CN109543205A - 电磁脉冲纳米半导体器件的电场分析方法 - Google Patents

电磁脉冲纳米半导体器件的电场分析方法 Download PDF

Info

Publication number
CN109543205A
CN109543205A CN201710867706.1A CN201710867706A CN109543205A CN 109543205 A CN109543205 A CN 109543205A CN 201710867706 A CN201710867706 A CN 201710867706A CN 109543205 A CN109543205 A CN 109543205A
Authority
CN
China
Prior art keywords
equation
carrier
electric field
formula
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710867706.1A
Other languages
English (en)
Other versions
CN109543205B (zh
Inventor
何云峰
丁大志
姚猛
籍宇豪
陈如山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710867706.1A priority Critical patent/CN109543205B/zh
Publication of CN109543205A publication Critical patent/CN109543205A/zh
Application granted granted Critical
Publication of CN109543205B publication Critical patent/CN109543205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种电磁脉冲纳米半导体器件的电场分析方法。该方法步骤如下:第一步,建立MOSFET的求解模型,并采用曲六面体对模型进行剖分,得到模型的结构信息,包括六面体的单元信息及节点信息;第二步,从载流子电流连续性方程、泊松方程和载流子量子修正方程出发,先用后向欧拉进行时间差分,然后对等式采用不连续伽辽金法测试,强加电场边界条件,求解得到各节点的电场及电流分布。本发明在相同计算量的前提下,可以更加清楚的得到在电磁脉冲和电压的作用下,器件内部电场随时间变化的分布情况,在获得相同收敛精度时,可以减少计算量,此外具有建模灵活、剖分方便的优点,形成的矩阵具有良好的稀疏性,求解效率较高。

Description

电磁脉冲纳米半导体器件的电场分析方法
技术领域
本发明属于电场分析技术领域,特别是一种电磁脉冲纳米半导体器件的电场分析方法。
背景技术
电磁脉冲是一种瞬变电磁现象。高功率电磁脉冲注入到集成电路后,会导致电路的电击穿,甚至使设备完全损坏。集成电路和电子设备主要由半导体器件组成,电路的集成程度不断提高,对强电磁脉冲特别是高功率电磁脉冲越来越敏感,电路中的有源元件特别是MOSFET容易吸收辐射的电磁能量,容易受到电应力的影响,从而失效,甚至损毁。为了采取有效措施对电子设备或者电子系统免受高功率电磁脉冲的危害,用软件仿真预测半导体器件特别是应用广泛的场效应管就有重要的理论意义和实用价值。
对MOSFET物理模型的数值仿真能够准确仿真MOSFET内部的电场分布,为电磁防护提供有效指导。针对MOSFET的仿真以模型划分,主要有经典模型、半经典模型和量子模型(何野,魏同立.半导体器件的计算机模拟方法[M].北京:科学出版社,1989.12)。经典模型就是求解漂移扩散方程组,而量子模型则可以采用基于经典模型进行量子修正的密度梯度方程组。考虑到电磁脉冲中电参数为时变函数的特点,采用时域方法更为合适,一般FDTD、FEM更常用,然而由于FDTD的Yee网格特性在模拟结构复杂的模型时容易受到限制,FEM应用到时域时每个时间步都涉及到对线性方程组的求解,计算量非常庞大,很浪费时间。
发明内容
本发明的目的在于提供一种电磁脉冲作用下纳米半导体器件的电场高效分析方法,从而快速得到器件内部电场分布。
实现本发明目的的技术解决方案为:一种电磁脉冲纳米半导体器件的电场分析方法,步骤如下:
第一步,建立MOSFET的求解模型,并采用曲六面体对模型进行剖分,得到模型的结构信息,包括六面体的单元信息及节点信息;
第二步,从载流子电流连续性方程、泊松方程和载流子量子修正方程出发,先用后向欧拉进行时间差分,然后对等式采用不连续伽辽金法测试,强加电场边界条件,求解得到各节点的电场及电流分布。
进一步地,第一步中,用ANSYS对MOSFET的求解模型进行非共形网格剖分。
进一步地,第二步所述从载流子电流连续性方程、泊松方程和载流子量子修正方程出发,先用后向欧拉进行时间差分,然后对等式采用不连续伽辽金法测试,强加电场边界条件,求解得到各节点的电场及电流分布,具体如下:
以载流子浓度、电势和载流子费米势为变量,以归一化因子将载流子电流连续性方程,泊松方程和载流子量子修正方程归一化,归一化后的方程如下:
泊松方程:
上式(1)中Γ为净掺杂浓度,为电势,n为电子浓度,p为空穴浓度,ε1,ε2为介电常数,表示为:
电子电流密度方程:
上式(2)中,Jn为电子电流密度,μn为电子迁移率;
空穴电流密度方程:
上式(3)中,Jp为空穴电流密度,μp为空穴迁移率;
电子量子修正方程:
空穴量子修正方程:
上式(4)和(5)中,φn代表电子准费米势,φp代表准空穴费米势, 其中为普朗克常量,q为单位电荷电量,为电子有效质量,为空穴有效质量,LD为特征长度,Vt为归一化电压;
电子电流连续性方程:
空穴电流连续性方程:
式(6)和式(7)中,G为雪崩产生项,采用Okuto-Crowell模型;R为载流子复合率;
其余不变,则式(1)~(7)变形如下:
则用后向欧拉方法对式(13)和(14)进行时间差分,得到:
式(15)和(16)中,(Sn 2)m,(Sp 2)m为当前时刻的电子和空穴的浓度值,(Sn 2)m-1,(Sp 2)m-1为前一时刻的电子和空穴的浓度值,为当前时刻的电势,为当前时刻的电子和空穴准费米势的值;上标m表示当前时刻,上标m-1表示前一时刻,Δt表示时间差;
分别对泊松方程式(1)、式(11)、式(12)、式(15)和式(16)进行不连续伽辽金测试,并且移项使等式右边为0,然后进行泰勒展开去非线性和耦合处理,得到能够编程实现求解的方程形式;求解该方程得到当前时刻的电子浓度的二分之一次方值、空穴浓度、电子准费米势、空穴准费米势和电势。
进一步地,所述载流子电流连续性方程,泊松方程和载流子量子修正方程的收敛条件为变量载流子浓度,载流子准费米势和电势前后两次迭代的相对误差小于1×10-4
本发明与现有技术相比,其显著优点为:(1)SETD采用曲六面体剖分,建模灵活,剖分方便,使用特定的正交多项式作为基函数,随着多项式阶数的提高,计算误差将呈指数下降。另外采用非共形网格剖分的方法,剖分的未知量少,减小计算量;(2)采用了不连续伽辽金分析方法,解决了剖分网格大小不同的问题;(3)采用隐式差分方式,算法无条件稳定,节省了计算时间,提高了效率。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是MOSFET的二维剖面图。
具体实施方式
本发明为电磁脉冲作用下纳米半导体器件的电场分析方法,该方法采用时域谱元法求解密度梯度方程组,该密度梯度方程组为非线性方程组,故利用不连续伽辽金时域谱元法求出半导体器件在电磁脉冲和电压作用下瞬时的载流子浓度、电势分布和载流子费米势,得出当前时刻的电场强度,和电流密度。该分析方法是基于MOSFET物理模型的,相同电磁脉冲和电压下对沟道区的场变化较剧烈,对于衬底区的场变化较平坦,故可以进行不连续剖分网格,沟道区进行细网格剖分,衬底进行粗网格剖分,从而在相同计算量的前提下,可以更加清楚的得到在电磁脉冲和电压的作用下,器件内部电场随时间变化的分布情况,在获得相同收敛精度时,可以减少计算量;求解分析采用不连续伽辽金时域谱元法和非共形网格剖分方法,建模灵活,剖分方便,形成的矩阵具有良好的稀疏性,具体步骤如下:
第一步,建立MOSFET的求解模型,并采用曲六面体对模型进行剖分,得到模型的结构信息,包括六面体的单元信息及节点信息;用ANSYS对MOSFET的求解模型进行非共形网格剖分。
第二步,从载流子电流连续性方程、泊松方程和载流子量子修正方程出发,先用后向欧拉进行时间差分,然后对等式采用不连续伽辽金法测试,强加电场边界条件,求解得到各节点的电场及电流分布。
模型方程的时域谱元法推导如下:
用耦合方法求解密度-梯度方程组,即将泊松方程、电流连续性方程和载流子量子修正方程同时求解,以载流子浓度n,p、电势电子准费米势φn和空穴准费米势φp为变量。以载流子浓度、电势和载流子费米势为变量,以归一化因子将载流子电流连续性方程,泊松方程和载流子量子修正方程归一化,归一化后的方程如下:
MOSFET的瞬态模型方程包括:
归一化的泊松方程:
上式(1)中Γ为净掺杂浓度,为电势,n为电子浓度,p为空穴浓度,ε1,ε2为介电常数,表示为:
归一化的电子电流密度方程:
Jn为电子电流密度,μn为电子迁移率;
归一化的空穴电流密度方程:
Jp为空穴电流密度,μp为空穴迁移率;
归一化电子量子修正方程:
归一化空穴量子修正方程:
其中,φn代表电子准费米势,φp代表准空穴费米势, 其中为普朗克常量,q为单位电荷电量,为电子有效质量,为空穴有效质量,LD为特征长度,Vt为归一化电压;
归一化的电子电流连续性方程:
归一化的空穴电流连续性方程:
G为雪崩产生项,采用Okuto-Crowell模型(Y.Okuto and C.R.Crowell,“Threshold Energy Effect on Avalanche Breakdown in Semiconductor Junctions”,Solid-State Electronics,vol.18,pp.161-168,1975),R归一化的复合率模型(何野,魏同立.半导体器件的计算机模拟方法[M].北京:科学出版社,1989.12):
其余不变,则式(1)~(7)变形如下:
则用后向欧拉方法对式(14)和(15)进行时间差分,得到:
式(16)和(17)中,(Sn 2)m,(Sp 2)m为当前时刻的电子和空穴的浓度值,(Sn 2)m-1,(Sp 2)m-1为前一时刻的电子和空穴的浓度值,为当前时刻的电势,为当前时刻的电子和空穴准费米势的值;上标m表示当前时刻,上标m-1表示前一时刻,Δt表示时间差;
分别对泊松方程式(1)、式(12)、式(13)、式(16)和式(17)进行不连续伽辽金测试,并且移项使等式右边为0,即:
由于载流子电流连续性方程,泊松方程和载流子量子修正方程都是非线性的,要用泰勒展开将方程线性化。
采用全耦合牛顿迭代的方法求解密度梯度方程,将式(18)、式(19)、式(20)、式(21)和式(22)通过式(23)的形式进行泰勒展开去非线性和耦合处理:
通过适当推导得到最终的能够编程实现求解的方程形式:
式(24)中,各矩阵块如下:
在上面的各矩阵块中,上标(1)代表所要求解的目标区域,上标(2)代表目标区域的对立区域;面S为细剖分区域和粗剖分区域的交界面。求解该方程得到当前时刻的电子浓度的二分之一次方值、空穴浓度、电子准费米势、空穴准费米势和电势。
对于密度梯度模型,需要特别指出的是雪崩产生项的处理方法。它的表达式如(25)所示:
上式(25)中,电子和空穴的离化系数为:
其中,An,Bn,Cn,Dn和Ap,Bp,Cp,Dp是常数。
由于雪崩项中含有电流密度和电场强度,对其进行不连续伽辽金测试等操作非常困难繁杂,所以求解采用Gummel的非耦合方法的思想。
本发明方法采用时域谱元法求解密度梯度方程组,该密度梯度方程组为非线性方程组,故利用不连续伽辽金时域谱元法求出半导体器件在电磁脉冲和电压作用下瞬时的载流子浓度、电势分布和载流子费米势,得出当前时刻的电场强度,和电流密度。该分析方法是基于MOSFET物理模型的,如图1所示,MOSFET的边界条件:
对于泊松方程,求解区域为整个MOSFET,边界条件为:
栅极,漏极,源极和基极极板为固定边界条件(金属边界条件):
上式中,Vb为金属极板的电压。
平行于x坐标轴的为浮置边界条件
Si-SiO2界面
对于电流连续性方程,求解区域为半导体,不包括氧化物,边界条件为:
栅极,漏极,源极和基极极板为固定边界条件(金属边界条件):
N区:P区:
CD+EG+FH为浮置边界条件
对于载流子量子修正方程,求解区域为半导体,不包括氧化物,边界条件为:
栅极,漏极,源极和基极极板为固定边界条件(金属边界条件):
φn=φp=Vb
CD+EG+FH为浮置边界条件
注意,三维模型中前后面设置为浮置边界条件。
结合图1,相同电磁脉冲和电压下对沟道区的场变化较剧烈,对于衬底区的场变化较平坦,故可以进行不连续剖分网格,沟道区进行细网格剖分,衬底进行粗网格剖分,从而在相同计算量的前提下,可以更加清楚的得到在电磁脉冲和电压的作用下,器件内部电场随时间变化的分布情况,在获得相同收敛精度时,可以减少计算量,对研究MOSFET等纳米半导体器件的研究具有重要意义。求解分析采用不连续伽辽金时域谱元法和非共形网格剖分方法,建模灵活,剖分方便,形成的矩阵具有良好的稀疏性,求解效率较高。

Claims (4)

1.一种电磁脉冲纳米半导体器件的电场分析方法,其特征在于,步骤如下:
第一步,建立MOSFET的求解模型,并采用曲六面体对模型进行剖分,得到模型的结构信息,包括六面体的单元信息及节点信息;
第二步,从载流子电流连续性方程、泊松方程和载流子量子修正方程出发,先用后向欧拉进行时间差分,然后对等式采用不连续伽辽金法测试,强加电场边界条件,求解得到各节点的电场及电流分布。
2.根据权利要求1所述的电磁脉冲纳米半导体器件的电场分析方法,其特征在于:第一步中,用ANSYS对MOSFET的求解模型进行非共形网格剖分。
3.根据权利要求1所述的电磁脉冲纳米半导体器件的电场分析方法,其特征在于:第二步所述从载流子电流连续性方程、泊松方程和载流子量子修正方程出发,先用后向欧拉进行时间差分,然后对等式采用不连续伽辽金法测试,强加电场边界条件,求解得到各节点的电场及电流分布,具体如下:
以载流子浓度、电势和载流子费米势为变量,以归一化因子将载流子电流连续性方程,泊松方程和载流子量子修正方程归一化,归一化后的方程如下:
泊松方程:
上式(1)中Γ为净掺杂浓度,为电势,n为电子浓度,p为空穴浓度,ε1,ε2为介电常数,表示为:
电子电流密度方程:
上式(2)中,Jn为电子电流密度,μn为电子迁移率;
空穴电流密度方程:
上式(3)中,Jp为空穴电流密度,μp为空穴迁移率;
电子量子修正方程:
空穴量子修正方程:
上式(4)和(5)中,φn代表电子准费米势,φp代表准空穴费米势, 其中为普朗克常量,q为单位电荷电量,为电子有效质量,为空穴有效质量,LD为特征长度,Vt为归一化电压;
电子电流连续性方程:
空穴电流连续性方程:
式(6)和式(7)中,G为雪崩产生项,采用Okuto-Crowell模型;R为载流子复合率;
其余不变,则式(1)~(7)变形如下:
则用后向欧拉方法对式(13)和(14)进行时间差分,得到:
式(15)和(16)中,(Sn 2)m,(Sp 2)m为当前时刻的电子和空穴的浓度值,(Sn 2)m-1,(Sp 2)m-1为前一时刻的电子和空穴的浓度值,为当前时刻的电势,为当前时刻的电子和空穴准费米势的值;上标m表示当前时刻,上标m-1表示前一时刻,Δt表示时间差;
分别对泊松方程式(1)、式(11)、式(12)、式(15)和式(16)进行不连续伽辽金测试,并且移项使等式右边为0,然后进行泰勒展开去非线性和耦合处理,得到能够编程实现求解的方程形式;求解该方程得到当前时刻的电子浓度的二分之一次方值、空穴浓度、电子准费米势、空穴准费米势和电势。
4.根据权利要求3所述的电磁脉冲纳米半导体器件的电场分析方法,其特征在于:所述载流子电流连续性方程,泊松方程和载流子量子修正方程的收敛条件为变量载流子浓度,载流子准费米势和电势前后两次迭代的相对误差小于1×10-4
CN201710867706.1A 2017-09-22 2017-09-22 电磁脉冲纳米半导体器件的电场分析方法 Active CN109543205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710867706.1A CN109543205B (zh) 2017-09-22 2017-09-22 电磁脉冲纳米半导体器件的电场分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710867706.1A CN109543205B (zh) 2017-09-22 2017-09-22 电磁脉冲纳米半导体器件的电场分析方法

Publications (2)

Publication Number Publication Date
CN109543205A true CN109543205A (zh) 2019-03-29
CN109543205B CN109543205B (zh) 2023-04-07

Family

ID=65828285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710867706.1A Active CN109543205B (zh) 2017-09-22 2017-09-22 电磁脉冲纳米半导体器件的电场分析方法

Country Status (1)

Country Link
CN (1) CN109543205B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237090A1 (zh) * 2021-05-11 2022-11-17 华南理工大学 一种同步确定二极管边界电场与电流密度的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699871A (zh) * 2014-11-28 2016-06-22 南京理工大学 高功率电磁脉冲作用下mosfet电热一体化分析方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699871A (zh) * 2014-11-28 2016-06-22 南京理工大学 高功率电磁脉冲作用下mosfet电热一体化分析方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237090A1 (zh) * 2021-05-11 2022-11-17 华南理工大学 一种同步确定二极管边界电场与电流密度的方法

Also Published As

Publication number Publication date
CN109543205B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
He et al. Progress in lightning impulse characteristics of grounding electrodes with soil ionization
Tu et al. Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system
Yin et al. Time-domain finite volume method for ion-flow field analysis of bipolar high-voltage direct current transmission lines
CN106484928A (zh) 基于多软件联合的开关电源电热耦合仿真方法
Gatta et al. Generalized pi-circuit tower grounding model for direct lightning response simulation
CN106845025A (zh) 氮化镓高电子迁移率晶体管大信号统计模型建模方法
Ye et al. A hybrid method combining the novel TD-SC technique and FDTD method for the EMI analysis of transmission line network
Albareda et al. Computation of quantum electrical currents through the Ramo–Shockley–Pellegrini theorem with trajectories
Otani et al. FDTD surge analysis of grounding electrodes considering soil ionization
Gao et al. Fractal simulation of soil breakdown under lightning current
CN109543205A (zh) 电磁脉冲纳米半导体器件的电场分析方法
Singh et al. Streamer propagation in hybrid gas-solid insulation
CN104752245A (zh) 高功率脉冲对场效应管放大器性能影响的数值分析方法
Kalantarnia et al. Predicting the effects of HPEM radiation on a transmission line terminated with linear/nonlinear load in perforated metallic enclosure using FDDM/VF
CN105699871B (zh) 高功率电磁脉冲作用下mosfet电热一体化分析方法
CN106156388B (zh) 高功率电磁脉冲作用下mesfet电热一体化分析方法
Fernández et al. Simulation of current distribution in a wind turbine blade using the FDTD method
Ding et al. A reliable device parameter extraction scheme for physics-based IGBT models
Baek et al. Experiment and analysis for effect of floating conductor on electric discharge characteristic
Shobuda et al. Reduction of the kicker impedance maintaining the performance of present kicker magnet at RCS in J-PARC
Bao et al. An efficient spectral element method for semiconductor transient simulation
Mirzavand et al. Full-wave semiconductor devices simulation using ADI-FDTD method
Sheshyekani et al. Analysis of transmission lines with arrester termination, considering the frequency-dependence of grounding systems
Kast et al. FDTD simulation of nonlinear diode characteristics using X-Parameter-based updating formulation
Zhang Computation of lightning transients in large scale multiconductor systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant