CN109539830A - 一种管径变化的管壳式换热器 - Google Patents
一种管径变化的管壳式换热器 Download PDFInfo
- Publication number
- CN109539830A CN109539830A CN201810809152.4A CN201810809152A CN109539830A CN 109539830 A CN109539830 A CN 109539830A CN 201810809152 A CN201810809152 A CN 201810809152A CN 109539830 A CN109539830 A CN 109539830A
- Authority
- CN
- China
- Prior art keywords
- heat exchanger
- tube
- hole
- separating device
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本发明提供了一种管径变化的管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,汽液两相流中的汽相在换热过程中能够冷凝成液相,汽液两相流在管程中流动,沿着换热管内流体流动的方向,换热管的管径不断的减小。本发明提供一种新式结构的分隔装置的换热器,主要原因如下:1)因为随着流体的不断的流动,蒸汽在下降管内不断的冷凝,从而使得流体体积越来越小,压力也越来越小,因此通过减少管径来满足不断增加的流体体积和压力的变化,从而使得整体上压力分布均匀,换热均匀。2)通过换热管的管径的减小,可以节约材料,降低成本。
Description
技术领域
本发明涉及一种管壳式换热器,尤其是涉及一种管径变化的管壳式换热器。
背景技术
汽液两相流换热广泛地存在于各种换热装置中,汽液两相流在换热过程中因为汽相的存在,会导致换热效率低,恶化换热,流体流动过程不稳定,而且会导致水锤现象的发生。当两相工质的汽液相没有均匀混合且不连续流动时,大尺寸的液团会高速地占据气团空间,导致两相流动不稳定,从而剧烈地冲击设备与管道,产生强烈震动和噪声,严重地威胁设备运行安全。
本发明人在前面申请中也设计了多种解决上述问题的换热器装置,例如多管式,但是此种装置在运行中发现,因为管子之间是紧密结合在一起,因此三根管子之间形成的空间A相对较小,因为空间A是三根管子的凸弧形成,因此空间A的大部分区域狭窄,会造成流体难于进入通过,造成流体短路,从而影响了流体的换热,无法起到很好的稳流作用。同时因为上述结构的多根管子组合在一起,制造困难。再例如2017102671998结构,虽然该结构解决了流体短路现象,但是却存在流通面积大大缩小的问题,导致流动阻力的增加。再例如2017103224953的环形分隔装置,环形结构中分隔装置采用环形结构,导致整体上分隔装置环空在周向上分隔不均匀,而且因为存在环形结构,使得环空的四个夹角的位置出现了小于90度的锐角,这会导致在小于90度的锐角部分存在流体流动短路的问题。
正常的换热器设计中,换热管管径基本相同,没有考虑具体压力温度变化导致的管径的变化。
针对上述问题,本发明在前面发明的基础上进行了改进,提供了一种新的换热器,从而解决换热管换热的情况下的存在的稳流不均匀的换热问题。使得汽体和液体充分进行混合,提高了换热效果
发明内容
本发明的目的是提供一种新式结构的管径变化的管壳式换热器,在管道内存在汽液两相流动时,减弱汽液两相流换热管内的振动,降低噪声水平,同时强化传热。
为了实现上述目的,本发明的技术方案如下:
一种管径变化的管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,汽液两相流中的汽相在换热过程中能够冷凝成液相,其特征在于,汽液两相流在管程中流动,所述换热管内设置分隔装置,所述分隔装置是片状结构,所述片状结构在换热管的横截面上设置;所述分隔装置为正方形通孔和正八边形通孔组成,所述正方形通孔的边长等于正八边形通孔的边长,所述正方形通孔的四个边分别是四个不同的正八边形通孔的边,正八边形通孔的四个互相间隔的边分别是四个不同的正方形通孔的边。
作为优选,所述分隔装置是正方形中心分隔装置,正方形通孔位于换热管的中心。
作为优选,所述分隔装置是正八边形中心分隔装置,正八边形通孔位于换热管的中心。
作为优选,所述分隔装置包括下面两种类型中的至少一种,第一种类型是正方形中心分隔装置,正方形通孔位于换热管的中心,第二种类型是正八边形中心分隔装置,正八边形通孔位于换热管的中心。
作为优选,相邻设置的分隔装置类型不同。
作为优选,所述换热管的横截面是正方形。
作为优选,换热管内设置多个分隔装置,相邻分隔装置之间的距离为S1,正方形通孔的边长为L1,换热管的边长为L2,满足如下要求:
S1/L2=a*(L1/L2)2+b*(L1/L2)-c
其中a,b,c是参数,其中42.53<a<42.55,6.38<b<6.39,0.243<c<0.244;
12<L2<58mm;
2<L1<3.4mm;
15<S1<26mm。
作为优选,a=42.54,b=6.383,c=0.2438。
与现有技术相比较,本发明的具有如下的优点:
1)采用管径变化主要原因如下:1)因为随着流体的不断的流动,蒸汽在下降管内不断的冷凝,从而使得流体体积越来越小,压力也越来越小,因此通过减少管径来满足不断增加的流体体积和压力的变化,从而使得整体上压力分布均匀,换热均匀。2)通过换热管的管径的减小,可以节约材料,降低成本
2)本发明提供了一种新式正方形通孔和正八边形通孔相结合的新式结构的分隔装置汽液两相流换热器,通过正方形和正八边形,使得形成的正方形孔和正八边形孔的边形成的夹角都是大于等于90度,从而使得流体能够充分流过每个孔的每个位置,避免或者减少流体流动的短路。本发明通过新式结构的分隔装置将两相流体分离成液相和汽相,将液相分割成小液团,将汽相分割成小气泡,抑制液相的回流,促使汽相顺畅流动,起到稳定流量的作用,具有减振降噪的效果,提高换热效果。相对于现有技术中的分隔装置,进一步提高稳流效果,强化传热,而且制造简单。
3)本发明通过合理的布局,使得正方形和正八边形通孔分布均匀,从而使得整体上的横街面上的流体分割均匀,避免了现有技术中的环形结构沿着周向的分割不均匀问题。
4)本发明通过正方形孔和正八边形孔的间隔均匀分布,从而使得大孔和小孔在整体横截面上分布均匀,而且通过相邻的分隔装置的大孔和小孔的位置变化,使得分隔效果更好。
5)本发明通过设置分隔装置为片状结构,使得分隔装置结构简单,成本降低。
6)本发明通过在换热管内流体流动方向上设置相邻分隔装置之间的距离、分隔装置的孔的边长、换热管的管径、管间距等参数大小的规律变化,研究了上述参数的最佳的关系尺寸,从而进一步达到稳流效果,降低噪音,提高换热效果。
7)本发明通过对环形分隔装置各个参数的变化导致的换热规律进行了广泛的研究,在满足流动阻力情况下,实现减振降噪的效果的最佳关系式。
附图说明
图1是本发明的两相流管壳式换热器的结构示意图;
图2是本发明的两相流管壳式换热器的换热管结构示意图;
图3本发明分隔装置结构示意图;
图4是本发明分隔装置另一结构示意图;
图5是本发明分隔装置在换热管内布置的示意图。
图6是本发明分隔装置在换热管内布置横截面示意图。
附图标记如下:前封头1,封头法兰2,前管板3,壳体4,分隔装置5,换热管6、后管板7,封头法兰8,后封头9,支座10,支座11,管程入口管12,管程出口管13,壳程入口管14,壳程出口管15,正方形通孔51,正八边形通孔52,边53
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明。
本文中,如果没有特殊说明,涉及公式的,“/”表示除法,“×”、“*”表示乘法。
需要说明的是,如果没有特殊说明,本发明提到的两相流是汽液两相流,此处的汽相在换热过程中能够冷凝成液相。
如图1所示的一种管壳式换热器,所述管壳式换热器包括有壳体4、换热管6、管程入口管12、管程出口管13、壳程入口接管14和壳程出口接管15;多个平行设置的换热管6组成的换热管束连接在前管板3、后管板7上;所述前管板3的前端与前封头1连接,后管板7的后端连接后封头9;所述的管程入口管12设置在后封头9上;所述的管程出口管13设置在前封头1上;所述的壳程入口接管14和壳程出口接管15均设置在壳体4上;两相流的流体从管程入口管12进入,经过换热管进行换热,从管程出口管13出去。
如图3-4所示,在换热管6内设置环形分隔装置5。所述环形分隔装置5的结构见图3-4。所述分隔装置5是片状结构,所述片状结构在换热管6的横截面上设置;所述分隔装置5为正方形和正八边形结构组成,从而形成正方形通孔51和正八边形通孔52。如图3所述正方形通孔51的边长等于正八边形通孔52的边长,所述正方形通孔的四个边53分别是四个不同的正八边形通孔的边53,正八变形通孔的四个互相间隔的边53分别是四个不同的正方形通孔的边53。
本发明采用新式结构的分隔装置,具有如下优点:
1)本发明提供了一种新式正方形通孔和正八边形通孔相结合的新式结构的分隔装置,通过正方形和正八边形,使得形成的正方形孔和正八边形孔的边形成的夹角都是大于等于90度,从而使得流体能够充分流过每个孔的每个位置,避免或者减少流体流动的短路。本发明通过新式结构的分隔装置将两相流体分离成液相和汽相,将液相分割成小液团,将汽相分割成小气泡,抑制液相的回流,促使汽相顺畅流动,起到稳定流量的作用,具有减振降噪的效果,提高换热效果。相对于现有技术中的分隔装置,进一步提高稳流效果,强化传热,而且制造简单。
2)本发明通过合理的布局,使得正方形和正八边形通孔分布均匀,从而使得整体上的横街面上的流体分割均匀,避免了现有技术中的环形结构沿着周向的分割不均匀问题。
3)本发明通过正方形孔和正八边形通孔的间隔均匀分布,从而使得大孔和小孔在整体横截面上分布均匀,而且通过相邻的分隔装置的大孔和小孔的位置变化,使得分隔效果更好。
4)本发明通过设置分隔装置为片状结构,使得分隔装置结构简单,成本降低。
本发明通过设置环形分隔装置,相当于在换热管内增加了内换热面积,强化了换热,提高了换热效果。
本发明因为将汽液两相在所有换热管的所有横截面位置进行了分割,从而在整个换热管截面上实现汽液界面以及汽相边界层的分割与冷却壁面的接触面积并增强扰动,大大的降低了噪音和震动,强化了传热。
作为优选,所述分隔装置包括两种类型,如图3,4所示,第一种类型是正方形中心分隔装置,正方形位于换热管或者冷凝管的中心,如图4所示。第二种是正八边形中心分隔装置,正八边形位于换热管或者冷凝管的中心,如图3所示。作为一个优选,上述两种类型的分隔装置相邻设置,即相邻设置的分隔装置类型不同。即与正方形中心分隔装置相邻的是正八边形中心分隔装置,与正八边形中心分隔装置相邻的是正方形中心分隔装置。本发明通过正方形孔和正八边形孔的间隔均匀分布,从而使得大孔和小孔在整体横截面上分布均匀,而且通过相邻的分隔装置的大孔和小孔的位置变化,使得通过大孔的流体接下来通过小孔,通过小孔的流体接下来通过大孔,进一步进行分隔,促进汽液的混合,使得分隔和换热效果更好。
作为优选,所述换热管3的横截面是正方形。
作为优选,沿着换热管内流体的流动方向,换热管内设置多个分隔装置,从换热管的入口到换热管的出口,相邻分隔装置之间的距离越来越长。距离换热管入口的距离为X,相邻分隔装置之间的距离为 S,S=F1(X),S’是S的一次导数,满足如下要求:
S’>0;
主要原因是因为流体中含有汽体,因此沿着流体的流动方向,汽体因为换热管内流体放热而冷凝,从而冷凝成液相,这导致沿着换热管内流体的流动方向,汽体会越来越少,汽液两相流中的汽相越来越少,换热管内的换热能力会随着汽相转化为液相而不断的增加,震动及其噪音也会随着汽相转化为液相而不断的降低。因此,可以将分隔装置的间距变大,这样一方面可以减少流动阻力,另一方面也能保持低噪音和低震动,而且还能因为分隔装置作为内翅片的分布越来越少,保持整个换热管上的换热均匀,而且还可以节省材料。
通过实验发现,通过上述的设置,既可以最大程度上减少震动和噪音,同时可以保证降低流体的流动阻力。
进一步优选,从换热管的入口到换热管的出口,相邻分隔装置之间的距离越来越长的幅度不断增加。即S”是S的二次导数,满足如下要求:
S”>0;
通过实验发现,通过如此设置,能够进一步降低8%左右的震动和噪音,同时降低流动6%左右的阻力。
作为优选,除了相邻的分隔装置之间的距离外,分隔装置其它的参数(例如管径等)保持不变。
作为优选,沿着换热管6内流体的流动方向,换热管6内设置多个分隔装置,从换热管6的入口到换热管6的出口,不同分隔装置5内的正方形通孔的边长越来越大。即分隔装置的正方形通孔的边长为 D,D=F3(X),D’是D的一次导数,满足如下要求:
D’>0;
作为优选,从换热管的入口到换热管的出口,分隔装置的正方形通孔的边长越来越大的幅度不断增加。即
D”是D的二次导数,满足如下要求:
D”>0。
具体理由如相邻分隔装置之间的距离的变化相同。
作为优选,除了分隔装置的环孔水力直径外,分隔装置其它的参数(例如相邻分隔装置之间的距离等)保持不变。
作为优选,所述换热管内壁设置缝隙,所述分隔装置的外端设置在缝隙内。
作为优选,换热管为多段结构焊接而成,多段结构的连接处设置分隔装置。
这种方式使得设置分隔装置的换热管的制造简单,成本降低。
作为优选,沿着换热管内流体流动的方向,换热管的管径不断的减小。主要原因如下:1)因为随着流体的不断的流动,蒸汽在换热管内不断的冷凝,从而使得流体体积越来越小,压力也越来越小,因此通过减少管径来满足不断增加的流体体积和压力的变化,从而使得整体上压力分布均匀,换热均匀。 2)通过换热管的管径的减小,可以节约材料,降低成本。
作为优选,沿着换热管内流体的流动方向,换热管的管径不断的减小的幅度越来越大。上述管径的幅度变化是本申请人通过大量的实验和数值模拟得到的结果,通过上述的设置,能够进一步的促进环路热管的循环流动,达到压力整体均匀。
通过分析以及实验得知,分隔装置之间的间距不能过大,过大的话导致减震降噪的效果不好,同时也不能过小,过小的话导致阻力过大,同理,正方形的边长也不能过大或者过小,也会导致减震降噪的效果不好或者阻力过大,因此本发明通过大量的实验,在优先满足正常的流动阻力(总承压为2.5Mpa 以下,或者单根换热管的沿程阻力小于等于5Pa/M)的情况下,使得减震降噪达到最优化,整理了各个参数最佳的关系。
作为优选,相邻分隔装置之间的距离为S1,正方形通孔的边长为L1,换热管为正方形截面,换热管正方形截面的边长为L2,满足如下要求:
S1/L2=a*(L1/L2)2+b*(L1/L2)-c
其中a,b,c是参数,其中42.53<a<42.55,6.38<b<6.39,0.243<c<0.244;
12<L2<58mm;
2<L1<3.4mm;
15<S1<26mm。
作为优选,a=42.54,b=6.383,c=0.2438。
进一步优选,随着L1/L2的增加,a,b越来越大,c越来越小。
作为优选,正方形通孔的边长L1是正方形通孔内边长和外边长的平均值,换热管正方形截面的边长L2是换热管内边长和外边长的平均值。
作为优选,正方形通孔的外边长等于换热管正方形截面的内边长。
作为优选,随着L2的增加,L1也不断增加。但是随着L2的增加,L1不断增加的幅度越来越小。此规律变化是通过大量的数值模拟和实验得到的,通过上述规律的变化,能够进一步提高换热效果,降低噪音。
作为优选,随着L2的增加,S1不断减小。但是随着L2的增加,S1不断减小的幅度越来越小。此规律变化是通过大量的数值模拟和实验得到的,通过上述规律的变化,能够进一步提高换热效果,降低噪音。
通过分析以及实验得知,换热管的间距也要满足一定要求,例如不能过大或者过小,无论过大或者过小都会导致换热效果不好,而且因为本申请换热管内设置了分隔装置,因此分隔装置也对换热管间距有一定要求。因此本发明通过大量的实验,在优先满足正常的流动阻力(总承压为2.5Mpa以下,或者单根换热管的沿程阻力小于等于5Pa/M)的情况下,使得减震降噪达到最优化,整理了各个参数最佳的关系。
相邻分隔装置之间的距离为S1,正方形的边长为L1,换热管为正方形截面,换热管的边长为L2,相邻换热管中心之间的间距为S2满足如下要求:
S2/L2=d*(S1/L2)2+e-f*(S1/L2)3-h*(S1/L2);
其中d,e,f,h是参数,
1.121<d<1.22,1.516<e<1.517,0.340<f<0.341,0.893<h<0.894;
12<L2<58mm;
2<L1<3.4mm;
15<S1<26mm。
16<S2<76mm。
相邻换热管中心之间的间距为S2是指换热管中心线之间的距离。
进一步优选,d=1.1217,e=1.5164,f=0.3408,h=0.8933;
作为优选,随着S1/L2的增加,d,e越来越大,f,h越来越小。
作为优选,随着L2的增加,S2不断增加,但是随着L2的增加,S2不断增加的幅度越来越小。此规律变化是通过大量的数值模拟和实验得到的,通过上述规律的变化,能够进一步提高换热效果。
作为优选,换热管长度L为3000-3500mm之间。进一步优选,3200-3300mm之间。
通过上述公式的最佳的几何尺度的优选,能够实现满足正常的流动阻力条件下,减震降噪达到最佳效果。
对于其他的参数,例如管壁、壳体壁厚等参数按照正常的标准设置即可。
作为优选,换热管内流体是水。
对于其他的参数,例如管壁、壳体壁厚等参数按照正常的标准设置即可。
作为优选,壳程内流体是水。
作为优选,管程内流体流速3-5m/S。
作为优选,换热管的长度L与换热器的壳体直径比为8-9。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
Claims (9)
1.一种管径变化的管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,汽液两相流中的汽相在换热过程中能够冷凝成液相,其特征在于,汽液两相流在管程中流动,沿着换热管内流体流动的方向,换热管的管径不断的减小。
2.如权利要求1所述的换热器,沿着换热管内流体的流动方向,换热管的管径不断的减小的幅度越来越大。
3.如权利要求1所述的换热器,所述换热管内设置分隔装置,所述分隔装置是片状结构,所述片状结构在换热管的横截面上设置;所述分隔装置为正方形通孔和正八边形通孔组成,所述正方形通孔的边长等于正八边形通孔的边长,所述正方形通孔的四个边分别是四个不同的正八边形通孔的边,正八边形通孔的四个互相间隔的边分别是四个不同的正方形通孔的边。
4.如权利要求3所述的换热器,其特征在于,所述分隔装置是正方形中心分隔装置,正方形通孔位于换热管的中心。
5.如权利要求3所述的换热器,其特征在于,所述分隔装置是正八边形中心分隔装置,正八边形通孔位于换热管的中心。
6.如权利要求1所述的换热器,其特征在于,所述分隔装置包括下面两种类型中的至少一种,第一种类型是正方形中心分隔装置,正方形通孔位于换热管的中心,第二种类型是正八边形中心分隔装置,正八边形通孔位于换热管的中心。
7.如权利要求6所述的换热器,其特征在于,相邻设置的分隔装置类型不同。
8.如权利要求1所述的换热器,其特征在于,所述换热管的横截面是正方形。
9.一种管径变化的管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,汽液两相流中的汽相在换热过程中能够冷凝成液相,其特征在于,汽液两相流在管程中流动,所述换热管内设置分隔装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810809152.4A CN109539830B (zh) | 2018-07-20 | 2018-07-20 | 一种管径变化的管壳式换热器 |
CN202010268171.8A CN111397405B (zh) | 2018-07-20 | 2018-07-20 | 一种汽液两相流换热管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810809152.4A CN109539830B (zh) | 2018-07-20 | 2018-07-20 | 一种管径变化的管壳式换热器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010268171.8A Division CN111397405B (zh) | 2018-07-20 | 2018-07-20 | 一种汽液两相流换热管 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109539830A true CN109539830A (zh) | 2019-03-29 |
CN109539830B CN109539830B (zh) | 2020-06-26 |
Family
ID=65839048
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010268171.8A Active CN111397405B (zh) | 2018-07-20 | 2018-07-20 | 一种汽液两相流换热管 |
CN201810809152.4A Expired - Fee Related CN109539830B (zh) | 2018-07-20 | 2018-07-20 | 一种管径变化的管壳式换热器 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010268171.8A Active CN111397405B (zh) | 2018-07-20 | 2018-07-20 | 一种汽液两相流换热管 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111397405B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112984802A (zh) * | 2019-04-04 | 2021-06-18 | 山东大学 | 一种智能距离分布的管壳式换热器 |
CN117700068A (zh) * | 2024-02-05 | 2024-03-15 | 湖南清源华建环境科技有限公司 | 一种高温热泵过热蒸汽干化系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1621773A (zh) * | 2003-11-28 | 2005-06-01 | 清华同方人工环境有限公司 | 一种翅片式换热器 |
CN201917256U (zh) * | 2010-12-15 | 2011-08-03 | 茂名重力石化机械制造有限公司 | 列管式换热器的换热管及其列管式换热器 |
CN103063059A (zh) * | 2011-10-21 | 2013-04-24 | 珠海格力电器股份有限公司 | 翅片管式换热器 |
CN103528423A (zh) * | 2012-07-06 | 2014-01-22 | 珠海格力电器股份有限公司 | 壳管式换热器用均流板、壳管式换热器及其均流方法 |
CN106322856A (zh) * | 2016-10-31 | 2017-01-11 | 合肥美的电冰箱有限公司 | 用于冰箱的冷凝器和具有其的冰箱 |
CN205909733U (zh) * | 2016-08-04 | 2017-01-25 | 万达集团股份有限公司 | 一种新型凝汽器 |
CN107044788A (zh) * | 2017-05-09 | 2017-08-15 | 山东大学 | 一种可冷凝的环形分隔装置换热器 |
CN107131783A (zh) * | 2017-04-21 | 2017-09-05 | 青岛金玉大商贸有限公司 | 一种多孔稳流装置环路热管 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56160587A (en) * | 1980-05-13 | 1981-12-10 | M S Netsugaku Kogyo Kk | Heat medium heat exchanging method for annular two-phase flow gas and liquid and apparatus therefor |
US20090301699A1 (en) * | 2008-06-05 | 2009-12-10 | Lummus Novolent Gmbh/Lummus Technology Inc. | Vertical combined feed/effluent heat exchanger with variable baffle angle |
CN105890408B (zh) * | 2016-05-27 | 2017-12-05 | 合肥海川石化设备有限公司 | 多路多程管壳式气液换热器 |
CN207180425U (zh) * | 2016-12-15 | 2018-04-03 | 佛山科学技术学院 | 折流栅支撑凹面管管束换热器 |
CN107869925B (zh) * | 2017-03-21 | 2019-01-18 | 山东大学 | 一种含有不凝气体的多管式稳流装置的管壳式换热器 |
CN106969652B (zh) * | 2017-05-09 | 2019-03-19 | 山东大学 | 一种长度变化的可冷凝的环形分隔装置换热器 |
CN207268582U (zh) * | 2017-08-30 | 2018-04-24 | 兰州兰石集团有限公司 | 一种可拆卸绕管式换热器 |
-
2018
- 2018-07-20 CN CN202010268171.8A patent/CN111397405B/zh active Active
- 2018-07-20 CN CN201810809152.4A patent/CN109539830B/zh not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1621773A (zh) * | 2003-11-28 | 2005-06-01 | 清华同方人工环境有限公司 | 一种翅片式换热器 |
CN201917256U (zh) * | 2010-12-15 | 2011-08-03 | 茂名重力石化机械制造有限公司 | 列管式换热器的换热管及其列管式换热器 |
CN103063059A (zh) * | 2011-10-21 | 2013-04-24 | 珠海格力电器股份有限公司 | 翅片管式换热器 |
CN103528423A (zh) * | 2012-07-06 | 2014-01-22 | 珠海格力电器股份有限公司 | 壳管式换热器用均流板、壳管式换热器及其均流方法 |
CN205909733U (zh) * | 2016-08-04 | 2017-01-25 | 万达集团股份有限公司 | 一种新型凝汽器 |
CN106322856A (zh) * | 2016-10-31 | 2017-01-11 | 合肥美的电冰箱有限公司 | 用于冰箱的冷凝器和具有其的冰箱 |
CN107131783A (zh) * | 2017-04-21 | 2017-09-05 | 青岛金玉大商贸有限公司 | 一种多孔稳流装置环路热管 |
CN107044788A (zh) * | 2017-05-09 | 2017-08-15 | 山东大学 | 一种可冷凝的环形分隔装置换热器 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112984802A (zh) * | 2019-04-04 | 2021-06-18 | 山东大学 | 一种智能距离分布的管壳式换热器 |
CN112984802B (zh) * | 2019-04-04 | 2023-02-07 | 山东大学 | 一种智能距离分布的管壳式换热器 |
CN117700068A (zh) * | 2024-02-05 | 2024-03-15 | 湖南清源华建环境科技有限公司 | 一种高温热泵过热蒸汽干化系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109539830B (zh) | 2020-06-26 |
CN111397405A (zh) | 2020-07-10 |
CN111397405B (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106969652B (zh) | 一种长度变化的可冷凝的环形分隔装置换热器 | |
CN107869924B (zh) | 一种汽相可冷凝的多管式稳流装置的管壳式换热器 | |
CN107101514B (zh) | 一种间距变化的不可凝汽体环形分隔装置换热器 | |
CN108981428B (zh) | 一种长度规划设计的气液两相流换热器的方法 | |
CN107044788B (zh) | 一种可冷凝的环形分隔装置换热器 | |
CN107036478B (zh) | 一种含有不凝气体的环形分隔装置换热器 | |
CN109539830A (zh) | 一种管径变化的管壳式换热器 | |
CN110081745A (zh) | 一种蒸发部管径大于冷凝部的环路热管 | |
CN109539826A (zh) | 一种翅片高度变化的管壳式换热器 | |
CN106979709B (zh) | 一种间距变化的可冷凝的环形分隔装置换热器 | |
CN107894178B (zh) | 一种稳流装置间距变大的可凝结汽体的换热器 | |
CN107869926B (zh) | 一种稳流装置尺寸逐渐变小的可凝结汽体换热器 | |
CN108332581B (zh) | 一种管壳式换热器 | |
CN109855453A (zh) | 一种汽液两相流管壳式换热器 | |
CN109855451A (zh) | 一种均匀分配流量的蒸汽换热器 | |
CN108332579B (zh) | 一种管壳式换热器 | |
CN108332580B (zh) | 一种汽液两相流管壳式换热器 | |
CN109916207A (zh) | 一种上升管直径变化的环路热管 | |
CN109855450A (zh) | 一种不凝气体管壳式换热器管间距的设计方法 | |
CN109855452A (zh) | 一种含有不凝气体的管壳式换热器 | |
CN109855449A (zh) | 一种产生蒸汽的管壳式换热器 | |
CN108332578B (zh) | 一种气液两相流管壳式换热器 | |
CN107966053B (zh) | 一种可冷凝的多孔式稳流装置换热器 | |
CN109539635A (zh) | 分隔装置不均匀设置的管壳式换热器 | |
CN109974490A (zh) | 一种环路热管的上升管设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200626 Termination date: 20210720 |