CN109510275B - 一种燃料电池供电系统的缓冲启动装置及方法 - Google Patents

一种燃料电池供电系统的缓冲启动装置及方法 Download PDF

Info

Publication number
CN109510275B
CN109510275B CN201811514607.6A CN201811514607A CN109510275B CN 109510275 B CN109510275 B CN 109510275B CN 201811514607 A CN201811514607 A CN 201811514607A CN 109510275 B CN109510275 B CN 109510275B
Authority
CN
China
Prior art keywords
fuel cell
voltage
contactor
buffer
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811514607.6A
Other languages
English (en)
Other versions
CN109510275A (zh
Inventor
陈维荣
李锦程
李奇
王天宏
孟翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201811514607.6A priority Critical patent/CN109510275B/zh
Publication of CN109510275A publication Critical patent/CN109510275A/zh
Application granted granted Critical
Publication of CN109510275B publication Critical patent/CN109510275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开一种燃料电池供电系统的缓冲启动装置及方法,根据缓冲启动参数和检测信号,通过缓冲控制算法计算出各种状态下的控制信号,以控制母线接触器和电阻接触器,从而通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动。本发明实现燃料电池启动时的缓冲功能,使得燃料电池输出电压经过变换后更加稳定,同时对燃料电池进行保护,达到延长燃料电池使用寿命,减小对直流变换器输入电压范围的要求,减少直流变换器成本以及选型难度。

Description

一种燃料电池供电系统的缓冲启动装置及方法
技术领域
本发明属于燃料电池技术领域,特别是涉及一种燃料电池供电系统的缓冲启动装置及方法。
背景技术
新能源作为未来的发展方向及研究热点,已经得到国家机构及各领域学者的广泛关注,其中氢能以清洁环保,能量密度高,使用便捷安全等优势,被普遍认为是可能会取代化石燃料成为主要能量载体的能量源之一。燃料电池是利用氢能产生氢能产生电能的装置,其中质子交换膜燃料电池具有常温运行,功率等级在几百瓦到几十千瓦等特点,在交通运输及微电网得到了较多的应用。
燃料电池作为一项新技术,虽然具有各种优点,但同时也有许多尚不成熟之处。如目前燃料电池电堆成本较高,往往每千瓦的成本在上万元,同时使用寿命较为有限,实验环境下测试可达几千小时的运行时间,但在许多工业应用情况下,面对恶劣的工况,寿命往往小于两千小时。国内外的学者通过研究指出,燃料电池频繁启停机及输出功率骤变是影响燃料电池寿命的主要因素。
在实际运用中,由于燃料电池不像普通的电源可以做到恒压输出,因此为保持后级用电设备得到稳定高质量的电源,需要在燃料电池输出后加入一级直流变换器来稳定输出电压。燃料电池的输出电压随着输出功率的上升而下降,这被称为极化现象,这一现象的出现,使得后级直流变换器必须选用宽输入范围的变换器,同时如果负载需求电压在极化曲线段内,还需要使用升降压型直流变换器,增加了成本及直流变换器的选型难度。
发明内容
为了解决上述问题,本发明提出了一种燃料电池供电系统的缓冲启动装置及方法,实现燃料电池启动时的缓冲功能,使得燃料电池输出电压经过变换后更加稳定,同时对燃料电池进行保护,达到延长燃料电池使用寿命,减小对直流变换器输入电压范围的要求,减少直流变换器成本以及选型难度。
为达到上述目的,本发明采用的技术方案是:一种燃料电池供电系统的缓冲启动装置,包括缓冲切换电路、信号检测电路和缓冲控制器;
所述缓冲切换电路包括负载通路和电阻通路,所述负载通路包括输入电压电流变送器、母线接触器、防倒流二极管和输出电压电流变送器,所述输入电压电流变送器的输出端依次经过母线接触器和防倒流二极管连接至输出电压电流变送器的输入端;所述电阻通路包括依次连接的电阻接触器和耗散电阻,所述输入电压电流变送器的输出端还连接至电阻接触器;所述输入电压电流变送器的输入端连接至燃料电池组件,所述输出电压电流变送器的输出端连接至负载组件;
所述信号检测电路分别连接至缓冲切换电路和缓冲控制器,检测缓冲切换电路的输入输出信号,并将检测信号传送至缓冲控制器;
所述缓冲控制器,接收信号检测电路检测信号,经过处理分析后分别发送控制信号至母线接触器和电阻接触器;通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动。耗散电阻在燃料电池输出功率小,输出电压高时接入电路起到对后级直流变换器缓冲的作用,防反二极管针对燃料电池不能逆向输入电流的特性,防止电流逆流,保护燃料电池。
进一步的是,所述信号检测电路,包括信号调理电路和信号检测元件;所述信号检测元件检测输入电压电流变送器的输入电压和输入电流,以及输出电压电流变送器的输出电压和输出电流,并将检测信号送入调理电路,调理电路经过滤波放大后送入缓冲控制器进行运算控制。
进一步的是,所述缓冲控制器包括模数转换器、处理器、GPIO接口和CAN通信电路,所述模数转换器分别连接信号调理电路和处理器,所述处理器分别连接至GPIO接口和CAN通信模块,所述GPIO接口分别连接至母线接触器和电阻接触器,所述CAN通信电路与外部设备通讯连接;
由模数转换器进行信号的采集量化得到采集数据,将采集数据通过处理器的缓冲控制算法计算后,通过GPIO接口控制负载接触器和电阻接触器的工作状态,同事CAN通信电路将系统的工作状态及故障信息传输给外部设备。
进一步的是,所述母线接触器和电阻接触器采用高压大功率直流接触器作为切换执行装置,在接触器驱动电路中使用电容器稳定控制信号,减小在使用过程中出现误动和据动的可能性。
进一步的是,在所述处理器的缓冲控制算法中采用迟滞判断,避免负载需求功率在缓冲启动状态切换点附近波动时,系统状态频繁改变带来的不稳定。
进一步的是,在所述处理器的缓冲控制算法中,通过修改设置的燃料电池功率范围和电压范围,适用于缓冲启动不同功率等级的燃料电池,通过修改设置的负载电压范围调整缓冲启动状态切换电压。
另一方面,本发明基于一种燃料电池供电系统的缓冲启动装置,还提供了一种燃料电池供电系统的缓冲启动方法,包括步骤:
S100,设定缓冲启动参数;
S200,通过信号检测电路采集检测信号;
S300,根据缓冲启动参数和检测信号,通过缓冲控制算法计算出各种状态下的控制信号,以控制母线接触器和电阻接触器,从而通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动。
进一步的是,所述缓冲启动参数包括状态切换电压、状态切换迟滞电压、低功率待机时间、燃料电池最高电压、燃料电池最低电压和燃料电池最高电流。
进一步的是,所述缓冲控制算法包括:
S301,进入缓冲启动状态:开启电阻接触器,关闭负载接触器,使燃料电池向耗散电阻输出功率,输出电压不断下降,输出功率不断上升;
当检测到输出电压小于状态切换电压时,开启负载接触器,使得燃料电池同时向耗散电阻及负载进行供电,输出电压进一步下降;
当检测到输出电压小于状态切换电压和状态切换迟滞电压之差时,关闭电阻接触器,由燃料电池向负载供电,进入正常运行模式,转入步骤S302;
当检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
S302,进入正常运行状态:当检测到输出电压高于状态切换电压时,开启负载接触器,燃料电池同时向负载和电阻供电,维持燃料电池最小输出功率,防止燃料电池功率骤降及停机;当检测到输出电压高于状态切换电压加状态切换迟滞电压时,说明负载需求功率小,燃料电池主要向电阻供电,系统进入待机状态,转入步骤S303;当检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
S303,进入待机运行状态:燃料电池以低功率向负载输出能量,避免停机并等待产生的负载功率上升;
当检测到输出电压小于状态切换电压与状态切换迟滞电压之差时,负载功率上升,关闭电阻接触器,燃料电池向负载供电,进入正常运行状态,转入步骤S302;
若检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
进入等待低功率待机时间后,说明负载长时间没有需求功率,此时关闭负载接触器,同时向燃料电池控制器发出关机信号,关闭燃料电池,结束本次运行;
S304,进入故障状态:当系统检测到电参数信号异常时,进入故障保护状态,根据不同类型的故障进行不同的处理方式同时向外部设备发送故障信息。
进一步的是,所述故障保护状态的处理方式,包括:
当输入电流高于燃料电池最高电流,负载出现短路故障或者挂载了功率过高的负载;开启电阻接触器,关闭负载接触器,燃料电池单独向电阻供电;延时一段时间后关闭燃料电池,同时由缓冲启动控制器向外部设备发出过流故障信号;
当输入电压高于燃料电池最高电压,出现电路故障包括信号采集电路异常或防反二极管损坏导致出现电流逆流;立即关闭燃料电池并由缓冲启动控制器向外部设备发出过流故障信号;
当输入电压小于燃料电池最低电压,若出现电流过流则按过流故障处理;若未出现电流过流,燃料电池性能衰减导致电压功率下降,由缓冲启动控制器向外部设备发出过流故障信号。
采用本技术方案的有益效果:
本发明中燃料电池启动时通过耗散电阻进行缓冲,度过极化曲线的电化学极化区,并在需求功率短暂下降时通过投入耗散电阻来维持燃料电池输出功率,避免输出功率剧烈下降降低燃料电池寿命或者在不必要的时刻使燃料电池停机。
本发明根据燃料电池输出电压作为判断依据,结合极化特性曲线,在开路电压较高的电化学极化区暂时不将燃料电池投入到整个供电系统中,而是通过耗散电阻作为负载,使燃料电池的工作状态过渡到电压相对平稳的欧姆极化区,再将燃料电池投入到系统中,同时切除耗散电阻避免功率浪费;同样,当母线需求功率降低时,燃料电池输出功率降低,输出电压上升,投入耗散电阻以维持燃料电池功率需求,为可能来临的负载做准备,或在接收到停机信号或者等待一段时间后进行停机,避免因功率波动而频繁启停机。
本发明通过控制器切除与投入耗散电阻的执行器件选用直流接触器,保障了足够的通过电流及设备的安全性;燃料电池输出电压通过电压变送器转化为低功率信号,再通过调理电路转变为单片机能识别的信号,单片机对于电压信号进行采样后,根据程序设定进行判断燃料电池所处的工作状态,并通过两个直流接触器来改变燃料电池与直流变换器及耗散电阻之间的连接状态;为防止需求功率在判断条件上下波动导致系统状态频繁变更,设计了迟滞控制算法来减少功率波动和干扰信号带来的影响。
本发明通过以上结构及控制方法,实现了燃料电池运行过程中的功率稳定以及缩小直流变换器的输入电压范围,从而提高燃料电池寿命,减少直流变换器成本以及选型难度。
附图说明
图1为本发明的一种燃料电池供电系统的缓冲启动装置的结构示意图;
图2为本发明的一种燃料电池供电系统的缓冲启动方法的流程示意图;
图3为本发明实施例中缓冲控制算法的流程示意图;
图4为本发明实施例中故障保护状态的处理方式的流程示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步阐述。
在本实施例中,参见图1所示,本发明提出了一种燃料电池供电系统的缓冲启动装置,包括缓冲切换电路、信号检测电路和缓冲控制器;
所述缓冲切换电路包括负载通路和电阻通路,所述负载通路包括输入电压电流变送器、母线接触器、防倒流二极管和输出电压电流变送器,所述输入电压电流变送器的输出端依次经过母线接触器和防倒流二极管连接至输出电压电流变送器的输入端;所述电阻通路包括依次连接的电阻接触器和耗散电阻,所述输入电压电流变送器的输出端还连接至电阻接触器;所述输入电压电流变送器的输入端连接至燃料电池组件,所述输出电压电流变送器的输出端连接至负载组件;
所述信号检测电路分别连接至缓冲切换电路和缓冲控制器,检测缓冲切换电路的输入输出信号,并将检测信号传送至缓冲控制器;
所述缓冲控制器,接收信号检测电路检测信号,经过处理分析后分别发送控制信号至母线接触器和电阻接触器;通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动。耗散电阻在燃料电池输出功率小,输出电压高时接入电路起到对后级直流变换器缓冲的作用,防反二极管针对燃料电池不能逆向输入电流的特性,防止电流逆流,保护燃料电池。
作为上述实施例的优化方案,所述信号检测电路,包括信号调理电路和信号检测元件;所述信号检测元件检测输入电压电流变送器的输入电压和输入电流,以及输出电压电流变送器的输出电压和输出电流,并将检测信号送入调理电路,调理电路经过滤波放大后送入缓冲控制器进行运算控制。
作为上述实施例的优化方案,所述缓冲控制器包括模数转换器、处理器、GPIO接口和CAN通信电路,所述模数转换器分别连接信号调理电路和处理器,所述处理器分别连接至GPIO接口和CAN通信模块,所述GPIO接口分别连接至母线接触器和电阻接触器,所述CAN通信电路与外部设备通讯连接;
由模数转换器进行信号的采集量化得到采集数据,将采集数据通过处理器的缓冲控制算法计算后,通过GPIO接口控制负载接触器和电阻接触器的工作状态,同事CAN通信电路将系统的工作状态及故障信息传输给外部设备。
其中,所述母线接触器和电阻接触器采用高压大功率直流接触器作为切换执行装置,在接触器驱动电路中使用电容器稳定控制信号,减小在使用过程中出现误动和据动的可能性。
作为上述实施例的优化方案,在所述处理器的缓冲控制算法中采用迟滞判断,避免负载需求功率在缓冲启动状态切换点附近波动时,系统状态频繁改变带来的不稳定。
在所述处理器的缓冲控制算法中,通过修改设置的燃料电池功率范围和电压范围,适用于缓冲启动不同功率等级的燃料电池,通过修改设置的负载电压范围调整缓冲启动状态切换电压。
为配合本发明方法的实现,基于相同的发明构思,如图2所示,本发明还提供了一种燃料电池供电系统的缓冲启动方法,包括步骤:
S100,设定缓冲启动参数;
S200,通过信号检测电路采集检测信号;
S300,根据缓冲启动参数和检测信号,通过缓冲控制算法计算出各种状态下的控制信号,以控制母线接触器和电阻接触器,从而通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动。
作为上述实施例的优化方案,所述缓冲启动参数包括状态切换电压、状态切换迟滞电压、低功率待机时间、燃料电池最高电压、燃料电池最低电压和燃料电池最高电流。
作为上述实施例的优化方案,如图3所示,所述缓冲控制算法包括:
S301,进入缓冲启动状态:开启电阻接触器,关闭负载接触器,使燃料电池向耗散电阻输出功率,输出电压不断下降,输出功率不断上升;
当检测到输出电压小于状态切换电压时,开启负载接触器,使得燃料电池同时向耗散电阻及负载进行供电,输出电压进一步下降;
当检测到输出电压小于状态切换电压和状态切换迟滞电压之差时,关闭电阻接触器,由燃料电池向负载供电,进入正常运行模式,转入步骤S302;
当检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
S302,进入正常运行状态:当检测到输出电压高于状态切换电压时,开启负载接触器,燃料电池同时向负载和电阻供电,维持燃料电池最小输出功率,防止燃料电池功率骤降及停机;当检测到输出电压高于状态切换电压加状态切换迟滞电压时,说明负载需求功率小,燃料电池主要向电阻供电,系统进入待机状态,转入步骤S303;当检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
S303,进入待机运行状态:燃料电池以低功率向负载输出能量,避免停机并等待产生的负载功率上升;
当检测到输出电压小于状态切换电压与状态切换迟滞电压之差时,负载功率上升,关闭电阻接触器,燃料电池向负载供电,进入正常运行状态,转入步骤S302;
若检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
进入等待低功率待机时间后,说明负载长时间没有需求功率,此时关闭负载接触器,同时向燃料电池控制器发出关机信号,关闭燃料电池,结束本次运行;
S304,进入故障状态:当系统检测到电参数信号异常时,进入故障保护状态,根据不同类型的故障进行不同的处理方式同时向外部设备发送故障信息。
作为上述实施例的优化方案,如图4所示,所述故障保护状态的处理方式,包括:
当输入电流高于燃料电池最高电流,负载出现短路故障或者挂载了功率过高的负载;开启电阻接触器,关闭负载接触器,燃料电池单独向电阻供电;延时一段时间后关闭燃料电池,同时由缓冲启动控制器向外部设备发出过流故障信号;
当输入电压高于燃料电池最高电压,出现电路故障包括信号采集电路异常或防反二极管损坏导致出现电流逆流;立即关闭燃料电池并由缓冲启动控制器向外部设备发出过流故障信号;
当输入电压小于燃料电池最低电压,若出现电流过流则按过流故障处理;若未出现电流过流,燃料电池性能衰减导致电压功率下降,由缓冲启动控制器向外部设备发出过流故障信号。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种燃料电池供电系统的缓冲启动装置,其特征在于,包括缓冲切换电路、信号检测电路和缓冲控制器;
所述缓冲切换电路包括负载通路和电阻通路,所述负载通路包括输入电压电流变送器、母线接触器、防倒流二极管和输出电压电流变送器,所述输入电压电流变送器的输出端依次经过母线接触器和防倒流二极管连接至输出电压电流变送器的输入端;所述电阻通路包括依次连接的电阻接触器和耗散电阻,所述输入电压电流变送器的输出端还连接至电阻接触器;所述输入电压电流变送器的输入端连接至燃料电池组件,所述输出电压电流变送器的输出端连接至负载组件;
所述信号检测电路分别连接至缓冲切换电路和缓冲控制器,检测缓冲切换电路的输入输出信号,并将检测信号传送至缓冲控制器;
所述缓冲控制器,接收信号检测电路检测信号,经过处理分析后分别发送控制信号至母线接触器和电阻接触器;通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动;
所述信号检测电路,包括信号调理电路和信号检测元件;所述信号检测元件检测输入电压电流变送器的输入电压和输入电流,以及输出电压电流变送器的输出电压和输出电流,并将检测信号送入调理电路,调理电路经过滤波放大后送入缓冲控制器进行运算控制。
2.根据权利要求1所述的一种燃料电池供电系统的缓冲启动装置,其特征在于,所述缓冲控制器包括模数转换器、处理器、GPIO接口和CAN通信电路,所述模数转换器分别连接信号调理电路和处理器,所述处理器分别连接至GPIO接口和CAN通信模块,所述GPIO接口分别连接至母线接触器和电阻接触器,所述CAN通信电路与外部设备通讯连接;
由模数转换器进行信号的采集量化得到采集数据,将采集数据通过处理器的缓冲控制算法计算后,通过GPIO接口控制负载接触器和电阻接触器的工作状态,同时CAN通信电路将系统的工作状态及故障信息传输给外部设备。
3.根据权利要求2所述的一种燃料电池供电系统的缓冲启动装置,其特征在于,所述母线接触器和电阻接触器采用高压大功率直流接触器作为切换执行装置,在接触器驱动电路中使用电容器稳定控制信号。
4.根据权利要求3所述的一种燃料电池供电系统的缓冲启动装置,其特征在于,在所述处理器的缓冲控制算法中采用迟滞判断。
5.根据权利要求4所述的一种燃料电池供电系统的缓冲启动装置,其特征在于,在所述处理器的缓冲控制算法中,通过修改设置的燃料电池功率范围和电压范围,适用于缓冲启动不同功率等级的燃料电池,通过修改设置的负载电压范围调整缓冲启动状态切换电压。
6.一种燃料电池供电系统的缓冲启动方法,其特征在于,基于权利要求1-5任一所述的一种燃料电池供电系统的缓冲启动装置,包括步骤:
S100,设定缓冲启动参数;
S200,通过信号检测电路采集检测信号;
S300,根据缓冲启动参数和检测信号,通过缓冲控制算法计算出各种状态下的控制信号,以控制母线接触器和电阻接触器,从而通过配置负载通路的母线接触器和电阻通路的电阻接触器实现燃料电池电能向不同对象进行输出实现缓冲启动。
7.根据权利要求6所述的一种燃料电池供电系统的缓冲启动方法,其特征在于,所述缓冲启动参数包括状态切换电压、状态切换迟滞电压、低功率待机时间、燃料电池最高电压、燃料电池最低电压和燃料电池最高电流。
8.根据权利要求7所述的一种燃料电池供电系统的缓冲启动方法,其特征在于,所述缓冲控制算法包括:
S301,进入缓冲启动状态:开启电阻接触器,关闭负载接触器,使燃料电池向耗散电阻输出功率,输出电压不断下降,输出功率不断上升;
当检测到输出电压小于状态切换电压时,开启负载接触器,使得燃料电池同时向耗散电阻及负载进行供电,输出电压进一步下降;
当检测到输出电压小于状态切换电压和状态切换迟滞电压之差时,关闭电阻接触器,由燃料电池向负载供电,进入正常运行模式,转入步骤S302;
当检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
S302,进入正常运行状态:当检测到输出电压高于状态切换电压时,开启负载接触器,燃料电池同时向负载和电阻供电,维持燃料电池最小输出功率,防止燃料电池功率骤降及停机;当检测到输出电压高于状态切换电压加状态切换迟滞电压时,说明负载需求功率小,燃料电池向电阻供电,系统进入待机状态,转入步骤S303;当检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
S303,进入待机运行状态:燃料电池以低功率向负载输出能量,避免停机并等待产生的负载功率上升;
当检测到输出电压小于状态切换电压与状态切换迟滞电压之差时,负载功率上升,关闭电阻接触器,燃料电池向负载供电,进入正常运行状态,转入步骤S302;
若检测到输入电压高于燃料电池最高电压、输入电压小于燃料电池最低电压、或输入电流高于燃料电池最高电流的情况,说明系统内出现故障,转入步骤S304;
进入等待低功率待机时间后,说明负载长时间没有需求功率,此时关闭负载接触器,同时向燃料电池控制器发出关机信号,关闭燃料电池,结束本次运行;
S304,进入故障状态:当系统检测到电参数信号异常时,进入故障保护状态,根据不同类型的故障进行不同的处理方式同时向外部设备发送故障信息。
9.根据权利要求8所述的一种燃料电池供电系统的缓冲启动方法,其特征在于,所述故障保护状态的处理方式,包括:
当输入电流高于燃料电池最高电流,负载出现短路故障或者挂载了功率过高的负载;开启电阻接触器,关闭负载接触器,燃料电池单独向电阻供电;延时一段时间后关闭燃料电池,由缓冲启动控制器向外部设备发出过流故障信号;
当输入电压高于燃料电池最高电压,出现电路故障包括信号采集电路异常或防反二极管损坏导致出现电流逆流;立即关闭燃料电池,由缓冲启动控制器向外部设备发出过流故障信号;
当输入电压小于燃料电池最低电压:若出现电流过流则,按过流故障处理;若未出现电流过流,燃料电池性能衰减导致电压功率下降,由缓冲启动控制器向外部设备发出过流故障信号。
CN201811514607.6A 2018-12-12 2018-12-12 一种燃料电池供电系统的缓冲启动装置及方法 Active CN109510275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811514607.6A CN109510275B (zh) 2018-12-12 2018-12-12 一种燃料电池供电系统的缓冲启动装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811514607.6A CN109510275B (zh) 2018-12-12 2018-12-12 一种燃料电池供电系统的缓冲启动装置及方法

Publications (2)

Publication Number Publication Date
CN109510275A CN109510275A (zh) 2019-03-22
CN109510275B true CN109510275B (zh) 2023-11-24

Family

ID=65753214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811514607.6A Active CN109510275B (zh) 2018-12-12 2018-12-12 一种燃料电池供电系统的缓冲启动装置及方法

Country Status (1)

Country Link
CN (1) CN109510275B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112297953A (zh) * 2020-09-28 2021-02-02 浙江中车电车有限公司 一种车用燃料电池的控制方法与系统
CN113452247B (zh) * 2021-06-28 2022-09-27 珠海格力电器股份有限公司 氢能燃料电池dcdc变换器的控制方法、存储介质及处理器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865855A1 (fr) * 2004-02-02 2005-08-05 Renault Sas Dispositif de demarrage d'une pile a combustible
CN102246382A (zh) * 2008-12-09 2011-11-16 瓦锡兰芬兰有限公司 用于向电网馈送电流的燃料电池装置和方法
CN102361345A (zh) * 2011-10-21 2012-02-22 浙江大学 一种燃料电池不间断电源无缝切换控制方法
CN102377327A (zh) * 2010-08-11 2012-03-14 美国快捷半导体有限公司 高压启动电路
CN102611349A (zh) * 2012-03-15 2012-07-25 南京航空航天大学 基于双级矩阵变换器的交流起动/发电系统及其控制方法
CN104160542A (zh) * 2012-03-12 2014-11-19 日产自动车株式会社 燃料电池系统
CN106427651A (zh) * 2016-11-22 2017-02-22 中车株洲电力机车有限公司 一种动力控制系统及具有该系统的储能车辆
CN108248407A (zh) * 2016-12-28 2018-07-06 广东合即得能源科技有限公司 一种具有缓冲电源的电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865855A1 (fr) * 2004-02-02 2005-08-05 Renault Sas Dispositif de demarrage d'une pile a combustible
CN102246382A (zh) * 2008-12-09 2011-11-16 瓦锡兰芬兰有限公司 用于向电网馈送电流的燃料电池装置和方法
CN102377327A (zh) * 2010-08-11 2012-03-14 美国快捷半导体有限公司 高压启动电路
CN102361345A (zh) * 2011-10-21 2012-02-22 浙江大学 一种燃料电池不间断电源无缝切换控制方法
CN104160542A (zh) * 2012-03-12 2014-11-19 日产自动车株式会社 燃料电池系统
CN102611349A (zh) * 2012-03-15 2012-07-25 南京航空航天大学 基于双级矩阵变换器的交流起动/发电系统及其控制方法
CN106427651A (zh) * 2016-11-22 2017-02-22 中车株洲电力机车有限公司 一种动力控制系统及具有该系统的储能车辆
CN108248407A (zh) * 2016-12-28 2018-07-06 广东合即得能源科技有限公司 一种具有缓冲电源的电动汽车

Also Published As

Publication number Publication date
CN109510275A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
US7839018B2 (en) Method and system of hybrid power management
CN101521288B (zh) 基于燃料电池系统的电压性能的电流限制的增益调度控制
CN109510275B (zh) 一种燃料电池供电系统的缓冲启动装置及方法
KR101989388B1 (ko) 연료전지 제어 시스템
US7880429B2 (en) Power management method using feedback current bias for simultaneously controlling low cells and overall stack voltage
US7862947B2 (en) Fault management in a fuel cell-based system
CN113445062A (zh) 电解水制氢装置、电解水制氢装置的控制方法、电子设备
KR101149234B1 (ko) 연료전지시스템의 운전방법 및 그 장치
US20060046107A1 (en) System for fuel cell power plant load following and power regulation
CN110970972B (zh) 一种dcdc变换器的控制方法、装置、存储介质及电源
JP2008027842A (ja) 燃料電池装置、その制御装置、制御方法及びプログラム
KR100641127B1 (ko) 계통 연계형 연료전지 시스템의 전원공급 제어장치 및 방법
CN107962965B (zh) 一种车载燃料电池能量分配管理控制装置
KR101480991B1 (ko) 하이브리드 연료 전지를 제어하기 위한 시스템 및 그 방법
WO2014024731A1 (ja) 連系系統切替装置及び電力制御システム
CN110289758B (zh) 一种低功耗供电电路及电子设备
CN111313689A (zh) 一种具有高轻载效率的dc/dc变换器系统架构
CN110597377A (zh) 一种电源模块控制方法、装置及用电设备
CN112684385B (zh) 一种防反接电路及其应用装置
CN209088587U (zh) 一种燃料电池供电系统的缓冲启动装置
KR101943151B1 (ko) 전력 감소 천이 동안 연료 전지 전압의 양성 변화율에 대한 대응
CN110690818A (zh) 用于氢燃料电池系统的集成化模拟受控dc/dc变换器
CN117895034B (zh) 一种燃料电池电堆稳压控制方法、设备及系统
CN113452247B (zh) 氢能燃料电池dcdc变换器的控制方法、存储介质及处理器
CN220306956U (zh) 一种自调节负载及燃料电池发电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant