CN107894178B - 一种稳流装置间距变大的可凝结汽体的换热器 - Google Patents

一种稳流装置间距变大的可凝结汽体的换热器 Download PDF

Info

Publication number
CN107894178B
CN107894178B CN201710168158.3A CN201710168158A CN107894178B CN 107894178 B CN107894178 B CN 107894178B CN 201710168158 A CN201710168158 A CN 201710168158A CN 107894178 B CN107894178 B CN 107894178B
Authority
CN
China
Prior art keywords
constant
heat exchanger
tube
shell
current stabilizer
Prior art date
Application number
CN201710168158.3A
Other languages
English (en)
Other versions
CN107894178A (zh
Inventor
郭春生
陈子昂
刘勇
王天跃
单晓晖
马小禹
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to CN201710168158.3A priority Critical patent/CN107894178B/zh
Publication of CN107894178A publication Critical patent/CN107894178A/zh
Application granted granted Critical
Publication of CN107894178B publication Critical patent/CN107894178B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels

Abstract

本发明提供了一种汽液两相流多管式管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板汽液两相流中的汽相在换热过程中能够冷凝成液相,所述换热管内设置用于减震降噪的稳流装置,同一根换热管内设置多个稳流装置,沿着换热管内流体的流动方向,所述相邻稳流装置的距离逐渐增加。本发明提供一种通过稳流装置的长度变化,在管道内存在汽液两相流动时,最大程度减弱管道的振动,降低噪声水平,同时降低流动阻力,提高换热均匀性。

Description

一种稳流装置间距变大的可凝结汽体的换热器

技术领域

本发明涉及一种管壳式换热器,尤其是涉及一种含有可冷凝汽体的两相流动换热器。

背景技术

汽液两相流换热广泛地存在于各种换热装置中,汽液两相流在换热过程中因为汽相的存在,会导致换热效率低,恶化换热,流体流动过程不稳定,而且会导致撞击现象的发生。当两相工质的汽液相没有均匀混合且不连续流动时,大尺寸的液团会高速地占据气团空间,导致两相流动不稳定,从而剧烈地冲击设备与管道,产生强烈震动和噪声,严重地威胁设备运行安全。

因此针对上述问题,本发明提供了一种新式结构的稳流装置的换热器,从而解决上述的问题。

发明内容

本发明的目的是提供一种新式结构的稳流装置的换热器,在管道内存在汽液两相流动时,减弱汽液两相流换热管内的振动,降低噪声水平,同时强化传热。

为了实现上述目的,本发明的技术方案如下:

一种汽液两相流多管式管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板汽液两相流中的汽相在换热过程中能够冷凝成液相,所述换热管内设置用于减震降噪的稳流装置,同一根换热管内设置多个稳流装置,沿着换热管内流体的流动方向,所述相邻稳流装置的距离逐渐增加。

作为优选,沿着换热管内流体的流动方向,所述相邻稳流装置的距离逐渐的增加的幅度越来越大。

作为优选,所述稳流装置包括芯体和外壳,所述芯体设置在外壳中,所述外壳与换热管内壁连接固定,所述芯体是由若干数量的管子邻接在一起组合而成。

作为优选,通过在外壳和最外层管子之间的空间内设置嵌入物,使得管子之间紧密连接,同时使得管子固定在外壳中。

作为优选,相邻管子之间设置小孔实现贯通。

作为优选,换热管为多段结构焊接而成,多段结构的连接处设置稳流装置。

作为优选,相邻稳流装置之间的距离为S,稳流装置的长度为C,换热管的外径为W,稳流装置的管子直径为D,满足如下要求:

S/C=a-b*LN(W/D);其中LN是对数函数,a,b是参数,其中8<a<9,3<b<4;

其中稳流装置的间距是以相邻稳流装置相对的两端之间的距离;

34<W<58mm;

7<D<12mm;

14<C<23mm;

50<S<70mm。

作为优选,a=8.5,b=3.7。

与现有技术相比较,本发明的具有如下的优点:

1)本发明根据换热管内的气相液相的流动规律,使得所述稳流装置的距离逐渐增加,最大程度减弱管道的振动,降低噪声水平,同时降低流动阻力,提高换热均匀性。

2)本发明在换热管内设置多管式稳流装置,通过多管式稳流装置将两相流体分离成液相和汽相,将液相分割成小液团,将汽相分割成小气泡,抑制液相的回流,促使汽相顺畅流动,起到稳定流量的作用,具有减振降噪的效果。

3)本发明通过设置多管式稳流装置,相当于在换热管内增加了内翅片,强化了换热,提高了换热效果。

4)本发明因为将汽液两相在换热管的整个横截面位置上进行了分割,避免了现有技术中仅仅换热管内壁面进行分割,从而在整个换热管截面上实现扩大汽液界面以及汽相边界层与冷却壁面的接触面积并增强扰动,降低了噪音和震动,强化了传热。

5)本发明通过在换热管长度方向上设置相邻稳流装置之间的距离、稳流装置的长度、管子的外径等参数大小的规律变化,从而进一步达到稳流效果,降低噪音,提高换热效果。

6)本发明通过对多管式稳流装置各个参数的变化导致的换热规律进行了广泛的研究,在满足流动阻力情况下,实现减振降噪的效果的最佳关系式。

附图说明

图1是本发明的两相流管壳式换热器的结构示意图;

图2是本发明的两相流管壳式换热器的换热管结构示意图;

图3本发明稳流装置结构示意图;

图4是本发明稳流装置在换热管内布置示意图;

图5是是本发明稳流装置在换热管内布置的另一个示意图。

图6是是本发明稳流装置在换热管内布置横截面示意图。

附图标记如下:前封头1,封头法兰2,前管板3,壳体4,稳流装置5,换热管6、后管板7,封头法兰8,后封头9,支座10,支座11,管程入口管12,管程出口管13,壳程入口管14,壳程出口管15,管子51,稳流装置外壳51

具体实施方式

下面结合附图对本发明的具体实施方式做详细的说明。

本文中,如果没有特殊说明,涉及公式的,“/”表示除法,“×”、“*”表示乘法。

需要说明的是,如果没有特殊说明,本发明提到的两相流是汽液两相流,此处的汽相在换热过程中能够冷凝成液相。

如图1所示的一种管壳式换热器,所述管壳式换热器包括有壳体4、换热管6、管程入口管12、管程出口管13、壳程入口接管14和壳程出口接管15;多个平行设置的换热管6组成的换热管束连接在前管板3、后管板7上;所述前管板3的前端与前封头1连接,后管板7的后端连接后封头9;所述的管程入口管12设置在后封头9上;所述的管程出口管13设置在前封头1上;所述的壳程入口接管14和壳程出口接管15均设置在壳体4上;两相流的流体从管程入口管12进入,经过换热管进行换热,从管程出口管13出去。

所述换热管6内设置用于减震降噪的稳流装置5,同一根换热管6内设置多个稳流装置5,如图4所示,沿着换热管6内流体的流动方向(即从换热管的入口到换热管的出口),相邻稳流装置5的距离逐渐的增加。

主要原因是因为流体中含有汽体,因此沿着流体的流动方向,汽体因为换热管内流体放热而冷凝,从而冷凝成液相,这导致沿着换热管内流体的流动方向,汽体会越来越少,汽液两相流中的汽相越来越少,换热管内的换热能力会随着汽相转化为液相而不断的增加,震动及其噪音也会随着汽相转化为液相而不断的降低。因此,可以将稳流装置的间距变大,这样一方面可以减少流动阻力,另一方面也能保持低噪音和低震动,而且还能因为稳流装置作为内翅片的分布越来越少,保持整个换热管上的换热均匀,而且还可以节省材料。

作为优选,沿着换热管内流体的流动方向,所述稳流装置5的距离逐渐的增加的幅度越来越大。

通过实验发现,通过如此设置,能够进一步降低8%左右的震动和噪音,同时降低流动6%左右的阻力。

所述管束式稳流装置5的结构见图3。如图3所示,所述稳流装置5包括芯体和外壳52,所述芯体设置在外壳52中,所述外壳与换热管内壁连接固定,所述芯体是由若干数量的平行的管子51邻接在一起组合而成。

本发明在换热管内设置多管式稳流装置,通过多管式稳流装置将两相流体中的液相和汽相进行分离,将液相分割成小液团,将汽相分割成小气泡,抑制液相的回流,促使汽相顺畅流动,起到稳定流量的作用,具有减振降噪的效果。

本发明通过设置多管式稳流装置,相当于在换热管内增加了内翅片,强化了换热,提高了换热效果。

本发明因为将汽液两相在所有换热管的所有横截面位置进行了分割,从而在整个换热管截面上实现汽液界面以及汽相边界层的分割与冷却壁面的接触面积并增强扰动,大大的降低了噪音和震动,强化了传热。

作为优选,通过在外壳52和最外层管子51之间的空间内设置嵌入物,保证管子之间紧密连接,同时保证管子51固定在外壳52中。

作为优选,相邻的管子51通过焊接连接在一起。通过焊接方式连接在一起,保证了管子之间的连接牢固。

作为优选,相邻管子51之间设置小孔实现贯通。通过设置小孔,可以保证相邻的管子之间互相连通,能够均匀管子之间的压力,使得高压流道的流体流向低压,同时也可以在流体流动的同时进一步分隔液相和汽相,有利于进一步稳定两相流动。

作为优选,沿着换热管内流体的流动方向,换热管内设置多个稳流装置,从换热管的入口到换热管的出口,相邻稳流装置之间的距离越来越长。距离换热管入口的距离为X,相邻稳流装置之间的距离为S,S=F1(X),S’是S的一次导数,满足如下要求:

S’>0;

主要原因是因为流体中含有汽体,因此沿着流体的流动方向,汽体因为换热管内流体放热而冷凝,从而冷凝成液相,这导致沿着换热管内流体的流动方向,汽体会越来越少,汽液两相流中的汽相越来越少,换热管内的换热能力会随着汽相转化为液相而不断的增加,震动及其噪音也会随着汽相转化为液相而不断的降低。因此,可以将稳流装置的间距变大,这样一方面可以减少流动阻力,另一方面也能保持低噪音和低震动,而且还能因为稳流装置作为内翅片的分布越来越少,保持整个换热管上的换热均匀,而且还可以节省材料。

通过实验发现,通过上述的设置,既可以最大程度上减少震动和噪音,同时可以保证降低流体的流动阻力。

进一步优选,从换热管的入口到换热管的出口,相邻稳流装置之间的距离越来越长的幅度不断增加。即S”是S的二次导数,满足如下要求:

S”>0;

通过实验发现,通过如此设置,能够进一步降低8%左右的震动和噪音,同时降低流动6%左右的阻力。

作为优选,每个稳流装置的长度保持不变。

作为优选,除了相邻的稳流装置之间的距离外,稳流装置其它的参数(例如长度、管径等)保持不变。

作为优选,沿着换热管6内流体的流动方向,换热管6内设置多个稳流装置5,从换热管6的入口到换热管6的出口,稳流装置5的长度越来越短。即稳流装置的长度为C,C=F2(X),C’是C的一次导数,满足如下要求:

C’<0;

进一步优选,从换热管的入口到换热管的出口,稳流装置的长度越来越短的幅度不断增加。即C”是C的二次导数,满足如下要求:

C”>0;

具体理由如相邻稳流装置之间的距离的变化相同。

作为优选,相邻稳流装置之间的距离保持不变。

作为优选,除了稳流装置的长度外,稳流装置其它的参数(例如相邻的间距、管径等)保持不变。

作为优选,沿着换热管6内流体的流动方向,换热管6内设置多个稳流装置,从换热管6的入口到换热管6的出口,不同稳流装置5内的管子51的直径越来越大。即稳流装置的管子直径为D,D=F3(X),D’是D的一次导数,满足如下要求:

D’>0;

作为优选,从换热管的入口到换热管的出口,稳流装置的管子直径越来越大的幅度不断增加。即

D”是D的二次导数,满足如下要求:

D”>0。

具体理由如相邻稳流装置之间的距离的变化相同。

作为优选,稳流装置的长度和相邻稳流装置的距离保持不变。

作为优选,除了稳流装置的管子直径外,稳流装置其它的参数(例如长度、相邻稳流装置之间的距离等)保持不变。

进一步优选,如图4所示,所述换热管6内部设置凹槽,所述稳流装置5的外壳52设置在凹槽内。

作为优选,外壳52的内壁与换热管6的内壁对齐。通过对齐,使得换热管内壁面表面上达到在同一个平面上,保证表面的光滑。

作为优选,外壳52的厚度小于凹槽的深度,这样可以使得换热管内壁面形成凹槽,从而进行强化传热。

进一步有选,如图5所示,换热管6为多段结构焊接而成,多段结构的连接处设置稳流装置5。这种方式使得设置稳流装置的换热管的制造简单,成本降低。

通过分析以及实验得知,稳流装置之间的间距不能过大,过大的话导致减震降噪的效果不好,同时也不能过小,过小的话导致阻力过大,同理,管子的外径也不能过大或者过小,也会导致减震降噪的效果不好或者阻力过大,因此本发明通过大量的实验,在优先满足正常的流动阻力(总承压为2.5Mpa以下,或者单根换热管的沿程阻力小于等于5Pa/m)的情况下,使得减震降噪达到最优化,整理了各个参数最佳的关系。

相邻稳流装置之间的距离为S,稳流装置的长度为C,换热管的外径为W,稳流装置的管子外径为D,满足如下要求:

S/C=a-b*LN(W/D);其中LN是对数函数,a,b是参数,其中8<a<9,3<b<4;进一步优选8.3<a<8.6,3.2<b<3.8;

其中稳流装置的间距S是以相邻稳流装置相对的两端之间的距离;即前面稳流装置的尾端与后面稳流装置的前端之间的距离。具体参见图4的标识。

34mm<W<58mm;

7mm<D<12mm;

14mm<C<23mm;

50mm<S<70mm。

作为优选,换热管长度L为3000-9000mm之间。进一步优选,4500-6000mm之间。

进一步优选,40mm<W<50mm;

9mm<D<10mm;

18mm<C<20mm;

55mm<S<60mm。

通过上述公式的最佳的几何尺度的优选,能够实现满足正常的流动阻力条件下,减震降噪达到最佳效果。

进一步优选,随着W/D的增加,a不断增加,b不断的减小。

进一步优选,随着汽相体积比例的增加,a不断减小,b不断的增加。

作为优选,换热管入口的汽相的体积比例不超过50%。进一步优选换热管入口的汽相的体积比例不超过30%。进一步优选换热管入口的汽相的体积比例在5%-25%之间。

进一步优选,a=8.5,b=3.7。

对于其他的参数,例如管壁、壳体壁厚等参数按照正常的标准设置即可。

作为优选,壳程内流体是水。

作为优选,管程内流体流速8-30m/s。

作为优选,换热管的长度L与换热器的壳体直径比为6-10。

作为优选,管子51在稳流装置5的整个长度方向延伸。即管子51的长度等于稳流装置5的长度。

虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (5)

1.一种汽液两相流多管式管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,汽液两相流中的汽相在换热过程中能够冷凝成液相,其特征在于,所述换热管内设置用于减震降噪的稳流装置,同一根换热管内设置多个稳流装置,沿着换热管内流体的流动方向,相邻稳流装置的距离逐渐增加;所述稳流装置包括芯体和外壳,所述芯体设置在外壳中,所述外壳与换热管内壁连接固定,所述芯体是由若干数量的管子邻接在一起组合而成。
2.如权利要求1所述的管壳式换热器,其特征在于,沿着换热管内流体的流动方向,所述相邻稳流装置的距离逐渐的增加的幅度越来越大。
3.如权利要求1所述的换热器,其特征在于,通过在外壳和最外层管子之间的空间内设置嵌入物,使得管子之间紧密连接,同时使得管子固定在外壳中。
4.如权利要求1所述的换热器,其特征在于,相邻管子之间设置小孔实现贯通。
5.如权利要求4所述的换热器,其特征在于,换热管为多段结构焊接而成,多段结构的连接处设置稳流装置。
CN201710168158.3A 2017-03-21 2017-03-21 一种稳流装置间距变大的可凝结汽体的换热器 CN107894178B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710168158.3A CN107894178B (zh) 2017-03-21 2017-03-21 一种稳流装置间距变大的可凝结汽体的换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710168158.3A CN107894178B (zh) 2017-03-21 2017-03-21 一种稳流装置间距变大的可凝结汽体的换热器

Publications (2)

Publication Number Publication Date
CN107894178A CN107894178A (zh) 2018-04-10
CN107894178B true CN107894178B (zh) 2019-02-12

Family

ID=61802580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710168158.3A CN107894178B (zh) 2017-03-21 2017-03-21 一种稳流装置间距变大的可凝结汽体的换热器

Country Status (1)

Country Link
CN (1) CN107894178B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966053B (zh) * 2017-04-21 2019-03-08 青岛金玉大商贸有限公司 一种可冷凝的多孔式稳流装置换热器
CN107966052B (zh) * 2017-04-21 2019-03-08 青岛金玉大商贸有限公司 一种长度变化的可冷凝的多孔式稳流装置换热器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627607A2 (de) * 1993-06-02 1994-12-07 Wieland-Werke Ag Dampfbeheizter Wärmeübertrager
CN201449176U (zh) * 2009-06-29 2010-05-05 山东宏易城实业有限公司 高效双纹湍流换热器
CN204944237U (zh) * 2015-07-21 2016-01-06 天津霍普环保科技有限公司 一种废气余热回收装置
CN105431702A (zh) * 2013-03-14 2016-03-23 科氏传热有限合伙公司 用于管壳式热交换器的管束和使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627607A2 (de) * 1993-06-02 1994-12-07 Wieland-Werke Ag Dampfbeheizter Wärmeübertrager
CN201449176U (zh) * 2009-06-29 2010-05-05 山东宏易城实业有限公司 高效双纹湍流换热器
CN105431702A (zh) * 2013-03-14 2016-03-23 科氏传热有限合伙公司 用于管壳式热交换器的管束和使用方法
CN204944237U (zh) * 2015-07-21 2016-01-06 天津霍普环保科技有限公司 一种废气余热回收装置

Also Published As

Publication number Publication date
CN107894178A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
US9746256B2 (en) Shell and tube heat exchanger with a vapor port
US9097470B2 (en) Internal liquid separating hood-type condensation heat exchange tube
CN103063056B (zh) 一种管壳式换热器
JP2004286246A (ja) ヒ−トポンプ用パラレルフロ−熱交換器
CN106017136B (zh) 一种立式管壳式换热器
JP2017508921A5 (zh)
CN106949450B (zh) 一种三锅筒蒸汽锅炉
US2391244A (en) Heat exchanger
CN106679466B (zh) 一种多孔介质两相流管壳式换热器及其稳定装置
JP5418275B2 (ja) 熱交換器および熱交換器一体型人工肺
CN107131783A (zh) 一种多孔稳流装置环路热管
CN107044789B (zh) 一种多孔稳流装置热管
CN102278907B (zh) 外凸式非对称型波节管换热器
WO2014091558A9 (ja) 二重管式熱交換器および冷凍サイクル装置
US20100242535A1 (en) Refrigerant distributor for heat exchanger and heat exchanger
CN204007233U (zh) 一种连续螺旋折流板u型管式换热器
CN107062960A (zh) 一种环形分隔装置高度方向变化的环路热管
CN107167010A (zh) 一种环路热管
CN202719915U (zh) 一种新型分流结构的平行流换热器
CN107167009A (zh) 水力直径变化的环形分隔装置环路热管
JP2014037899A (ja) 熱交換器
BRPI1010414A2 (pt) trocador de calor possuindo desviador de fluxo e método de operação do mesmo
US2134058A (en) Heat exchanger
CN103063058A (zh) 一种新型卧式冷却器
CN104868193B (zh) 一种口琴通道平行流式换热器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant