeferencing, adapt to the display range, and adjust the source layer to make it Adapt to the current display range, match the CAD map to the current map scene, add control points to the corresponding points (dotted circle frame range) on the CAD route map, and then add control points to the corresponding base map part in the GIS (the map realizes the circle frame part) ), accurately register the CAD map with the new map, perform geoprocessing, and use the conversion tool to transfer the CAD to the geodatabase: save the matched CAD map, and use the "CAD to geodatabase" tool to convert it to GBD format .
优选的,所述在步骤2中具体根据实际官方数据所得点坐标,为采集目标区域的经纬度坐标和高程,并储存至Excel中,利用“XY表转点”工具,生成点要素,在点要素的基础上,使用“创建TIN”工具,生成TIN,在已经创建好的TIN基础上,利用“TIN转栅格”工具,在地图上生成高程源。Preferably, the point coordinates obtained in step 2 specifically according to the actual official data are to collect the latitude and longitude coordinates and elevation of the target area, and store them in Excel, and use the "XY table to point" tool to generate point elements, and in the point elements On the basis of , use the "Create TIN" tool to generate a TIN, and on the basis of the already created TIN, use the "TIN to Raster" tool to generate an elevation source on the map.
优选的,所述在步骤4中具体为首先将GIS系统中完成地理配准的CAD导出至DWG格式文件,利用City Engine将上述文件导入至建模场景中,利用要素转换,将CAD数据转化为可供编辑的平面要素类型。Preferably, in step 4, firstly, the georeferenced CAD in the GIS system is exported to a DWG format file, and the above file is imported into the modeling scene by using City Engine, and the CAD data is converted into a The types of flat features available for editing.
优选的,所述在步骤5中具体为先导入CGA规则文件,根据CGA规则,对道路要素进行编辑,调整路段长度宽度,车道数等信息,针对立交桥类对象,调整其桥墩高度,桥墩间距等,完成要素创建,创建出的模型中若有立交部分桥墩等要素需要修改,可将其选中,并将墩高一项属性设置为0,即可将多余的桥墩删除,根据道路场景的实际情况对要素进行编辑,完成目标要求的分段以及各属性值的修改,直至达到要求并完成场景整体的创建。Preferably, in step 5, the CGA rule file is first imported, and the road elements are edited according to the CGA rule, and the length and width of the road section, the number of lanes and other information are adjusted, and the height of the piers and the spacing between the piers are adjusted for the overpass objects. , complete the element creation. If there are some elements such as piers of the interchange that need to be modified in the created model, you can select them and set the pier height attribute to 0, you can delete the redundant piers, according to the actual situation of the road scene Edit the elements, complete the segmentation required by the target and modify the value of each attribute, until the requirements are met and the overall scene creation is completed.
优选的,所述在步骤6中具体为选择需要导出和保存的场景模型保存至指定文件夹,将上述保存文件加载至ARCGIS PRO平台,即完成场景模型的导入,并且模型道路段已分段成型,包含其基础的属性信息。Preferably, in step 6, the scene model to be exported and saved is selected and saved to a specified folder, and the above saved file is loaded into the ArcGIS PRO platform, that is, the import of the scene model is completed, and the model road segment has been formed in sections , which contains its underlying attribute information.
与现有技术相比,本发明的有益效果是:本发明通过与ARCGIS平台具有良好数据接口的City Engine进行场景建模并将实体对象信息集成到其独有的数据承载平台,解决了现有技术动态信息集成能力较差,针对如城镇等大型场景的场景信息集成能力较弱,信息化平台搭建成本较高的问题,该交通场景建模及模型单体化方法,具备搭建信息化平台成本低而且信息集成能力强的优点,而且数据集成覆盖面广,可涵盖建筑、交通、安全、地质等多方面,并且根据实际需求对各类实体对象进行属性数据添加以及修改,场景模型规模更加庞大,City Engine可对大型城市规模的场景进行建模,并与ARCGIS有良好的数据通信接口,可集成非常庞大的数据规模,规则化建模方案更加灵活,数据集成方案灵活多变,City Engine可针对不同的实体对象,特别是交通领域中的道路、桥梁、隧道等对象进行规则化建模,以为载体,通过对道路的属性信息进行添加即可批量化生成道路和立交等3D场景模型,并且可更具需求对路段进行单元划分,将道路划分为路段单元,以针对每段单元集成不同的属性信息,数据管理平台高度可视化,可根据用户不同需求,显示不同场景信息,数据平台搭建成本远低于主流信息平台搭建成本,针对大型城市交通数据集成管理项目信价比较高,更具竞争力。Compared with the prior art, the beneficial effects of the present invention are: the present invention performs scene modeling and integrates entity object information into its unique data bearing platform through the City Engine having a good data interface with the ARCGIS platform, which solves the problem of existing problems. The technical dynamic information integration ability is poor. For large-scale scenes such as towns and other large-scale scenes, the scene information integration ability is weak, and the cost of building an information platform is high. This traffic scene modeling and model integration method has the cost of building an information platform. It has the advantages of low cost and strong information integration capability, and the data integration covers a wide range, covering construction, transportation, safety, geology, etc., and adding and modifying attribute data for various entity objects according to actual needs, the scale of the scene model is larger, City Engine can model large-scale city-scale scenarios, and has a good data communication interface with ArcGIS. It can integrate very large data scales. The rule-based modeling scheme is more flexible, and the data integration scheme is flexible and changeable. City Engine can target Different entity objects, especially the roads, bridges, tunnels and other objects in the traffic field, are modeled in a regularized manner, as the carrier. By adding the attribute information of the road, 3D scene models such as roads and interchanges can be generated in batches, and can be used as a carrier. It is more necessary to divide the road section into units, and divide the road into road unit units to integrate different attribute information for each segment unit. The data management platform is highly visualized, and can display different scene information according to different needs of users, and the cost of building the data platform is much lower. The cost of building a mainstream information platform is relatively high for large-scale urban traffic data integration management projects and is more competitive.
具体实施方式Detailed ways
下面将通过实施例的方式对本发明作更详细的描述,这些实施例仅是举例说明性的而没有任何对本发明范围的限制。The present invention will be described in more detail below by way of examples, which are merely illustrative and do not limit the scope of the present invention in any way.
本发明提供一种技术方案:一种交通场景建模及模型单体化方法,包括以下步骤:The present invention provides a technical solution: a traffic scene modeling and model singulation method, comprising the following steps:
步骤1:导入:封装CAD路线图至GIS,先导入CAD图;Step 1: Import: package the CAD roadmap to GIS, first import the CAD map;
步骤2:添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;Step 2: Add elevation: After collecting elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster;
步骤3:表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;Step 3: Surface interpolation: Use the "Interpolation Shape" tool to perform surface interpolation processing on the CAD matched on the map and the created TIN. When there is a difference, remove the irrelevant elements in the CAD image and keep the Polyline elements;
步骤4:生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;Step 4: Generate the scene: complete the CAD export of the georeferencing in the GIS system, and use the CAD to generate the scene;
步骤5:参数建模:根据CGA建模规则实现参数建模;Step 5: Parametric modeling: implement parametric modeling according to CGA modeling rules;
步骤6:导入场景:与GIS通信导入模型场景。Step 6: Import the scene: Communicate with the GIS to import the model scene.
实施例一:Example 1:
导入:封装CAD路线图至GIS,先导入CAD图;添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;参数建模:根据CGA建模规则实现参数建模;导入场景:与GIS通信导入模型场景。Import: encapsulate the CAD route map to GIS, first import the CAD map; add elevation: after collecting the elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster; surface interpolation: will match on the map CAD and the created TIN use the "Interpolation Shape" tool to perform surface interpolation processing. When the difference is reached, remove the irrelevant elements in the CAD image and keep the Polyline elements; Generate the scene: the CAD export of the georeferencing in the GIS system is completed, Use CAD to generate scenarios; parametric modeling: implement parametric modeling according to CGA modeling rules; import scenarios: communicate with GIS to import model scenarios.
实施例二:Embodiment 2:
在实施例一中,再加上下述工序:In Embodiment 1, the following steps are added:
在步骤1中具体在ARCGIS PRO软件中新建工程,封装后的文件将保存在该文件夹内,在插入栏中新建地图、新建场景,链接视图,按中心和比例将2D地图和3D场景同步,添加数据,将要封装的CAD图导入新建地图中,在CAD图层工具栏中定义投影,更改CAD文件的空间参考,进行地理配准,适应显示范围,调整源图层使其适应当前的显示范围,将CAD图匹配至当前地图场景,分别在CAD路线图上对应点(虚线圆框范围)添加控制点,再对GIS中对应底图部分添加控制点(地图实现圆框部分),将CAD图与新建地图进行精确配准,地理处理,利用转换工具,将CAD转至地理数据库:把匹配好的CAD图保存,利用“CAD至地理数据库”工具,将其转化为GBD格式。In step 1, create a new project in ArcGIS PRO software, the packaged files will be saved in this folder, create a new map, create a new scene, link views in the insert column, synchronize the 2D map and 3D scene according to the center and scale, Add data, import the CAD map to be encapsulated into the new map, define the projection in the CAD layer toolbar, change the spatial reference of the CAD file, perform georeferencing, adapt to the display range, adjust the source layer to fit the current display range , match the CAD map to the current map scene, add control points to the corresponding points (dotted circle frame range) on the CAD route map, and then add control points to the corresponding base map part in the GIS (the map realizes the circle frame part), and add the CAD map Accurate registration with new maps, geoprocessing, and conversion tools to convert CAD to geodatabase: Save the matched CAD map, and use the "CAD to Geodatabase" tool to convert it to GBD format.
导入:封装CAD路线图至GIS,先导入CAD图;添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;参数建模:根据CGA建模规则实现参数建模;导入场景:与GIS通信导入模型场景。Import: encapsulate the CAD route map to GIS, first import the CAD map; add elevation: after collecting the elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster; surface interpolation: will match on the map CAD and the created TIN use the "Interpolation Shape" tool to perform surface interpolation processing. When the difference is reached, remove the irrelevant elements in the CAD image and keep the Polyline elements; Generate the scene: the CAD export of the georeferencing in the GIS system is completed, Use CAD to generate scenarios; parametric modeling: implement parametric modeling according to CGA modeling rules; import scenarios: communicate with GIS to import model scenarios.
实施例三:Embodiment three:
在实施例二中,再加上下述工序:In embodiment two, add the following procedure:
在步骤2中具体根据实际官方数据所得点坐标,为采集目标区域的经纬度坐标和高程,并储存至Excel中,利用“XY表转点”工具,生成点要素,在点要素的基础上,使用“创建TIN”工具,生成TIN,在已经创建好的TIN基础上,利用“TIN转栅格”工具,在地图上生成高程源。导入:封装CAD路线图至GIS,先导入CAD图;添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;参数建模:根据CGA建模规则实现参数建模;导入场景:与GIS通信导入模型场景。In step 2, the point coordinates obtained according to the actual official data are to collect the latitude and longitude coordinates and elevation of the target area, and store them in Excel. Use the "XY table to point" tool to generate point elements. On the basis of point elements, use The "Create TIN" tool generates a TIN, and on the basis of the already created TIN, use the "TIN to Raster" tool to generate an elevation source on the map. Import: encapsulate the CAD route map to GIS, first import the CAD map; add elevation: after collecting the elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster; surface interpolation: will match on the map CAD and the created TIN use the "Interpolation Shape" tool to perform surface interpolation processing. When the difference is reached, remove the irrelevant elements in the CAD image and keep the Polyline elements; Generate the scene: the CAD export of the georeferencing in the GIS system is completed, Use CAD to generate scenarios; parametric modeling: implement parametric modeling according to CGA modeling rules; import scenarios: communicate with GIS to import model scenarios.
实施例四:Embodiment 4:
在实施例三中,再加上下述工序:In embodiment three, add the following procedure:
在步骤4中具体为首先将GIS系统中完成地理配准的CAD导出至DWG格式文件,利用City Engine将上述文件导入至建模场景中,利用要素转换,将CAD数据转化为可供编辑的平面要素类型。In step 4, firstly, the georeferenced CAD in the GIS system is exported to a DWG format file, and the above file is imported into the modeling scene by using City Engine, and the CAD data is converted into a plane for editing by using element conversion. Feature type.
导入:封装CAD路线图至GIS,先导入CAD图;添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;参数建模:根据CGA建模规则实现参数建模;导入场景:与GIS通信导入模型场景。Import: encapsulate the CAD route map to GIS, first import the CAD map; add elevation: after collecting the elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster; surface interpolation: will match on the map CAD and the created TIN use the "Interpolation Shape" tool to perform surface interpolation processing. When the difference is reached, remove the irrelevant elements in the CAD image and keep the Polyline elements; Generate the scene: the CAD export of the georeferencing in the GIS system is completed, Use CAD to generate scenarios; parametric modeling: implement parametric modeling according to CGA modeling rules; import scenarios: communicate with GIS to import model scenarios.
实施例五:Embodiment 5:
在实施例四中,再加上下述工序:In embodiment four, add the following procedure:
在步骤5中具体为先导入CGA规则文件,根据CGA规则,对道路要素进行编辑,调整路段长度宽度,车道数等信息,针对立交桥类对象,调整其桥墩高度,桥墩间距等,完成要素创建,创建出的模型中若有立交部分桥墩等要素需要修改,可将其选中,并将墩高一项属性设置为0,即可将多余的桥墩删除,根据道路场景的实际情况对要素进行编辑,完成目标要求的分段以及各属性值的修改,直至达到要求并完成场景整体的创建。In step 5, firstly import the CGA rule file, edit the road elements according to the CGA rules, adjust the length and width of the road section, the number of lanes and other information, and adjust the height of the piers and the spacing of the piers for the overpass objects, and complete the element creation. If there are some elements such as bridge piers in the created model that need to be modified, you can select them and set the pier height attribute to 0, you can delete the redundant piers, and edit the elements according to the actual situation of the road scene. Complete the segmentation required by the target and the modification of each attribute value until the requirements are met and the overall creation of the scene is completed.
导入:封装CAD路线图至GIS,先导入CAD图;添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;参数建模:根据CGA建模规则实现参数建模;导入场景:与GIS通信导入模型场景。Import: encapsulate the CAD route map to GIS, first import the CAD map; add elevation: after collecting the elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster; surface interpolation: will match on the map CAD and the created TIN use the "Interpolation Shape" tool to perform surface interpolation processing. When the difference is reached, remove the irrelevant elements in the CAD image and keep the Polyline elements; Generate the scene: the CAD export of the georeferencing in the GIS system is completed, Use CAD to generate scenarios; parametric modeling: implement parametric modeling according to CGA modeling rules; import scenarios: communicate with GIS to import model scenarios.
实施例六:Embodiment 6:
在实施例五中,再加上下述工序:In embodiment five, add the following procedure:
在步骤6中具体为选择需要导出和保存的场景模型保存至指定文件夹,将上述保存文件加载至ARCGIS PRO平台,即完成场景模型的导入,并且模型道路段已分段成型,包含其基础的属性信息。In step 6, the scene model to be exported and saved is selected and saved to the specified folder, and the above saved file is loaded into the ARCGIS PRO platform, that is, the import of the scene model is completed, and the model road segment has been formed in sections, including its basic property information.
导入:封装CAD路线图至GIS,先导入CAD图;添加高程:对高程点进行采集后,生成点要素,再生成TIN,最后对生成的TIN转栅格;表面插值:将匹配在地图上的CAD和创建好的TIN利用“插值Shape”工具,进行表面插值处理,差值时,移除CAD图中无关要素,保留Polyline要素即可;生成场景:GIS系统中完成地理配准的CAD导出,利用CAD生成场景;参数建模:根据CGA建模规则实现参数建模;导入场景:与GIS通信导入模型场景。Import: encapsulate the CAD route map to GIS, first import the CAD map; add elevation: after collecting the elevation points, generate point elements, then generate TIN, and finally convert the generated TIN to raster; surface interpolation: will match on the map CAD and the created TIN use the "Interpolation Shape" tool to perform surface interpolation processing. When the difference is reached, remove the irrelevant elements in the CAD image and keep the Polyline elements; Generate the scene: the CAD export of the georeferencing in the GIS system is completed, Use CAD to generate scenarios; parametric modeling: implement parametric modeling according to CGA modeling rules; import scenarios: communicate with GIS to import model scenarios.
综上所述:该交通场景建模及模型单体化方法,通过与ARCGIS平台具有良好数据接口的City Engine进行场景建模并将实体对象信息集成到其独有的数据承载平台,解决了现有技术动态信息集成能力较差,针对如城镇等大型场景的场景信息集成能力较弱,信息化平台搭建成本较高的问题,该交通场景建模及模型单体化方法,具备搭建信息化平台成本低而且信息集成能力强的优点,而且数据集成覆盖面广,可涵盖建筑、交通、安全、地质等多方面,并且根据实际需求对各类实体对象进行属性数据添加以及修改,场景模型规模更加庞大,City Engine可对大型城市规模的场景进行建模,并与ARCGIS有良好的数据通信接口,可集成非常庞大的数据规模,规则化建模方案更加灵活,数据集成方案灵活多变,City Engine可针对不同的实体对象,特别是交通领域中的道路、桥梁、隧道等对象进行规则化建模,以为载体,通过对道路的属性信息进行添加即可批量化生成道路和立交等3D场景模型,并且可更具需求对路段进行单元划分,将道路划分为路段单元,以针对每段单元集成不同的属性信息,数据管理平台高度可视化,可根据用户不同需求,显示不同场景信息,数据平台搭建成本远低于主流信息平台搭建成本,针对大型城市交通数据集成管理项目信价比较高,更具竞争力。To sum up: the traffic scene modeling and model integration method, through the City Engine with the ARCGIS platform has a good data interface to model the scene and integrate the entity object information into its unique data bearing platform, to solve the problem of the current situation. There are technical dynamic information integration capabilities are poor, for large-scale scenes such as towns and other scene information integration capabilities are weak, and the cost of building an information platform is high. This traffic scene modeling and model integration method has the ability to build an information platform. The advantages of low cost and strong information integration capability, and the data integration coverage is wide, covering construction, transportation, safety, geology, etc., and adding and modifying attribute data for various entity objects according to actual needs, the scale of the scene model is even larger. , City Engine can model large-scale city-scale scenarios, and has a good data communication interface with ARCGIS, which can integrate a very large data scale. The rule-based modeling scheme is more flexible, and the data integration scheme is flexible and changeable. City Engine can Regular modeling is carried out for different entity objects, especially roads, bridges, tunnels and other objects in the field of transportation. As a carrier, 3D scene models such as roads and interchanges can be generated in batches by adding attribute information of roads, and The road section can be divided into units according to the needs, and the road can be divided into road section units to integrate different attribute information for each section unit. The data management platform is highly visualized and can display different scene information according to different needs of users. The cost of building a data platform is long. It is lower than the construction cost of mainstream information platforms, and it is more competitive for large-scale urban traffic data integration management projects.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811308207.XA CN109558643B (en) | 2018-11-05 | 2018-11-05 | A traffic scene modeling and model single method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811308207.XA CN109558643B (en) | 2018-11-05 | 2018-11-05 | A traffic scene modeling and model single method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109558643A CN109558643A (en) | 2019-04-02 |
CN109558643B true CN109558643B (en) | 2022-07-26 |
Family
ID=65865920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811308207.XA Expired - Fee Related CN109558643B (en) | 2018-11-05 | 2018-11-05 | A traffic scene modeling and model single method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109558643B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110175366A (en) * | 2019-04-26 | 2019-08-27 | 南京友谱信息科技有限公司 | Integral perspective threedimensional model modeling method is constructed and built to region class |
CN111986311B (en) * | 2020-08-06 | 2024-11-08 | 山东金东数字创意股份有限公司 | A template data conversion system and method |
CN112861384B (en) * | 2021-02-10 | 2023-05-05 | 西南交通大学 | Three-dimensional model construction method of electrostatic precipitator based on CATIA |
CN113553634B (en) * | 2021-06-28 | 2024-07-05 | 通号城市轨道交通技术有限公司 | Equipment kilometer post import and export method and device, electronic equipment and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261067A (en) * | 2015-11-04 | 2016-01-20 | 深圳职业技术学院 | Overground and underground integrated modeling method based on true 3D volumetric display technique and system |
CN106844969A (en) * | 2017-01-23 | 2017-06-13 | 河海大学 | A kind of building method of the Three-dimensional Simulation System based on river course CAD data |
-
2018
- 2018-11-05 CN CN201811308207.XA patent/CN109558643B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261067A (en) * | 2015-11-04 | 2016-01-20 | 深圳职业技术学院 | Overground and underground integrated modeling method based on true 3D volumetric display technique and system |
CN106844969A (en) * | 2017-01-23 | 2017-06-13 | 河海大学 | A kind of building method of the Three-dimensional Simulation System based on river course CAD data |
Non-Patent Citations (2)
Title |
---|
GIS-modeling of multimodal complex road network and its traffic organization;J Kotikov;《Transportation research procedia》;20171231;340-346 * |
城镇地籍数据库建设中CASS 数据的转换—以哈巴河县为例;杨洋 等;《安徽农学通报》;20101210(第23期);163-165 * |
Also Published As
Publication number | Publication date |
---|---|
CN109558643A (en) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109558643B (en) | A traffic scene modeling and model single method | |
Yan et al. | Integration of 3D objects and terrain for 3D modelling supporting the digital twin | |
CN107391753B (en) | A kind of road production vector quantization data automatic creation system and method based on GIS | |
CN105279793A (en) | Modeling method and system based on DEM real three-dimensional map and greenway | |
CN103196452A (en) | Expressing method and expressing device for relative height of land bridge on true three-dimensional navigation map | |
CN110175370A (en) | A kind of REGION OF WATER INJECTION OILFIELD recognition methods of city charge for remittance | |
JP2006349872A (en) | Apparatus for creating map information, method of creating map information and program | |
JP4619504B2 (en) | 3D digital map generator | |
CN112017262A (en) | Pavement marker generation method and device, storage medium and electronic equipment | |
CN105894553B (en) | A kind of Street Space form layout method based on grid selection | |
Di Benedetto et al. | Integration of LiDAR data into a regional topographic database for the generation of a 3D city model | |
Zahran et al. | 3D visualization of traffic-induced air pollution impacts of urban transport schemes | |
CN107169080A (en) | A kind of geospatial analysis system being combined based on GIS and spatial database | |
Malinverni et al. | GIS-based smart cartography using 3D modeling | |
CN112116709A (en) | Terrain feature line processing method for improving terrain expression precision | |
CN107833278B (en) | Terrain simulation method and device and electronic equipment | |
CN115934877A (en) | Generation method of ancient county-level administrative district boundary diagram | |
Schilling et al. | Integrating terrain surface and street network for 3D routing | |
CN113656979B (en) | Road network data generation method and device, electronic equipment and storage medium | |
CN114969944A (en) | High-precision road DEM construction method | |
CN103729800A (en) | Water conservancy planning system | |
Revell et al. | Generalising and Symbolising Ordnance Survey® Base Scale Data to Create a Prototype 1: 50 000 Scale Vector Map | |
CN117237560B (en) | Data processing method and related device | |
Sugihara et al. | Automatic generation of a 3D terrain model by straight skeleton computation | |
Hua et al. | Review of 3D GIS Data Fusion Methods and Progress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220726 |
|
CF01 | Termination of patent right due to non-payment of annual fee |