CN109539994A - 一种绝缘子爬电距离自动测量方法 - Google Patents

一种绝缘子爬电距离自动测量方法 Download PDF

Info

Publication number
CN109539994A
CN109539994A CN201811375745.0A CN201811375745A CN109539994A CN 109539994 A CN109539994 A CN 109539994A CN 201811375745 A CN201811375745 A CN 201811375745A CN 109539994 A CN109539994 A CN 109539994A
Authority
CN
China
Prior art keywords
insulator
creepage distance
information
laser
physical coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811375745.0A
Other languages
English (en)
Other versions
CN109539994B (zh
Inventor
濮峻嵩
刘曦
陈正雄
蔡钢
冯杰
王邦平
雷宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority to CN201811375745.0A priority Critical patent/CN109539994B/zh
Publication of CN109539994A publication Critical patent/CN109539994A/zh
Application granted granted Critical
Publication of CN109539994B publication Critical patent/CN109539994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning

Abstract

本发明公开了一种绝缘子爬电距离自动测量方法,解决了现有绝缘子爬电距离测量人工方式效率低、劳动强度大、误差高问题。本发明包括:获取待测量绝缘子图像信息并从中提取绝缘子激光线轮廓像素信息;基于测量系统标定分析标定信息,将得到的绝缘子激光轮廓像素信息计算到物理坐标,测量系统标定分析标定信息的步骤包括获取各个测量单元同步拍摄棋盘格作为标定数据,然后获取棋盘格的角点信息,通过棋盘格的角点像素坐标和物理坐标对应关系,获得绝缘子图像平面中物理坐标和像素坐标之间的关系;对各个测量单元的绝缘子激光轮廓的物理坐标信息进行拼接;获取完整的绝缘子轮廓曲线,在计算范围内对绝缘子轮廓进行累加积分,进而获得绝缘子爬电距离。

Description

一种绝缘子爬电距离自动测量方法
技术领域
本发明涉及绝缘子爬距技术领域,具体涉及一种绝缘子爬电距离自动测量方法。
背景技术
绝缘子产品爬距是指沿绝缘子绝缘部件外表面的曲线总长度。在绝缘子生产制造、和使用过程中,爬距是决定绝缘子性能的一个重要参数。为保证该产品的性能可靠,无论产品出厂还是用户验收,均需抽样检测绝缘子产品包括爬距在内的各类尺寸参数以确认产品质量和保证运行可靠性。
目前,在生产实际中使用的爬距测量方式多采用人工方式,使用胶带沿绝缘子表面粘贴后拉直胶带测量总长的方法。该方法存在测量工作效率低,测量精度差。测量结果易受人为因素干扰等缺陷;而目前的自动化测量方法也仅为采用机电一体化装置控制点射式的激光测距仪沿绝缘子轴向进行扫描以获取爬距参数,但是,目前的自动化测量方法存在爬距起、终点无法定义,对形状复杂绝缘子存在因结构遮挡,测量困难等问题,难以在实际中应用。因此,本发明提出了一种基于光电技术,采用激光三维扫描对绝缘子产品进行快速精确爬距测量的检测方法。
发明内容
本发明所要解决的技术问题是:现有的绝缘子爬电距离测量人工方式效率低、劳动强度大、误差高,而自动化测量方法仅是通过获取的绝缘子轮廓信息进行测定,存在爬距起、终点无法定义,对形状复杂绝缘子存在因结构遮挡,测量困难问题,本发明提供了解决上述问题的一种绝缘子爬电距离自动测量方法。
本发明通过下述技术方案实现:
一种绝缘子爬电距离自动测量方法,包括如下步骤:
S1:获取待测量绝缘子图像信息;
S2:提取步骤S1中获取的所述待测量绝缘子图像信息中绝缘子激光线轮廓像素信息;
S3:基于测量系统标定分析标定信息,将步骤S2得到的所述绝缘子激光线轮廓像素信息计算到物理坐标,所述测量系统标定分析标定信息的步骤包括如下步骤:
S31:获取各个测量单元同步拍摄棋盘格作为标定数据;
S32:根据步骤S31获取的所述标定数据获取棋盘格的角点信息,通过棋盘格的角点像素坐标和物理坐标对应关系,采用四次多项式拟合获得绝缘子图像平面中物理坐标和像素坐标之间的关系;
S4:根据步骤S3将分析得到的各个测量单元的所述绝缘子激光轮廓的物理坐标信息进行拼接并去除轮廓噪声;
S5:根据步骤S4获取完整的绝缘子轮廓曲线,在计算范围内对绝缘子轮廓进行累加积分,进而获得绝缘子的爬电距离。
本发明上述方案的原理是:由于现有的绝缘子爬电距离测量人工方式效率低、劳动强度大、误差高,而自动化测量方法仅是通过获取的绝缘子轮廓信息进行测定,存在爬距起、终点无法定义,对形状复杂绝缘子存在因结构遮挡,测量困难问题,本方法通过上述方案获取待测量绝缘子图像信息,并从中提取绝缘子激光线轮廓像素信息,然后不是直接利用提取图像中绝缘子轮廓信息进行后续的处理,而在此处加入了通过测量系统标定参数计算得出标定信息用于把绝缘子轮廓像素转换为物理坐标信息这个步骤,再者,对各个测量单元的绝缘子激光轮廓的物理坐标信息进行拼接并去除轮廓噪声,获取完整的绝缘子轮廓曲线,在计算范围内对绝缘子轮廓进行累加积分,进而获得绝缘子的爬电距离;本方法可以实现对不同类型绝缘子爬电距离的自动化测量,测量精度和效率高;绝缘子爬电距离的测量方法对应的测量过程为全静态测量,可以完全避免各类动态过程造成的误差;测量过程中采用通过拍摄可见光图像,并由人工在图像中设置爬距起始、终止测量位置的方法进行爬距有效长度的标示,有效避免爬电距离测量中被试绝缘子表面长度与爬电距离差异造成的误差。
进一步地,步骤S1中获取待测量绝缘子图像信息采用三维激光的扫描方式,采用激光三维扫描对绝缘子进行快速精确爬电距离测量。
进一步地,所述三维激光的获取是采用多个线型激光头作为激光扫描元件,并以线型激光覆盖扫描路径进行爬距测量;同时采用与所述激光头分离的多个可见光相机作为测量元件实现被测绝缘子爬电距离的测量。
进一步地,为了避免爬电距离测量中被试绝缘子表面长度与爬电距离差异造成的误差,所述可见光相机拍摄的可见光图像由人工在可见光图像中设置爬电距离起始测量位置和终止测量位置来进行爬电距离有效长度的标示。
进一步地,步骤S31中获取测量单元标定数据之前,需要调整标定硬件系统使得各个测量单元的激光线能处于一个平面,将棋盘格放置在激光平面之上。
进一步地,步骤S32获取的所述标定数据获取棋盘格的角点信息是利用OpenCV相关标定函数库获取棋盘格的角点信息。
进一步地,步骤S32中采用拟合获得绝缘子图像平面中物理坐标和像素坐标之间的关系,所述四次多项式为:
F(x)=a0u4+a1v4+a2u3v+a3u2v2+a4uv3+a5u3+a6v3+a7u2v+a8uv2+a9u2+a10v2+a11uv+a12u+a13v+a14
F(y)=b0u4+b1v4+b2u3v+b3u2v2+b4uv3+b5u3+b6v3+b7u2v+b8uv2+b9u2+b10v2+b11uv+b12u+b13v+b14
其中,F(x)、F(y)分别是物理横、纵坐标值,a0~a14、b0~b14是对应的多项式拟合系数,u、v是对应的像素坐标值。
本发明具有如下的优点和有益效果:
1、本发明实现对不同类型绝缘子爬电距离的自动化测量,测量检测精度和测量效率高;
2、本发明绝缘子爬电距离的测量方法对应的测量过程为全静态测量,可以完全避免各类动态过程造成的误差;
3、本发明采用的人工标注爬电距离起、终点位置的方式可以完全避免因绝缘子生产工艺水平差异造成的有效爬距与试品表面长度不同造成的测量误差;
4、本发明爬电距离测量为非接触式测量,对试品绝缘子无任何损伤。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明的绝缘子爬电距离示意图。
图2为本发明的激光面标定示意图。
图3为本发明的系统标定流程图。
图4为本发明的绝缘子爬电距离测量流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
如图1至图4所示,一种绝缘子爬电距离自动测量方法,包括如下步骤:
S1:获取待测量绝缘子图像信息;
S2:提取步骤S1中获取的所述待测量绝缘子图像信息中绝缘子激光线轮廓像素信息;
S3:基于测量系统标定分析标定信息,将步骤S2得到的所述绝缘子激光线轮廓像素信息计算到物理坐标,所述测量系统标定分析标定信息的步骤包括如下步骤:
S31:获取各个测量单元同步拍摄棋盘格作为标定数据;
S32:根据步骤S31获取的所述标定数据获取棋盘格的角点信息,通过棋盘格的角点像素坐标和物理坐标对应关系,采用四次多项式拟合获得绝缘子图像平面中物理坐标和像素坐标之间的关系;
S4:根据步骤S3将分析得到的各个测量单元的所述绝缘子激光轮廓的物理坐标信息进行拼接并去除轮廓噪声;
S5:根据步骤S4获取完整的绝缘子轮廓曲线,在计算范围内对绝缘子轮廓进行累加积分,进而获得绝缘子的爬电距离。
步骤S1中获取待测量绝缘子图像信息采用三维激光的扫描方式;所述三维激光的获取是采用多个线型激光头作为激光扫描元件,同时采用与所述激光头分离的多个可见光相机作为测量元件实现被测绝缘子爬电距离的测量;所述可见光相机拍摄的可见光图像由人工在可见光图像中设置爬电距离起始测量位置和终止测量位置来进行爬电距离有效长度的标示。
本发明的工作原理是:本方法通过上述方案获取待测量绝缘子图像信息,并从中提取绝缘子激光线轮廓像素信息,然后不是直接利用提取图像中绝缘子轮廓信息进行后续的处理,而在此处加入了通过测量系统标定参数计算得出标定信息用于把绝缘子轮廓像素转换为物理坐标信息这个步骤,再者,对各个测量单元的绝缘子激光轮廓的物理坐标信息进行拼接并去除轮廓噪声,获取完整的绝缘子轮廓曲线,在计算范围内对绝缘子轮廓进行累加积分,进而获得绝缘子的爬电距离;本方法可以实现对不同类型绝缘子爬电距离的自动化测量,测量精度和效率高;绝缘子爬电距离的测量方法对应的测量过程为全静态测量,可以完全避免各类动态过程造成的误差;测量过程中采用通过拍摄可见光图像,并由人工在图像中设置爬距起始、终止测量位置的方法进行爬距有效长度的标示,有效避免爬电距离测量中被试绝缘子表面长度与爬电距离差异造成的误差。
实施例2
如图1至图4所示,本实施例与实施例1的区别在于,步骤S31中获取测量单元标定数据之前,需要调整标定硬件系统使得各个测量单元的激光线能处于一个平面,将棋盘格放置在激光平面之上;步骤S32获取的所述标定数据获取棋盘格的角点信息是利用OpenCV相关标定函数库获取棋盘格的角点信息;步骤S32中采用拟合获得绝缘子图像平面中物理坐标和像素坐标之间的关系,所述四次多项式为:
F(x)=a0u4+a1v4+a2u3v+a3u2v2+a4uv3+a5u3+a6v3+a7u2v+a8uv2+a9u2+a10v2+a11uv+a12u+a13v+a14
F(y)=b0u4+b1v4+b2u3v+b3u2v2+b4uv3+b5u3+b6v3+b7u2v+b8uv2+b9u2+b10v2+b11uv+b12u+b13v+b14
其中,F(x)、F(y)分别是物理横、纵坐标值,a0~α14、b0~b14是对应的多项式拟合系数,u、v是对应的像素坐标值。
绝缘子爬电距离测量流程如图4所示,绝缘子爬电距离测量分为两个阶段:(1)测量系统标定,(2)绝缘子爬电距离参数测量。
(1)测量系统标定,测量系统标定分析标定信息的过程如下:
第一,获取测量单元标定数据
在测量系统标定过程中,首先需要调整标定硬件系统,使得各个测量单元的激光线能处于一个平面;然后将棋盘格放置在激光平面之上,如图2所示;最后各个测量单元同步拍摄棋盘格,作为标定数据。
第二,标定计算
系统的标定计算流程如图3所示,在各个测量单元获取棋盘格后,利用OpenCV(Open Source Computer Vision Library)相关标定函数库可获取棋盘格的角点信息,通过棋盘格的角点像素坐标和物理坐标对应关系,采用四次多项式,可拟合得到图像平面中物理坐标和像素坐标之间的关系,四次多项式如下所示:
F(x)=a0u4+a1v4+a2u3v+a3u2v2+a4uv3+a5u3+a6v3+a7u2v+a8uv2+a9u2+a10v2+a11uv+a12u+a13v+a14
F(y)=b0u4+b1v4+b2u3v+b3u2v2+b4uv3+b5u3+b6v3+b7u2v+b8uv2+b9u2+b10v2+b11uv+b12u+b13v+b14
其中:F(x)、F(y)分别是物理横、纵坐标值,a0~α14、b0~b14是对应的多项式拟合系数,u、v是对应的像素坐标值,相机标定的目的即计算出多项式拟合系数。
(2)绝缘子爬电距离参数测量
如图1所示,每个测量单元在获取测量绝缘子图像后,首先,提取图像中激光线轮廓信息;然后,基于标定信息,将得到的激光轮廓像素信息计算到物理坐标;再者,将多个测量单元的激光轮廓的物理坐标信息进行拼接并去除轮廓噪声;最后,将得到完整的绝缘子轮廓曲线后,在计算范围内对绝缘子轮廓进行累加积分可得到绝缘子爬电距离。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种绝缘子爬电距离自动测量方法,其特征在于:该方法包括如下步骤:
S1:获取待测量绝缘子图像信息;
S2:提取步骤S1中获取的所述待测量绝缘子图像信息中绝缘子激光线轮廓像素信息;
S3:基于测量系统标定分析标定信息,将步骤S2得到的所述绝缘子激光线轮廓像素信息计算到物理坐标,所述测量系统标定分析标定信息的步骤包括如下步骤:
S31:获取各个测量单元同步拍摄棋盘格作为标定数据;
S32:根据步骤S31获取的所述标定数据获取棋盘格的角点信息,通过棋盘格的角点像素坐标和物理坐标对应关系,采用四次多项式拟合获得绝缘子图像平面中物理坐标和像素坐标之间的关系;
S4:根据步骤S3将分析得到的各个测量单元的所述绝缘子激光轮廓的物理坐标信息进行拼接并去除轮廓噪声;
S5:根据步骤S4获取完整的绝缘子轮廓曲线,在计算范围内对绝缘子轮廓进行累加积分,进而获得绝缘子的爬电距离。
2.根据权利要求1所述的一种绝缘子爬电距离自动测量方法,其特征在于:步骤S1中获取待测量绝缘子图像信息采用三维激光的扫描方式。
3.根据权利要求2所述的一种绝缘子爬电距离自动测量方法,其特征在于:所述三维激光的获取是采用多个线型激光头作为激光扫描元件,同时采用与所述激光头分离的多个可见光相机作为测量元件实现被测绝缘子爬电距离的测量。
4.根据权利要求3所述的一种绝缘子爬电距离自动测量方法,其特征在于:所述可见光相机拍摄的可见光图像由人工在可见光图像中设置爬电距离起始测量位置和终止测量位置来进行爬电距离有效长度的标示。
5.根据权利要求1所述的一种绝缘子爬电距离自动测量方法,其特征在于:步骤S31中获取测量单元标定数据之前,需要调整标定硬件系统使得各个测量单元的激光线能处于一个平面,将棋盘格放置在激光平面之上。
6.根据权利要求5所述的一种绝缘子爬电距离自动测量方法,其特征在于:步骤S32获取的所述标定数据获取棋盘格的角点信息是利用OpenCV相关标定函数库获取棋盘格的角点信息。
7.根据权利要求5所述的一种绝缘子爬电距离自动测量方法,其特征在于:步骤S32中采用拟合获得绝缘子图像平面中物理坐标和像素坐标之间的关系,所述四次多项式为:
F(x)=a0u4+a1v4+a2u3v+a3u2v2+a4uv3+a5u3+a6v3+a7u2v+a8uv2+a9u2+a10v2+a11uv+a12u+a13v+a14
F(y)=b0u4+b1v4+b2u3v+b3u2v2+b4uv3+b5u3+b6v3+b7u2v+b8uv2+b9u2+b10v2+b11uv+b12u+b13v+b14
其中,F(x)、F(y)分别是物理横、纵坐标值,a0~a14、b0~b14是对应的多项式拟合系数,u、v是对应的像素坐标值。
CN201811375745.0A 2018-11-19 2018-11-19 一种绝缘子爬电距离自动测量方法 Active CN109539994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811375745.0A CN109539994B (zh) 2018-11-19 2018-11-19 一种绝缘子爬电距离自动测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811375745.0A CN109539994B (zh) 2018-11-19 2018-11-19 一种绝缘子爬电距离自动测量方法

Publications (2)

Publication Number Publication Date
CN109539994A true CN109539994A (zh) 2019-03-29
CN109539994B CN109539994B (zh) 2021-08-03

Family

ID=65848150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811375745.0A Active CN109539994B (zh) 2018-11-19 2018-11-19 一种绝缘子爬电距离自动测量方法

Country Status (1)

Country Link
CN (1) CN109539994B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631633A (zh) * 2019-09-05 2019-12-31 四川大学 一种绝缘子参数自动检测装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243321A (ja) * 1996-03-04 1997-09-19 Tokyo Electric Power Co Inc:The 碍子位置検出装置
CN102506825A (zh) * 2011-10-27 2012-06-20 广东电网公司深圳供电局试验研究所 一种输变电设备外绝缘防污参数摄影测量方法
CN103149215A (zh) * 2013-02-27 2013-06-12 中国计量学院 一种钢化玻璃绝缘子缺陷检测方法与装置
CN203298723U (zh) * 2013-06-04 2013-11-20 山东工业陶瓷研究设计院有限公司 绝缘子形位公差组合检验工装
CN106091944A (zh) * 2016-07-18 2016-11-09 电子科技大学 一种悬式绝缘子的爬电距离测量装置
CN106529554A (zh) * 2016-10-28 2017-03-22 广东电网有限责任公司电力科学研究院 一种基于红外影像的绝缘子半自动提取方法及装置
CN106705890A (zh) * 2016-12-23 2017-05-24 上海电机学院 一种三维扫描魔盒
US20170170637A1 (en) * 2015-12-15 2017-06-15 Ngk Spark Plug Co., Ltd. Inspection method and apparatus of spark plug insulator
CN106885532A (zh) * 2016-09-09 2017-06-23 武汉滨湖电子有限责任公司 一种高精度的铁轨几何轮廓的检测方法
CN107167076A (zh) * 2017-06-07 2017-09-15 电子科技大学 一种用于悬式绝缘子的三维扫描装置
CN206876124U (zh) * 2017-06-07 2018-01-12 电子科技大学 一种用于悬式绝缘子的三维扫描装置
CN107578464A (zh) * 2017-06-30 2018-01-12 长沙湘计海盾科技有限公司 一种基于线激光扫描的传送带工件三维轮廓测量方法
CN108195314A (zh) * 2018-01-17 2018-06-22 杨佳苗 基于多视场拼接的反射式条纹三维面形测量方法
CN108344379A (zh) * 2018-01-23 2018-07-31 上海大学 一种测量绝缘子截面轮廓形状及爬电距离的系统和方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243321A (ja) * 1996-03-04 1997-09-19 Tokyo Electric Power Co Inc:The 碍子位置検出装置
CN102506825A (zh) * 2011-10-27 2012-06-20 广东电网公司深圳供电局试验研究所 一种输变电设备外绝缘防污参数摄影测量方法
CN103149215A (zh) * 2013-02-27 2013-06-12 中国计量学院 一种钢化玻璃绝缘子缺陷检测方法与装置
CN203298723U (zh) * 2013-06-04 2013-11-20 山东工业陶瓷研究设计院有限公司 绝缘子形位公差组合检验工装
US20170170637A1 (en) * 2015-12-15 2017-06-15 Ngk Spark Plug Co., Ltd. Inspection method and apparatus of spark plug insulator
CN106091944A (zh) * 2016-07-18 2016-11-09 电子科技大学 一种悬式绝缘子的爬电距离测量装置
CN106885532A (zh) * 2016-09-09 2017-06-23 武汉滨湖电子有限责任公司 一种高精度的铁轨几何轮廓的检测方法
CN106529554A (zh) * 2016-10-28 2017-03-22 广东电网有限责任公司电力科学研究院 一种基于红外影像的绝缘子半自动提取方法及装置
CN106705890A (zh) * 2016-12-23 2017-05-24 上海电机学院 一种三维扫描魔盒
CN107167076A (zh) * 2017-06-07 2017-09-15 电子科技大学 一种用于悬式绝缘子的三维扫描装置
CN206876124U (zh) * 2017-06-07 2018-01-12 电子科技大学 一种用于悬式绝缘子的三维扫描装置
CN107578464A (zh) * 2017-06-30 2018-01-12 长沙湘计海盾科技有限公司 一种基于线激光扫描的传送带工件三维轮廓测量方法
CN108195314A (zh) * 2018-01-17 2018-06-22 杨佳苗 基于多视场拼接的反射式条纹三维面形测量方法
CN108344379A (zh) * 2018-01-23 2018-07-31 上海大学 一种测量绝缘子截面轮廓形状及爬电距离的系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘亚文 等: "变电站绝缘子爬电距离摄影测量方法", 《测绘通报》 *
贺文俊等: "基于双目立体视觉的高压绝缘子在线检测系统", 《应用光学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631633A (zh) * 2019-09-05 2019-12-31 四川大学 一种绝缘子参数自动检测装置
CN110631633B (zh) * 2019-09-05 2021-03-09 四川大学 一种绝缘子参数自动检测装置

Also Published As

Publication number Publication date
CN109539994B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN108398229B (zh) 一种飞行器三维表面流动分布风洞测量方法
CN109870108B (zh) 输电线路覆冰检测方法及装置
CN101655352B (zh) 一种三维散斑应变测量装置的测量方法
CN104459183B (zh) 一种基于物联网的单相机车辆测速系统及方法
CN108662987B (zh) 2d摄像式激光测量头的标定方法
CN102445165B (zh) 基于单幅彩色编码光栅的立体视觉测量方法
CN104567728A (zh) 激光视觉轮廓测量系统及测量方法、立体靶标
CN103994732B (zh) 一种基于条纹投影的三维测量方法
CN110084785B (zh) 一种基于航拍图像的输电线垂弧测量方法及系统
CN114485477B (zh) 一种结冰三维外形在线测量方法及测量装置
CN109443214B (zh) 一种结构光三维视觉的标定方法、装置及测量方法、装置
CN114485483B (zh) 一种基于多相机组合成像的冰形在线测量方法及装置
CN105824022A (zh) 一种电网不良地质体三维形变监测方法
WO2018026532A1 (en) Testing 3d imaging systems
CN111854622B (zh) 一种大视场光学动态变形测量方法
CN110398199A (zh) 一种建筑限界检测方法
CN110604574A (zh) 一种基于视频成像原理的人体身高测量方法
CN106568394A (zh) 一种手持式三维实时扫描方法
CN109539994A (zh) 一种绝缘子爬电距离自动测量方法
CN203881301U (zh) 混凝土裂缝现场检测与成像装置
CN205711654U (zh) 一种三维可视化的路面破损信息的检测装置
CN104406569B (zh) 辐射亮温与摄影测量相结合的云底高度测量系统及方法
CN204287060U (zh) 一种基于rgb结构光的在线式三维检测装置
CN105203024A (zh) 一种多传感器集成的输电线路覆冰摄影测量方法
CN108180871A (zh) 一种定量评价复合绝缘子表面粉化粗糙度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant