CN109509499B - Decoding method, memory storage device and memory control circuit unit - Google Patents
Decoding method, memory storage device and memory control circuit unit Download PDFInfo
- Publication number
- CN109509499B CN109509499B CN201710825756.3A CN201710825756A CN109509499B CN 109509499 B CN109509499 B CN 109509499B CN 201710825756 A CN201710825756 A CN 201710825756A CN 109509499 B CN109509499 B CN 109509499B
- Authority
- CN
- China
- Prior art keywords
- data
- buffer
- memory
- decoding
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005055 memory storage Effects 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000000872 buffer Substances 0.000 claims abstract description 201
- 238000012937 correction Methods 0.000 claims description 44
- 238000010586 diagram Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 12
- 239000007787 solid Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/08—Address circuits; Decoders; Word-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/10—Decoders
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种解码方法、存储器存储装置及存储器控制电路单元。The invention relates to a decoding method, a memory storage device and a memory control circuit unit.
背景技术Background technique
数码相机、移动电话与MP3播放器在这几年来的成长十分迅速,使得消费者对存储媒体的需求也急速增加。由于可复写式非易失性存储器模块(rewritable non-volatilememory module)(例如,快闪存储器)具有数据非易失性、省电、体积小,以及无机械结构等特性,所以非常适合内建于上述所举例的各种可携式多媒体装置中。Digital cameras, mobile phones, and MP3 players have grown rapidly in recent years, making consumers' demand for storage media also increase rapidly. Since the rewritable non-volatile memory module (for example, flash memory) has the characteristics of data non-volatility, power saving, small size, and no mechanical structure, it is very suitable for built-in Among the various portable multimedia devices listed above.
一般来说,为了确保数据的正确性,数据会先被编码然后再被存入可复写式非易失性存储器模块中。在读取数据时,数据会被解码以尝试更正其中的错误。若数据中的错误皆被更正,更正的数据才会被传回给主机系统。然而,随着编/解码技术逐渐进步,编/解码过程中需要暂存的数据的数据量可能会大于所设置的缓冲存储器的容量。因此,在编/解码过程中往往需要重复从可复写式非易失性存储器模块中读取特定数据,从而增加可复写式非易失性存储器模块的损耗,并且也会降低编/解码速度。特别是,在叠代解码操作中,上述情况更加显著。Generally speaking, in order to ensure the correctness of the data, the data will be encoded first and then stored in the rewritable non-volatile memory module. As data is read, it is decoded in an attempt to correct errors in it. If the errors in the data are corrected, the corrected data will be sent back to the host system. However, as the encoding/decoding technology gradually improves, the amount of data that needs to be temporarily stored during the encoding/decoding process may be greater than the capacity of the set buffer memory. Therefore, it is often necessary to repeatedly read specific data from the rewritable non-volatile memory module during the encoding/decoding process, thereby increasing the loss of the rewritable non-volatile memory module and reducing the encoding/decoding speed. Especially, in the iterative decoding operation, the above-mentioned situation is more remarkable.
发明内容Contents of the invention
本发明的一范例实施例提供一种解码方法、存储器存储装置及存储器控制电路单元,可在缓冲存储器的容量有限的状况下提高解码操作的效率。An exemplary embodiment of the present invention provides a decoding method, a memory storage device and a memory control circuit unit, which can improve the efficiency of the decoding operation under the condition that the capacity of the buffer memory is limited.
本发明的一范例实施例提供一种解码方法,其用于可复写式非易失性存储器模块,所述可复写式非易失性存储器模块包括多个实体单元,所述解码方法包括:将第一数据暂存至缓冲存储器,其中所述缓冲存储器包括第一缓冲区与第二缓冲区;将所述第二缓冲区的解码数据复制到所述第一缓冲区;在所述第一缓冲区中,基于所复制的所述解码数据对所述第一数据执行第一类解码操作,其中所复制的所述解码数据不同于对应于所述第一数据的原始解码数据;以及若所述第一类解码操作成功,输出已解码数据。An exemplary embodiment of the present invention provides a decoding method for a rewritable non-volatile memory module, the rewritable non-volatile memory module includes a plurality of physical units, the decoding method includes: The first data is temporarily stored in a buffer memory, wherein the buffer memory includes a first buffer and a second buffer; the decoded data of the second buffer is copied to the first buffer; in the first buffer region, performing a first type of decoding operation on said first data based on said copied decoded data, wherein said copied decoded data is different from the original decoded data corresponding to said first data; and if said The first type of decode operation succeeds, outputting the decoded data.
在本发明的一范例实施例中,所述的解码方法还包括:编码原始数据以产生对应于所述第一数据的所述原始解码数据;将所述原始数据存储至所述第一实体单元;以及将对应于所述第一数据的所述原始解码数据存储于所述实体单元中的至少一第二实体单元。In an exemplary embodiment of the present invention, the decoding method further includes: encoding original data to generate the original decoded data corresponding to the first data; storing the original data in the first physical unit ; and storing the original decoded data corresponding to the first data in at least one second physical unit among the physical units.
在本发明的一范例实施例中,所述的解码方法还包括:从所述第一实体单元读取原始数据并从所述实体单元中的至少一第二实体单元读取对应于所述第一数据的所述原始解码数据;将所述原始数据与对应于所述第一数据的所述原始解码数据暂存至所述缓冲存储器;以及于所述第一缓冲区中,基于对应于所述第一数据的所述原始解码数据对所述原始数据执行所述第一类解码操作。In an exemplary embodiment of the present invention, the decoding method further includes: reading the original data from the first physical unit and reading the data corresponding to the second physical unit from at least one second physical unit among the physical units the original decoded data of a data; temporarily store the original decoded data and the original decoded data corresponding to the first data in the buffer memory; and in the first buffer, based on the corresponding performing the first type of decoding operation on the original decoded data of the first data.
在本发明的一范例实施例中,所述的解码方法还包括:在基于对应于所述第一数据的所述原始解码数据对所述原始数据执行所述第一类解码操作之前,将对应于所述第一数据的所述原始解码数据复制到所述第二缓冲区。In an exemplary embodiment of the present invention, the decoding method further includes: before performing the first type of decoding operation on the original data based on the original decoded data corresponding to the first data, the corresponding The original decoded data based on the first data is copied to the second buffer.
在本发明的一范例实施例中,所述的解码方法还包括:基于所述第二缓冲区中的所述解码数据对已更正数据执行第二类解码操作,以更新所述第二缓冲区中的所述解码数据,其中所述已更正数据是经由所述第一类解码操作更正。In an exemplary embodiment of the present invention, the decoding method further includes: performing a second type of decoding operation on the corrected data based on the decoded data in the second buffer to update the second buffer The decoded data in , wherein the corrected data is corrected via the first type of decoding operation.
在本发明的一范例实施例中,所述第一类解码操作包括正常解码模式与擦除模式,且所述解码方法还包括:根据所述第一数据中具有无法更正错误的数据单元的总数,决定将所述第一类解码操作操作于所述正常解码模式或所述擦除模式。In an exemplary embodiment of the present invention, the first type of decoding operation includes a normal decoding mode and an erasure mode, and the decoding method further includes: according to the total number of data units with uncorrectable errors in the first data , decide to operate the first type of decoding operation in the normal decoding mode or the erasing mode.
在本发明的一范例实施例中,所述第一类解码操作属于多讯框解码,且所述解码方法还包括:根据所述第一类解码操作的解码结果执行单讯框解码,以验证所述第一类解码操作对至少一错误比特的更正。In an exemplary embodiment of the present invention, the first type of decoding operation belongs to multi-frame decoding, and the decoding method further includes: performing single-frame decoding according to the decoding result of the first type of decoding operation to verify The first type of decoding operation corrects at least one erroneous bit.
本发明的另一范例实施例提供一种存储器存储装置,其包括连接接口单元、可复写式非易失性存储器模块及存储器控制电路单元。所述连接接口单元用以连接至主机系统。所述可复写式非易失性存储器模块包括多个实体单元。所述存储器控制电路单元,连接至所述连接接口单元与所述可复写式非易失性存储器模块,其中所述存储器控制电路单元用以将第一数据暂存至缓冲存储器,其中所述缓冲存储器包括第一缓冲区与第二缓冲区,其中所述存储器控制电路单元还用以将所述第二缓冲区的解码数据复制到所述第一缓冲区,其中所述存储器控制电路单元还用以于所述第一缓冲区中基于所复制的所述解码数据对所述第一数据执行第一类解码操作,其中所复制的所述解码数据不同于对应于所述第一数据的原始解码数据,其中若所述第一类解码操作成功,所述存储器控制电路单元还用以输出已解码数据。Another exemplary embodiment of the present invention provides a memory storage device, which includes a connection interface unit, a rewritable non-volatile memory module, and a memory control circuit unit. The connection interface unit is used for connecting to a host system. The rewritable non-volatile memory module includes multiple physical units. The memory control circuit unit is connected to the connection interface unit and the rewritable non-volatile memory module, wherein the memory control circuit unit is used to temporarily store the first data in a buffer memory, wherein the buffer The memory includes a first buffer and a second buffer, wherein the memory control circuit unit is also used to copy the decoded data of the second buffer to the first buffer, wherein the memory control circuit unit is also used to to perform a first type of decoding operation on the first data in the first buffer based on the copied decoded data, wherein the copied decoded data is different from the original decoded corresponding to the first data data, wherein if the first type of decoding operation is successful, the memory control circuit unit is further configured to output decoded data.
在本发明的一范例实施例中,所述存储器控制电路单元还用以编码原始数据以产生对应于所述第一数据的所述原始解码数据,其中所述存储器控制电路单元还用以将所述原始数据存储至所述第一实体单元,其中所述存储器控制电路单元还用以将对应于所述第一数据的所述原始解码数据存储于所述实体单元中的至少一第二实体单元。In an exemplary embodiment of the present invention, the memory control circuit unit is further used to encode original data to generate the original decoded data corresponding to the first data, wherein the memory control circuit unit is also used to encode the original data storing the original data in the first physical unit, wherein the memory control circuit unit is also used to store the original decoded data corresponding to the first data in at least one second physical unit in the physical unit .
在本发明的一范例实施例中,所述存储器控制电路单元还用以指示从所述第一实体单元读取所述原始数据并从所述实体单元中的至少一第二实体单元读取对应于所述第一数据的所述原始解码数据,其中所述存储器控制电路单元还用以将所述原始数据与对应于所述第一数据的所述原始解码数据暂存至所述缓冲存储器,其中所述存储器控制电路单元还用以于所述第一缓冲区中基于对应于所述第一数据的所述原始解码数据对所述原始数据执行所述第一类解码操作。In an exemplary embodiment of the present invention, the memory control circuit unit is also used to instruct to read the original data from the first physical unit and read the corresponding For the original decoded data of the first data, wherein the memory control circuit unit is further configured to temporarily store the original data and the original decoded data corresponding to the first data in the buffer memory, Wherein the memory control circuit unit is further configured to perform the first type of decoding operation on the original data in the first buffer based on the original decoded data corresponding to the first data.
在本发明的一范例实施例中,在基于对应于所述第一数据的所述原始解码数据对所述原始数据执行所述第一类解码操作之前,所述存储器控制电路单元还用以将对应于所述第一数据的所述原始解码数据复制到所述第二缓冲区。In an exemplary embodiment of the present invention, before performing the first-type decoding operation on the original data based on the original decoded data corresponding to the first data, the memory control circuit unit is further configured to The original decoded data corresponding to the first data is copied to the second buffer.
在本发明的一范例实施例中,所述存储器控制电路单元还用以基于所述第二缓冲区中的所述解码数据对已更正数据执行第二类解码操作,以更新所述第二缓冲区中的所述解码数据,其中所述已更正数据是经由所述第一类解码操作更正。In an exemplary embodiment of the present invention, the memory control circuit unit is further configured to perform a second type of decoding operation on the corrected data based on the decoded data in the second buffer, so as to update the second buffer The decoded data in a region, wherein the corrected data is corrected via the first type of decoding operation.
在本发明的一范例实施例中,所述第一类解码操作包括正常解码模式与擦除模式,而所述存储器控制电路单元还用以根据所述第一数据中具有无法更正错误的数据单元的总数,决定将所述第一类解码操作操作于所述正常解码模式或所述擦除模式。In an exemplary embodiment of the present invention, the first type of decoding operation includes a normal decoding mode and an erasing mode, and the memory control circuit unit is further configured to detect data units with uncorrectable errors in the first data The total number is determined to operate the first type of decoding operation in the normal decoding mode or the erasing mode.
在本发明的一范例实施例中,所述第一类解码操作属于多讯框解码,而所述存储器控制电路单元还用以根据所述第一类解码操作的解码结果执行单讯框解码,以验证所述第一类解码操作对至少一错误比特的更正。In an exemplary embodiment of the present invention, the first type of decoding operation belongs to multi-frame decoding, and the memory control circuit unit is further configured to perform single-frame decoding according to a decoding result of the first type of decoding operation, to verify the correction of at least one erroneous bit by the decoding operation of the first type.
本发明的另一范例实施例提供一种存储器控制电路单元,其用于控制可复写式非易失性存储器模块,其中所述可复写式非易失性存储器模块包括多个实体单元,其中所述存储器控制电路单元包括主机接口、存储器接口、缓冲存储器、错误检查与校正电路及存储器管理电路。所述主机接口用以连接至主机系统。所述存储器接口用以连接至所述可复写式非易失性存储器模块。所述存储器管理电路连接至所述主机接口、所述存储器接口、所述缓冲存储器及所述错误检查与校正电路,其中所述存储器管理电路用以将第一数据暂存至所述缓冲存储器,其中所述缓冲存储器包括第一缓冲区与第二缓冲区,其中所述存储器管理电路还用以将所述第二缓冲区的解码数据复制到所述第一缓冲区,其中所述错误检查与校正电路用以于所述第一缓冲区中基于所复制的所述解码数据对所述第一数据执行第一类解码操作,其中所复制的所述解码数据不同于对应于所述第一数据的原始解码数据,其中若所述第一类解码操作成功,所述存储器管理电路还用以输出已解码数据。Another exemplary embodiment of the present invention provides a memory control circuit unit for controlling a rewritable nonvolatile memory module, wherein the rewritable nonvolatile memory module includes a plurality of physical units, wherein the The memory control circuit unit includes a host interface, a memory interface, a buffer memory, an error checking and correction circuit and a memory management circuit. The host interface is used for connecting to a host system. The memory interface is used for connecting to the rewritable non-volatile memory module. The memory management circuit is connected to the host interface, the memory interface, the buffer memory and the error checking and correction circuit, wherein the memory management circuit is configured to temporarily store the first data in the buffer memory, Wherein the buffer memory includes a first buffer and a second buffer, wherein the memory management circuit is also used to copy the decoded data of the second buffer to the first buffer, wherein the error check and a correction circuit for performing a first type of decoding operation on the first data in the first buffer based on the copied decoded data, wherein the copied decoded data is different from The original decoded data, wherein if the first type of decoding operation is successful, the memory management circuit is also used to output the decoded data.
在本发明的一范例实施例中,所述错误检查与校正电路还用以编码原始数据以产生对应于所述第一数据的所述原始解码数据,其中所述存储器管理电路还用以将所述原始数据存储至所述第一实体单元,其中所述存储器管理电路还用以将对应于所述第一数据的所述原始解码数据存储于所述实体单元中的至少一第二实体单元。In an exemplary embodiment of the present invention, the error checking and correction circuit is further configured to encode original data to generate the original decoded data corresponding to the first data, wherein the memory management circuit is further configured to encode the original data The original data is stored in the first physical unit, wherein the memory management circuit is further configured to store the original decoded data corresponding to the first data in at least one second physical unit in the physical unit.
在本发明的一范例实施例中,所述存储器管理电路还用以指示从所述第一实体单元读取所述原始数据并从所述实体单元中的至少一第二实体单元读取对应于所述第一数据的所述原始解码数据,其中所述存储器管理电路还用以将所述原始数据与对应于所述第一数据的所述原始解码数据暂存至所述缓冲存储器,其中所述错误检查与校正电路还用以于所述第一缓冲区中基于对应于所述第一数据的所述原始解码数据对所述原始数据执行所述第一类解码操作。In an exemplary embodiment of the present invention, the memory management circuit is further used to instruct to read the original data from the first physical unit and to read the corresponding The original decoded data of the first data, wherein the memory management circuit is further configured to temporarily store the original data and the original decoded data corresponding to the first data in the buffer memory, wherein the The error checking and correction circuit is further configured to perform the first type of decoding operation on the original data in the first buffer based on the original decoded data corresponding to the first data.
在本发明的一范例实施例中,在基于对应于所述第一数据的所述原始解码数据对所述原始数据执行所述第一类解码操作之前,所述存储器管理电路还用以将对应于所述第一数据的所述原始解码数据复制到所述第二缓冲区。In an exemplary embodiment of the present invention, before performing the first type of decoding operation on the original data based on the original decoded data corresponding to the first data, the memory management circuit is further configured to The original decoded data based on the first data is copied to the second buffer.
在本发明的一范例实施例中,所述存储器控制电路单元还用以基于所述第二缓冲区中的所述解码数据对已更正数据执行第二类解码操作,以更新所述第二缓冲区中的所述解码数据,其中所述已更正数据是经由所述第一类解码操作更正。In an exemplary embodiment of the present invention, the memory control circuit unit is further configured to perform a second type of decoding operation on the corrected data based on the decoded data in the second buffer, so as to update the second buffer The decoded data in a region, wherein the corrected data is corrected via the first type of decoding operation.
在本发明的一范例实施例中,所述已更正数据不包括具有无法更正错误的数据单元。In an exemplary embodiment of the invention, the corrected data does not include data units with uncorrectable errors.
在本发明的一范例实施例中,复制到所述第一缓冲区的所述解码数据是基于对已更正数据以及对应于所述第一数据的所述原始解码数据所执行的第二类解码操作而产生。In an exemplary embodiment of the invention, said decoded data copied to said first buffer is based on a second type of decoding performed on corrected data and said original decoded data corresponding to said first data generated by the operation.
在本发明的一范例实施例中,所述第一类解码操作包括正常解码模式与擦除模式,而所述存储器管理电路还用以根据所述第一数据中具有无法更正错误的数据单元的总数,决定将所述第一类解码操作操作于所述正常解码模式或所述擦除模式。In an exemplary embodiment of the present invention, the first type of decoding operation includes a normal decoding mode and an erasing mode, and the memory management circuit is further configured to perform a data unit with an uncorrectable error in the first data according to The total number determines to operate the first type of decoding operation in the normal decoding mode or the erasing mode.
在本发明的一范例实施例中,所述第一数据是在所述第一实体单元中受独立硬盘冗余阵列错误更正码保护。In an exemplary embodiment of the present invention, the first data is protected by a Redundant Array of Independent Disks error correction code in the first physical unit.
在本发明的一范例实施例中,所述第一类解码操作属于多讯框解码,而所述存储器控制电路单元还用以根据所述第一类解码操作的解码结果执行单讯框解码,以验证所述第一类解码操作对至少一错误比特的更正。In an exemplary embodiment of the present invention, the first type of decoding operation belongs to multi-frame decoding, and the memory control circuit unit is further configured to perform single-frame decoding according to a decoding result of the first type of decoding operation, to verify the correction of at least one erroneous bit by the decoding operation of the first type.
基于上述,本发明可将解码过程中动态产生的解码数据保存在缓冲存储器中。当后续要解码第一数据时,此解码数据可即时地被使用,而不需要重复从可复写式非易失性存储器模块读取相关数据并重复计算而获得。藉此,可在缓冲存储器的容量有限的状况下提高解码操作的效率。Based on the above, the present invention can save the decoded data dynamically generated during the decoding process in the buffer memory. When the first data is to be decoded subsequently, the decoded data can be used immediately without repeatedly reading relevant data from the rewritable non-volatile memory module and obtaining it repeatedly. Thereby, the efficiency of the decoding operation can be improved under the condition that the capacity of the buffer memory is limited.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1是根据本发明的一范例实施例所示出的主机系统、存储器存储装置及输入/输出(I/O)装置的示意图。FIG. 1 is a schematic diagram of a host system, a memory storage device and an input/output (I/O) device according to an exemplary embodiment of the present invention.
图2是根据本发明的另一范例实施例所示出的主机系统、存储器存储装置及I/O装置的示意图。FIG. 2 is a schematic diagram of a host system, a memory storage device and an I/O device according to another exemplary embodiment of the present invention.
图3是根据本发明的另一范例实施例所示出的主机系统与存储器存储装置的示意图。FIG. 3 is a schematic diagram of a host system and a memory storage device according to another exemplary embodiment of the present invention.
图4是根据本发明的一范例实施例所示出的存储器存储装置的概要方块图。FIG. 4 is a schematic block diagram of a memory storage device according to an exemplary embodiment of the present invention.
图5是根据本发明的一范例实施例所示出的存储器控制电路单元的概要方块图。FIG. 5 is a schematic block diagram of a memory control circuit unit according to an exemplary embodiment of the present invention.
图6是根据本发明的一范例实施例所示出的管理可复写式非易失性存储器模块的示意图。FIG. 6 is a schematic diagram of managing a rewritable non-volatile memory module according to an exemplary embodiment of the present invention.
图7是根据本发明的一范例实施例所示出的多讯框编码的示意图。FIG. 7 is a schematic diagram of multi-frame coding according to an exemplary embodiment of the present invention.
图8至图11是根据本发明的一范例实施例所示出的解码操作的示意图。8 to 11 are schematic diagrams showing decoding operations according to an exemplary embodiment of the present invention.
图12与图13是根据本发明的一范例实施例所示出的解码方法的流程图。FIG. 12 and FIG. 13 are flowcharts of a decoding method according to an exemplary embodiment of the present invention.
附图标号说明Explanation of reference numbers
10、30:存储器存储装置10, 30: memory storage device
11、31:主机系统11, 31: host system
110:系统总线110: System bus
111:处理器111: Processor
112:随机存取存储器112: random access memory
113:只读存储器113: ROM
114:数据传输接口114: data transmission interface
12:输入/输出(I/O)装置12: Input/Output (I/O) device
20:主机板20: Motherboard
201:U盘201: U disk
202:存储卡202: memory card
203:固态硬盘203: SSD
204:无线存储器存储装置204: Wireless memory storage device
205:全球定位系统模块205: Global Positioning System Module
206:网络接口卡206: Network interface card
207:无线传输装置207: Wireless transmission device
208:键盘208: Keyboard
209:屏幕209: screen
210:喇叭210: Horn
32:SD卡32: SD card
33:CF卡33: CF card
34:嵌入式存储装置34: Embedded storage device
341:嵌入式多媒体卡341: Embedded multimedia card
342:嵌入式多芯片封装存储装置342: Embedded multi-chip package storage device
402:连接接口单元402: Connect the interface unit
404:存储器控制电路单元404: memory control circuit unit
406:可复写式非易失性存储器模块406: Rewritable non-volatile memory module
502:存储器管理电路502: memory management circuit
504:主机接口504: host interface
506:存储器接口506: memory interface
508:错误检查与校正电路508: Error checking and correction circuit
510:缓冲存储器510: buffer memory
512:电源管理电路512: Power management circuit
601:存储区601: storage area
602:替换区602: Replacement area
610(0)~610(B)、710(0)~710(E):实体单元610(0)~610(B), 710(0)~710(E): entity unit
612(0)~612(C):逻辑单元612(0)~612(C): logic unit
701(1)~701(r):位置701(1)~701(r): Position
830、831、832、833、1001、1002:数据830, 831, 832, 833, 1001, 1002: data
720、840、841、941、942:解码数据720, 840, 841, 941, 942: decoded data
810、820:缓冲区810, 820: buffer
S1201:步骤(从可复写式非易失性存储器模块读取原始数据与原始解码数据)S1201: step (reading original data and original decoded data from the rewritable non-volatile memory module)
S1202:步骤(将原始数据与原始解码数据暂存至缓冲存储器)S1202: Step (temporarily storing the original data and the original decoded data in the buffer memory)
S1203:步骤(将原始解码数据复制到缓冲存储器的第二缓冲区)S1203: Step (copying the original decoded data to the second buffer of the buffer memory)
S1204:步骤(于缓冲存储器的第一缓冲区中,基于原始解码数据对原始数据执行第一类解码操作)S1204: Step (in the first buffer memory of the buffer memory, perform a first type of decoding operation on the original data based on the original decoded data)
S1205:步骤(判断第一类解码操作是否成功)S1205: step (judging whether the first type of decoding operation is successful)
S1206:步骤(输出解码已解码数据)S1206: Step (output decoded decoded data)
S1301:步骤(从可复写式非易失性存储器模块读取第一数据并将第一数据暂存至缓冲存储器)S1301: Step (reading the first data from the rewritable non-volatile memory module and temporarily storing the first data in the buffer memory)
S1302:步骤(将第二缓冲区中的解码数据复制到第一缓冲区中)S1302: step (copy the decoded data in the second buffer to the first buffer)
S1303:步骤(于第一缓冲区中,基于所复制的解码数据对第一数据执行第一类解码操作)S1303: Step (in the first buffer, perform a first type of decoding operation on the first data based on the copied decoded data)
S1304:步骤(判断第一类解码操作是否成功)S1304: step (judging whether the first type of decoding operation is successful)
S1305:步骤(输出已解码数据)S1305: Step (output decoded data)
S1306:步骤(判断是否有数据在第一类解码操作中被更正)S1306: step (judging whether there is data corrected in the first type of decoding operation)
S1307:步骤(基于第二缓冲区中的解码数据对所更正的数据执行第二类解码操作,以更新解码数据)S1307: Step (perform a second type of decoding operation on the corrected data based on the decoded data in the second buffer to update the decoded data)
具体实施方式Detailed ways
一般而言,存储器存储装置(也称,存储器存储系统)包括可复写式非易失性存储器模块(rewritable non-volatile memory module)与控制器(也称,控制电路)。通常存储器存储装置是与主机系统一起使用,以使主机系统可将数据写入至存储器存储装置或从存储器存储装置中读取数据。Generally speaking, a memory storage device (also called a memory storage system) includes a rewritable non-volatile memory module (rewritable non-volatile memory module) and a controller (also called a control circuit). Typically memory storage devices are used with a host system such that the host system can write data to or read data from the memory storage device.
图1是根据本发明的一范例实施例所示出的主机系统、存储器存储装置及输入/输出(I/O)装置的示意图。图2是根据本发明的另一范例实施例所示出的主机系统、存储器存储装置及I/O装置的示意图。FIG. 1 is a schematic diagram of a host system, a memory storage device and an input/output (I/O) device according to an exemplary embodiment of the present invention. FIG. 2 is a schematic diagram of a host system, a memory storage device and an I/O device according to another exemplary embodiment of the present invention.
请参照图1与图2,主机系统11一般包括处理器111、随机存取存储器(randomaccess memory,RAM)112、只读存储器(read only memory,ROM)113及数据传输接口114。处理器111、随机存取存储器112、只读存储器113及数据传输接口114皆连接至系统总线(system bus)110。Referring to FIG. 1 and FIG. 2 , the
在本范例实施例中,主机系统11是通过数据传输接口114与存储器存储装置10连接。例如,主机系统11可经由数据传输接口114将数据存储至存储器存储装置10或从存储器存储装置10中读取数据。此外,主机系统11是通过系统总线110与I/O装置12连接。例如,主机系统11可经由系统总线110将输出信号传送至I/O装置12或从I/O装置12接收输入信号。In this exemplary embodiment, the
在本范例实施例中,处理器111、随机存取存储器112、只读存储器113及数据传输接口114可设置在主机系统11的主机板20上。数据传输接口114的数目可以是一或多个。通过数据传输接口114,主机板20可以经由有线或无线方式连接至存储器存储装置10。存储器存储装置10可例如是U盘201、存储卡202、固态硬盘(Solid State Drive,SSD)203或无线存储器存储装置204。无线存储器存储装置204可例如是近距离无线通讯(Near FieldCommunication,NFC)存储器存储装置、无线传真(WiFi)存储器存储装置、蓝牙(Bluetooth)存储器存储装置或低功耗蓝牙存储器存储装置(例如,iBeacon)等以各式无线通讯技术为基础的存储器存储装置。此外,主机板20也可以通过系统总线110连接至全球定位系统(Global Positioning System,GPS)模块205、网络接口卡206、无线传输装置207、键盘208、屏幕209、喇叭210等各式I/O装置。例如,在一范例实施例中,主机板20可通过无线传输装置207存取无线存储器存储装置204。In this exemplary embodiment, the
在一范例实施例中,所提及的主机系统为可实质地与存储器存储装置配合以存储数据的任意系统。虽然在上述范例实施例中,主机系统是以电脑系统来作说明,然而,图3是根据本发明的另一范例实施例所示出的主机系统与存储器存储装置的示意图。请参照图3,在另一范例实施例中,主机系统31也可以是数码相机、摄影机、通讯装置、音频播放器、视频播放器或平板电脑等系统,而存储器存储装置30可为其所使用的安全数字(SecureDigital,SD)卡32、小型快闪(Compact Flash,CF)卡33或嵌入式存储装置34等各式非易失性存储器存储装置。嵌入式存储装置34包括嵌入式多媒体卡(embedded Multi MediaCard,eMMC)341和/或嵌入式多芯片封装(embedded Multi Chip Package,eMCP)存储装置342等各类型将存储器模块直接连接于主机系统的基板上的嵌入式存储装置。In an example embodiment, reference to a host system is substantially any system that can cooperate with a memory storage device to store data. Although in the above exemplary embodiments, the host system is described as a computer system, however, FIG. 3 is a schematic diagram of a host system and a memory storage device according to another exemplary embodiment of the present invention. Please refer to FIG. 3 , in another exemplary embodiment, the
图4是根据本发明的一范例实施例所示出的存储器存储装置的概要方块图。FIG. 4 is a schematic block diagram of a memory storage device according to an exemplary embodiment of the present invention.
请参照图4,存储器存储装置10包括连接接口单元402、存储器控制电路单元404与可复写式非易失性存储器模块406。Referring to FIG. 4 , the
连接接口单元402用以将存储器存储装置10连接至主机系统11。在本范例实施例中,连接接口单元402是相容于串行高级技术附件(Serial Advanced TechnologyAttachment,SATA)标准。然而,必须了解的是,本发明不限于此,连接接口单元402也可以是符合并行高级技术附件(Parallel Advanced Technology Attachment,PATA)标准、电气和电子工程师协会(Institute of Electrical and Electronic Engineers,IEEE)1394标准、高速周边零件连接接口(Peripheral Component Interconnect Express,PCIExpress)标准、通用序列总线(Universal Serial Bus,USB)标准、SD接口标准、超高速一代(Ultra High Speed-I,UHS-I)接口标准、超高速二代(Ultra High Speed-II,UHS-II)接口标准、存储棒(Memory Stick,MS)接口标准、MCP接口标准、MMC接口标准、eMMC接口标准、通用快闪存储器(Universal Flash Storage,UFS)接口标准、eMCP接口标准、CF接口标准、整合式驱动电子接口(Integrated Device Electronics,IDE)标准或其他适合的标准。连接接口单元402可与存储器控制电路单元404封装在一个芯片中,或者连接接口单元402是布设于一包含存储器控制电路单元404的芯片外。The
存储器控制电路单元404用以执行以硬体型式或固体型式实作的多个逻辑门或控制指令并且根据主机系统11的指令在可复写式非易失性存储器模块406中进行数据的写入、读取与抹除等运作。The memory
可复写式非易失性存储器模块406是连接至存储器控制电路单元404并且用以存储主机系统11所写入的数据。可复写式非易失性存储器模块406可以是单阶存储单元(Single Level Cell,SLC)NAND型快闪存储器模块(即,一个存储单元中可存储1个比特的快闪存储器模块)、多阶存储单元(Multi Level Cell,MLC)NAND型快闪存储器模块(即,一个存储单元中可存储2个比特的快闪存储器模块)、复数阶存储单元(Triple Level Cell,TLC)NAND型快闪存储器模块(即,一个存储单元中可存储3个比特的快闪存储器模块)、其他快闪存储器模块或其他具有相同特性的存储器模块。The rewritable
可复写式非易失性存储器模块406中的每一个存储单元是以电压(以下也称为临界电压)的改变来存储一或多个比特。具体来说,每一个存储单元的控制栅极(controlgate)与通道之间有一个电荷捕捉层。通过施予一写入电压至控制栅极,可以改变电荷补捉层的电子量,进而改变存储单元的临界电压。此改变存储单元的临界电压的操作也称为“把数据写入至存储单元”或“程序化(programming)存储单元”。随着临界电压的改变,可复写式非易失性存储器模块406中的每一个存储单元具有多个存储状态。通过施予读取电压可以判断一个存储单元是属于哪一个存储状态,藉此取得此存储单元所存储的一或多个比特。Each memory cell in the rewritable
在本范例实施例中,可复写式非易失性存储器模块406的存储单元会构成多个实体程序化单元,并且此些实体程序化单元会构成多个实体抹除单元。具体来说,同一条字元线上的存储单元会组成一或多个实体程序化单元。若每一个存储单元可存储2个以上的比特,则同一条字元线上的实体程序化单元至少可被分类为下实体程序化单元与上实体程序化单元。例如,一存储单元的最低有效比特(Least Significant Bit,LSB)是属于下实体程序化单元,并且一存储单元的最高有效比特(Most Significant Bit,MSB)是属于上实体程序化单元。一般来说,在MLC NAND型快闪存储器中,下实体程序化单元的写入速度会大于上实体程序化单元的写入速度,和/或下实体程序化单元的可靠度是高于上实体程序化单元的可靠度。In this exemplary embodiment, the storage units of the rewritable
在本范例实施例中,实体程序化单元为程序化的最小单元。即,实体程序化单元为写入数据的最小单元。例如,实体程序化单元为实体页面(page)或是实体扇(sector)。若实体程序化单元为实体页面,则此些实体程序化单元通常包括数据比特区与冗余(redundancy)比特区。数据比特区包含多个实体扇,用以存储使用者数据,而冗余比特区用以存储系统数据(例如,错误更正码等管理数据)。在本范例实施例中,数据比特区包含32个实体扇,且一个实体扇的大小为512比特组(byte,B)。然而,在其他范例实施例中,数据比特区中也可包含8个、16个或数目更多或更少的实体扇,并且每一个实体扇的大小也可以是更大或更小。另一方面,实体抹除单元为抹除的最小单位。也即,每一实体抹除单元含有最小数目之一并被抹除的存储单元。例如,实体抹除单元为实体区块(block)。In this exemplary embodiment, the entity programming unit is the smallest unit of programming. That is, the entity programming unit is the smallest unit for writing data. For example, the entity programming unit is an entity page (page) or an entity sector (sector). If the physical programming units are physical pages, these physical programming units usually include data bit areas and redundancy (redundancy) bit areas. The data bit area includes a plurality of physical sectors for storing user data, and the redundant bit area is used for storing system data (eg, management data such as error correction codes). In this exemplary embodiment, the data bit area includes 32 physical sectors, and the size of one physical sector is 512 bits (byte, B). However, in other exemplary embodiments, the data bit area may also include 8, 16 or more or less physical sectors, and the size of each physical sector may also be larger or smaller. On the other hand, the entity erasing unit is the smallest unit of erasing. That is, each physical erase unit contains a minimum number of memory cells that are erased. For example, the physical erasing unit is a physical block.
图5是根据本发明的一范例实施例所示出的存储器控制电路单元的概要方块图。FIG. 5 is a schematic block diagram of a memory control circuit unit according to an exemplary embodiment of the present invention.
请参照图5,存储器控制电路单元404包括存储器管理电路502、主机接口504、存储器接口506、错误检查与校正电路508及缓冲存储器510。Referring to FIG. 5 , the memory
存储器管理电路502用以控制存储器控制电路单元404的整体运作。具体来说,存储器管理电路502具有多个控制指令,并且在存储器存储装置10运作时,此些控制指令会被执行以进行数据的写入、读取与抹除等运作。以下说明存储器管理电路502的操作时,等同于说明存储器控制电路单元404的操作。The
在本范例实施例中,存储器管理电路502的控制指令是以固体型式来实作。例如,存储器管理电路502具有微处理器单元(未示出)与只读存储器(未示出),并且此些控制指令是被烧录至此只读存储器中。当存储器存储装置10运作时,此些控制指令会由微处理器单元来执行以进行数据的写入、读取与抹除等运作。In this exemplary embodiment, the control commands of the
在另一范例实施例中,存储器管理电路502的控制指令也可以程序码型式存储于可复写式非易失性存储器模块406的特定区域(例如,存储器模块中专用于存放系统数据的系统区)中。此外,存储器管理电路502具有微处理器单元(未示出)、只读存储器(未示出)及随机存取存储器(未示出)。特别是,此只读存储器具有开机码(boot code),并且当存储器控制电路单元404被致能时,微处理器单元会先执行此开机码来将存储于可复写式非易失性存储器模块406中的控制指令载入至存储器管理电路502的随机存取存储器中。之后,微处理器单元会运转此些控制指令以进行数据的写入、读取与抹除等运作。In another exemplary embodiment, the control instructions of the
此外,在另一范例实施例中,存储器管理电路502的控制指令也可以一硬体型式来实作。例如,存储器管理电路502包括微控制器、存储单元管理电路、存储器写入电路、存储器读取电路、存储器抹除电路与数据处理电路。存储单元管理电路、存储器写入电路、存储器读取电路、存储器抹除电路与数据处理电路是连接至微控制器。存储单元管理电路用以管理可复写式非易失性存储器模块406的存储单元或其群组。存储器写入电路用以对可复写式非易失性存储器模块406下达写入指令序列以将数据写入至可复写式非易失性存储器模块406中。存储器读取电路用以对可复写式非易失性存储器模块406下达读取指令序列以从可复写式非易失性存储器模块406中读取数据。存储器抹除电路用以对可复写式非易失性存储器模块406下达抹除指令序列以将数据从可复写式非易失性存储器模块406中抹除。数据处理电路用以处理欲写入至可复写式非易失性存储器模块406的数据以及从可复写式非易失性存储器模块406中读取的数据。写入指令序列、读取指令序列及抹除指令序列可各别包括一或多个程序码或指令码并且用以指示可复写式非易失性存储器模块406执行相对应的写入、读取及抹除等操作。在一范例实施例中,存储器管理电路502还可以下达其他类型的指令序列给可复写式非易失性存储器模块406以指示执行相对应的操作。In addition, in another exemplary embodiment, the control instructions of the
主机接口504是连接至存储器管理电路502并且用以接收与识别主机系统11所传送的指令与数据。也就是说,主机系统11所传送的指令与数据会通过主机接口504来传送至存储器管理电路502。在本范例实施例中,主机接口504是相容于SATA标准。然而,必须了解的是本发明不限于此,主机接口504也可以是相容于PATA标准、IEEE 1394标准、PCIExpress标准、USB标准、SD标准、UHS-I标准、UHS-II标准、MS标准、MMC标准、eMMC标准、UFS标准、CF标准、IDE标准或其他适合的数据传输标准。The
存储器接口506是连接至存储器管理电路502并且用以存取可复写式非易失性存储器模块406。也就是说,欲写入至可复写式非易失性存储器模块406的数据会经由存储器接口506转换为可复写式非易失性存储器模块406所能接受的格式。具体来说,若存储器管理电路502要存取可复写式非易失性存储器模块406,存储器接口506会传送对应的指令序列。例如,这些指令序列可包括指示写入数据的写入指令序列、指示读取数据的读取指令序列、指示抹除数据的抹除指令序列、以及用以指示各种存储器操作(例如,改变读取电压电平或执行垃圾回收操作等等)的相对应的指令序列。这些指令序列例如是由存储器管理电路502产生并且通过存储器接口506传送至可复写式非易失性存储器模块406。这些指令序列可包括一或多个信号,或是在总线上的数据。这些信号或数据可包括指令码或程序码。例如,在读取指令序列中,会包括读取的识别码、存储器地址等信息。The
错误检查与校正电路508是连接至存储器管理电路502并且用以执行错误检查与校正操作以确保数据的正确性。具体来说,当存储器管理电路502从主机系统11中接收到写入指令时,错误检查与校正电路508会为对应此写入指令的数据产生对应的错误更正码(error correcting code,ECC)和/或错误检查码(error detecting code,EDC),并且存储器管理电路502会将对应此写入指令的数据与对应的错误更正码和/或错误检查码写入至可复写式非易失性存储器模块406中。之后,当存储器管理电路502从可复写式非易失性存储器模块406中读取数据时会同时读取此数据对应的错误更正码和/或错误检查码,并且错误检查与校正电路508会依据此错误更正码和/或错误检查码对所读取的数据执行错误检查与校正操作。The error checking and
缓冲存储器510是连接至存储器管理电路502并且用以暂存来自于主机系统11的数据与指令或来自于可复写式非易失性存储器模块406的数据。在一范例实施例中,存储器控制电路单元404还包括电源管理电路512。电源管理电路512是连接至存储器管理电路502并且用以控制存储器存储装置10的电源。The
图6是根据本发明的一范例实施例所示出的管理可复写式非易失性存储器模块的示意图。FIG. 6 is a schematic diagram of managing a rewritable non-volatile memory module according to an exemplary embodiment of the present invention.
请参照图6,存储器管理电路502会将可复写式非易失性存储器模块406的实体单元610(0)~610(B)逻辑地分组至存储区601与替换区602。存储区601中的实体单元610(0)~610(A)是用以存储数据,而替换区602中的实体单元610(A+1)~610(B)则是用以替换存储区601中损坏的实体单元。例如,若从某一个实体单元中读取的数据所包含的错误过多而无法被更正时,此实体单元会被视为是损坏的实体单元。须注意的是,若替换区602中没有可用的实体抹除单元,则存储器管理电路502可能会将整个存储器存储装置10宣告为写入保护(write protect)状态,而无法再写入数据。Referring to FIG. 6 , the
在本范例实施例中,每一个实体单元是指一个实体程序化单元。然而,在另一范例实施例中,一个实体单元也可以是指一个实体地址、一个实体抹除单元或由多个连续或不连续的实体地址组成。存储器管理电路502会配置逻辑单元612(0)~612(C)以映射存储区601中的实体单元610(0)~610(A)。在本范例实施例中,每一个逻辑单元是指一个逻辑地址。然而,在另一范例实施例中,一个逻辑单元也可以是指一个逻辑程序化单元、一个逻辑抹除单元或者由多个连续或不连续的逻辑地址组成。此外,逻辑单元612(0)~612(C)中的每一者可被映射至一或多个实体单元。In this exemplary embodiment, each physical unit refers to a physical programming unit. However, in another exemplary embodiment, a physical unit may also refer to a physical address, a physical erase unit, or consist of multiple continuous or discontinuous physical addresses. The
存储器管理电路502会将逻辑单元与实体单元之间的映射关系(也称为逻辑-实体地址映射关系)记录于至少一逻辑-实体地址映射表。当主机系统11欲从存储器存储装置10读取数据或写入数据至存储器存储装置10时,存储器管理电路502可根据此逻辑-实体地址映射表来执行对于存储器存储装置10的数据存取操作。The
在本范例实施例中,错误检查与校正电路508执行编码程序的基本单位是一个讯框(frame)(也称为解码讯框)。一个讯框包括多个数据比特。在本范例实施例中,一个讯框包括256个比特。然而,在另一范例实施例中,一个讯框也可以包括更多(例如4K bytes)或更少的比特。In this exemplary embodiment, the basic unit for the error checking and
在本范例实施例中,错误检查与校正电路508可以针对存储于同一个实体单元中的数据进行单讯框(single-frame)编码与解码,也可以针对存储于多个实体单元中的数据进行多讯框(multi-frame)编码与解码。单讯框编码与多讯框编码可以分别采用低密度奇偶检查校正码(low density parity code,LDPC)、BCH码、回旋码(convolutional code)或涡轮码(turbo code)等编码算法的至少其中之一。或者,在一范例实施例中,多讯框编码还可以采用里德-所罗门码(Reed-solomon codes,RS codes)算法。此外,在另一范例实施例中,更多未列于上的编码算法也可以被采用,在此便不赘述。根据所采用的编码算法,错误检查与校正电路508可以编码欲保护的数据来产生相对应的错误更正码和/或错误检查码。为了说明方便,以下将经由编码产生的错误更正码和/或错误检查码统称为解码数据(即,用于解码的数据)。在一范例实施例中,经由编码产生的解码数据也称为奇偶数据。In this exemplary embodiment, the error checking and
图7是根据本发明的一范例实施例所示出的多讯框编码的示意图。FIG. 7 is a schematic diagram of multi-frame coding according to an exemplary embodiment of the present invention.
请参照图7,以编码实体单元710(0)~710(E)所存储的数据来产生相对应的解码数据720为例,实体单元710(0)~710(E)中的每一者所存储的至少部分数据可视为一个讯框。在多讯框编码中,是以每一个比特(或,比特组)所在的位置为依据来对实体单元710(0)~710(E)中的数据进行编码。例如,位于位置701(1)的比特b11、b21、…、bp1会被编码为解码数据720中的比特bo1,位于位置701(2)的比特b12、b22、…、bp2会被编码为解码数据720中的比特bo2;以此类推,位于位置701(r)的比特b1r、b2r、…、bpr会被编码为解码数据720中的比特bor。Please refer to FIG. 7, taking the data stored in the encoding entity units 710(0)-710(E) to generate the corresponding decoded
在一范例实施例中,实体单元710(0)~710(E)也称为第一实体单元,而用以存储解码数据720的实体单元则称为第二实体单元。第一实体单元与第二实体单元的数目皆可以是更多或更少。在一范例实施例中,解码数据720是经由编码实体单元710(0)~710(E)中特定数据(也称为原始数据)而产生的,因此解码数据720可视为是对应于原始数据的原始解码数据。在一范例实施例中,可视为原始数据是在实体单元710(0)~710(E)中受解码数据720保护。在一范例实施例中,解码数据720也可视为是独立硬盘冗余阵列(RedundantArray of Independent Disks,RAID)错误更正码。基于解码数据720,从实体单元710(0)~710(E)中读取的数据可被解码,以尝试更正所读取的数据中可能存在的错误。In an exemplary embodiment, the physical units 710 ( 0 )˜710 (E) are also called first physical units, and the physical units for storing the decoded
在一范例实施例中,用于产生解码数据720的数据也可能包括实体单元710(0)~710(E)所存储的数据中的数据比特所对应的冗余比特。以实体单元710(0)所存储的数据为例,其中的冗余比特例如是对存储于实体单元710(0)中的数据比特进行单讯框编码而产生的。In an exemplary embodiment, the data used to generate the decoded
在一范例实施例中,当欲读取某一个实体单元所存储的数据(也称为目标数据)时,对应于此目标数据的单讯框解码可先被执行。例如,若目标数据是基于LDPC码来进行单讯框编码,则此目标数据也会基于LDPC码来进行单讯框解码。若对应于此目标数据的单讯框解码失败,则对应于此目标数据的多讯框解码会接续执行,例如,基于编码时采用的RS码而执行。In an exemplary embodiment, when data stored in a certain physical unit (also referred to as target data) is to be read, single-frame decoding corresponding to the target data may be performed first. For example, if the target data is single-frame encoded based on LDPC codes, the target data will also be single-frame decoded based on LDPC codes. If the single-frame decoding corresponding to the target data fails, then the multi-frame decoding corresponding to the target data is performed sequentially, for example, based on the RS code used during encoding.
在一范例实施例中,单讯框解码与多讯框解码可以交替执行,直到判定解码失败或解码成功为止。以图7为例,当欲读取存储于实体单元710(0)的目标数据时,对应于实体单元710(0)中欲读取的目标数据的第一次单讯框解码会先被执行,以尝试更正可能存在的错误。若对应于目标数据的第一次单讯框解码失败,则解码数据720以及实体单元710(1)~710(E)中用于产生解码数据720的数据会被读取出来并且对应于目标数据的第一次多讯框解码可被执行。若对应于目标数据的第一次多讯框解码失败,则根据第一次的多讯框解码的执行结果(例如,目标数据中的某些比特可能已被更正),对应于目标数据的第二次单讯框解码可被执行。若第二次单讯框解码仍然失败,则对应于目标数据的第二次多讯框解码可被执行。依此类推,在对目标数据执行至少一次的单讯框解码和/或至少一次的多讯框解码之后,目标数据中的错误应可逐渐被更正。若某一次的单讯框解码或多讯框解码成功更正目标数据中的所有错误,则相应的叠代解码可停止。或者,若对同一目标数据执行的单讯框解码和/或多讯框解码的次数达到一个次数临界值,则可判定解码失败。In an exemplary embodiment, single-frame decoding and multi-frame decoding may be performed alternately until it is determined that decoding fails or succeeds. Taking FIG. 7 as an example, when the target data stored in the physical unit 710(0) is to be read, the first single-frame decoding corresponding to the target data to be read in the physical unit 710(0) will be executed first , to try to correct possible errors. If the first single-frame decoding corresponding to the target data fails, the decoded
在一范例实施例中,在完成对应于目标数据的某一多讯框解码(目标数据中可能仍有错误存在)后,至少一个单讯框解码可根据此多讯框解码的解码结果而执行。此单讯框解码可验证先前的多讯框解码中对至少一个错误比特的更正是否正确。若此单讯框解码的解码结果反映出先前对于某一错误比特的更正是正确的,则此错误比特的更正可被保留。反之,若此单讯框解码的解码结果反映出先前对于某一错误比特的更正不是正确的,则此错误比特的更正可被取消,使得此错误比特的比特值回复为其初始值。In an exemplary embodiment, after completing a certain multi-frame decoding corresponding to the target data (errors may still exist in the target data), at least one single-frame decoding can be performed according to the decoding result of the multi-frame decoding . This single-frame decoding verifies that at least one erroneous bit was corrected in the previous multi-frame decoding. If the decoding result of the single frame decoding reflects that the previous correction to an erroneous bit is correct, the correction of the erroneous bit can be kept. Conversely, if the decoding result of the single-frame decoding reflects that the previous correction of an erroneous bit is not correct, the correction of the erroneous bit can be canceled so that the bit value of the erroneous bit returns to its initial value.
图8至图11是根据本发明的一范例实施例所示出的解码操作的示意图。请参照图8,缓冲存储器510包括缓冲区810与820。缓冲区810也称为第一缓冲区,并且缓冲区820也称为第二缓冲区。在一范例实施例中,缓冲区810的容量可以相同或约略相同于缓冲区820的容量。在一范例实施例中,缓冲区820的容量小于缓冲区810的容量。在一范例实施例中,缓冲区810与820可由图5的存储器管理单元502动态配置。8 to 11 are schematic diagrams showing decoding operations according to an exemplary embodiment of the present invention. Please refer to FIG. 8 , the
当判定需要执行对应于数据831的多讯框解码时,数据830与对应于数据830的解码数据840会被分别从第一实体单元与第二实体单元读取出来。数据830包括数据831与832。数据831为当前欲基于解码数据840而解码并更正的目标数据,而数据832则为用于产生解码数据840的其余数据。以图7为例,若数据831是存储于实体单元710(0)的数据,则数据832可能是存储于实体单元710(1)~710(E)的至少部分数据。When it is determined that multi-frame decoding corresponding to the
在一范例实施例中,数据830可视为是原始数据,而解码数据840可视为是对应于数据830、数据831和/或832的原始解码数据。数据830与解码数据840会被载入至缓冲存储器510。例如,数据830与解码数据840会被暂存于缓冲区810。须注意的是,在基于解码数据840对数据830进行解码前,解码数据840会被复制到缓冲区820成为解码数据841。在将解码数据840复制到缓冲区820之后,基于解码数据840,数据830可于缓冲区810中被解码。In an exemplary embodiment,
在一范例实施例中,由于缓冲存储器510(或缓冲区810)的容量不足以一次性的存储完整的数据830(即数据830的总数据量大于缓冲存储器510或缓冲区810的容量),因此数据830可能会分批地被存入缓冲区810并基于解码数据840而分批地被解码。须注意的是,在一范例实施例中,在对数据830分批地解码的过程中,数据831会持续被维护和/或保留在缓冲区810中,直到数据831被成功解码和/或更正为止。In an exemplary embodiment, since the capacity of the buffer memory 510 (or the buffer memory 810) is not enough to store the
在一范例实施例中,对应于缓冲区810中执行的解码,解码数据840中的至少部分比特可能会被更新,使得缓冲区810中更新后的解码数据840可能会与缓冲区820中预先存储的解码数据841不同。在一范例实施例中,对应于缓冲区810中执行的解码,解码数据840会被更新为校验(syndrome)数据。此校验数据可反映对于数据830执行的解码的解码状态或解码结果。In an exemplary embodiment, corresponding to the decoding performed in the
请参照图9,假设根据缓冲区810中执行的解码,数据830中的数据833被更正,但是数据831尚未被更正。在一范例实施例中,数据833也称为已更正数据。在更正数据833后,基于缓冲区820中的解码数据841,数据833会被解码。在基于解码数据841解码数据833的过程中,解码数据841中的至少部分比特可能也会被更新。更新后的解码数据841会被持续保存在缓冲区820中。须注意的是,在一范例实施例中,缓冲区820中的解码数据841只会用于解码数据830中已更正的数据(即,数据833),而不会用于解码数据830中尚未更正的数据。此外,更新后的解码数据841也可称为对应于数据833的校验数据,以反映对于数据833执行的解码的解码状态或解码结果。Referring to FIG. 9 , it is assumed that according to the decoding performed in the
在一范例实施例中,数据833基于解码数据840的更正仍须经由对应于数据833的单讯框解码的验证。例如,在图9的一范例实施例中,在基于解码数据840更正数据833之后,对应于数据833的单讯框解码会被执行。若此单讯框解码的解码结果反映出对于数据833中错误比特的更正是正确的,则数据833的更正结果可被保留。反之,若此单讯框解码的解码结果反映出对于数据833中错误比特的更正不是正确的,则数据833的更正结果可被取消,使得数据833中某些被更正的比特会被回复为其原始的比特值。In an exemplary embodiment, corrections to
在一范例实施例中,图8与图9的解码操作可视为是对于数据831的第一次多讯框解码。此第一次多讯框解码是为了更正数据831中的错误而执行的。例如,数据831可能是来自主机系统的某一个读取指令所指示读取的数据。若数据831中的错误未完全被更正,则此第一次多讯框解码会被判定为失败。In an exemplary embodiment, the decoding operations in FIG. 8 and FIG. 9 can be regarded as the first multi-frame decoding for the
请参照图10,若对于数据831的第一次多讯框解码失败,则数据1001可被重新从第一实体单元中读取出来。须注意的是,延续图8与图9的范例实施例,数据831可持续地被保存于缓冲区810中,而不需随着数据1001重新从第一实体单元中读取。在一范例实施例中,数据1001也称为第一数据。数据1001可不包含图9的范例实施例中已被更正的数据833。数据1001会被载入至缓冲存储器510,例如,暂存于缓冲区810中。Referring to FIG. 10 , if the first multi-frame decoding of the
在解码数据831与1001之前,解码数据941会被从缓冲区820复制到缓冲区810中成为解码数据942。须注意的是,解码数据941是用以表示图9的缓冲区820中更新后的解码数据841。换言之,解码数据941的数据内容会相同于图9的缓冲区820中更新后的解码数据841。在将解码数据941从缓冲区820中复制到缓冲区810之后,基于解码数据942,数据831与1001会于缓冲区810中被解码。Before decoding the
须注意的是,在图10的范例实施例中,用于解码数据831与1001的解码数据942是从缓冲区820复制的,而非从第二实体单元读取。因此,图10中用于解码数据831与1001的解码数据942不同于图8与图9中的解码数据840。在一范例实施例中,图8与图9中的解码数据840也可视为是对应于数据1001的原始解码数据。此外,由于缓冲存储器510或缓冲区810的容量不足以一次性的存储完整的数据1001(即数据1001的总数据量大于缓冲存储器510或缓冲区810的容量),因此数据1001可能也会分批地被存入缓冲区810并基于解码数据942而分批地被解码。此外,分批存入缓冲区810进行解码的数据1001不会覆盖数据831。It should be noted that in the exemplary embodiment of FIG. 10 , the decoded
请参照图11,假设根据图10在缓冲区810中执行的解码,数据1002被更正,但是数据831仍未被更正。在一范例实施例中,数据1002也称为已更正数据。在一范例实施例中,对于数据1002的更正也会通过对应于数据1002的单讯框解码的验证,以决定对于数据1002的更正的正确性。在更正数据1002后,基于缓冲区820中的解码数据941,数据1002会被解码。在基于解码数据941解码数据1002的过程中,解码数据941中的至少部分比特可能也会被更新。更新后的解码数据941会被持续保存在缓冲区820中,以供对应于数据831的下一次叠代解码使用。Referring to FIG. 11 , suppose that according to the decoding performed in the
类似于图9的范例实施例,在图11的一范例实施例中,缓冲区820中的解码数据941只会用于解码已更正的数据(即,数据1002),而不会用于解码尚未更正的数据(例如数据831或图10的数据1001中未更正的数据)。更新后的解码数据941也可称为对应于数据1002的校验数据,以反映对于数据1002执行的解码的解码状态或解码结果。至此,可视为完成对数据831的第二次多讯框解码。此第二次多讯框解码也是为了更正数据831中的错误而执行的。在图11的范例实施例中,若数据831中的错误未完全被更正,则此第二次多讯框解码也会被判定为失败。Similar to the exemplary embodiment of FIG. 9, in an exemplary embodiment of FIG. 11, the decoded
若第二次多讯框解码仍然失败,则图10与图11的范例实施例中的读取不包含目标数据以及已更新数据的第一数据的操作、将解码数据从第二缓冲区复制到第一缓冲区的操作、在第一缓冲区中执行解码与数据更正操作、基于第二缓冲区中的解码数据对已更正数据执行解码的操作、以及更新第二缓冲区中的解码数据的操作皆可被重复执行,直到保存在第一缓冲区中的目标数据中的错误被成功更正为止。此外,图8至图11的解码操作可由图5的存储器管理电路502搭配错误检查与校正电路508执行。If the second multi-frame decoding still fails, the operation of reading the first data that does not include the target data and the updated data in the exemplary embodiment of FIG. 10 and FIG. 11 copies the decoded data from the second buffer to Operation of the first buffer, decoding and data correction in the first buffer, decoding of corrected data based on the decoded data in the second buffer, and updating of the decoded data in the second buffer can be executed repeatedly until the error in the target data stored in the first buffer is successfully corrected. In addition, the decoding operations in FIGS. 8 to 11 can be performed by the
在一范例实施例中,基于复制到第一缓冲区中的解码数据(例如,图8的解码数据840与图10中的解码数据942)执行的解码也称为第一类解码操作,而基于存储于第二缓冲区中的解码数据(例如,图9的解码数据841与图11中的解码数据941)执行的解码也称为第二类解码操作。In an exemplary embodiment, the decoding based on the decoded data copied into the first buffer (for example, the decoded
在一范例实施例中,第一类解码操作所解码的数据(例如原始数据和/或第一数据)可包括具有无法更正(简称为UNC)错误的数据单元,而第二类解码操作所解码的数据(例如已更正数据)不会包括具有UNC错误的数据单元。在此,UNC错误是指无法通过相应的单讯框解码来更正的错误。以图7为例,假设一个数据单元是指一个讯框,若存储于实体单元710(0)中的某一个数据单元无法通过对应于此数据单元的单讯框解码来成功更正其中的错误,则此数据单元可视为是一个具有UNC错误的数据单元。或者,若存储于实体单元710(1)中的某一个数据单元可以通过对应于此数据单元的单讯框解码来成功更正其中的错误,则此数据单元可视为是一个不具有UNC错误的数据单元。In an exemplary embodiment, data decoded by the first type of decoding operation (such as raw data and/or first data) may include data units with uncorrectable (abbreviated as UNC) errors, while data decoded by the second type of decoding operation The data (such as corrected data) will not include data units with UNC errors. Here, UNC errors refer to errors that cannot be corrected by corresponding single-frame decoding. Taking FIG. 7 as an example, assuming that a data unit refers to a frame, if a certain data unit stored in the physical unit 710(0) cannot successfully correct the error in the single frame decoding corresponding to the data unit, Then this data unit can be regarded as a data unit with UNC error. Or, if a certain data unit stored in the physical unit 710(1) can successfully correct the error therein through single-frame decoding corresponding to this data unit, then this data unit can be regarded as a UNC error-free data unit.
在一范例实施例中,第一类解码操作包括正常解码模式与擦除(erasure)模式。根据待解码数据(例如,图8中的数据830或图10的数据831与1001)中具有UNC错误的数据单元的总数,第一类解码操作操作可被决定为操作于正常解码模式或擦除模式。在一范例实施例中,若待解码数据中具有UNC错误的数据单元的总数大于或等于一预定值,例如2,但并不以此为限,则对应于待解码数据执行的第一类解码操作操作会被操作于正常解码模式。若待解码数据中具有UNC错误的数据单元的总数小于预定值,则对应于待解码数据执行的第一类解码操作操作会被操作于擦除模式。在擦除模式下,第一类解码操作通常可以保证完成对于待解码数据(或目标数据)的解码与更正。In an exemplary embodiment, the first type of decoding operation includes a normal decoding mode and an erasure mode. According to the total number of data units with UNC errors in the data to be decoded (for example,
在图9或图11的范例实施例中,缓冲区810中的待解码数据可能会包括至少一个具有UNC错误的数据单元。对应于对待解码数据执行的第一类解码操作,缓冲区810中某一个具有UNC错误的数据单元可能会被更正为不具有UNC错误的数据单元。此不具有UNC错误的数据单元可被视为已更正数据。在连续执行的多次叠代解码中,每次从第一实体单元读取并载入至缓冲区810中的第一数据可不包含已不具有UNC错误的数据单元。藉此,在连续执行的多次叠代解码中,待解码数据中具有UNC错误的数据单元的数目可逐渐减少,从而提高解码成功率。In the exemplary embodiment of FIG. 9 or FIG. 11 , the data to be decoded in the
须注意的是,在图8至图11的前述范例实施例中,只有在对原始数据执行第一次的第一类解码操作时,对应于第一数据(或原始数据)的原始解码数据会被从第二实体单元中读取。在第二次以后执行的第一类解码操作中,用于对第一数据进行解码的解码数据都是从第二缓冲区中复制的。此外,在更新存储于第二缓冲区的解码数据的(解码)操作中,第二缓冲区中的解码数据的更新只会受到不具有UNC错误的数据单元的影响,从而降低第二缓冲区中的解码数据受到错误比特(或UNC错误)影响的机率。因此,在将解码数据从第二缓冲区复制到第一缓冲区后,基于所复制的解码数据于第一缓冲区执行的第一类解码操作的解码成功率可以被提高。It should be noted that, in the aforementioned exemplary embodiments of FIG. 8 to FIG. 11 , only when the first type of decoding operation is performed on the original data, the original decoded data corresponding to the first data (or original data) will be is read from the second entity unit. In the first type of decoding operation performed after the second time, the decoded data used to decode the first data is all copied from the second buffer. Furthermore, in the (decoding) operation of updating the decoded data stored in the second buffer, the update of the decoded data in the second buffer is only affected by data units that do not have UNC errors, thereby reducing the The probability that the decoded data is affected by erroneous bits (or UNC errors). Therefore, after copying the decoded data from the second buffer to the first buffer, the decoding success rate of the first type of decoding operation performed in the first buffer based on the copied decoded data can be improved.
图12与图13是根据本发明的一范例实施例所示出的解码操作的流程图。请参照图12,在步骤S1201中,从可复写式非易失性存储器模块读取原始数据与对应于第一数据(或原始数据)的原始解码数据。在步骤S1202中,将原始数据与对应于第一数据的原始解码数据暂存至缓冲存储器(例如,图8的缓冲存储器510)的第一缓冲区(例如,图8中的缓冲区810)。在步骤S1203中,将对应于第一数据的原始解码数据复制到缓冲存储器的第二缓冲区(例如,图8中的缓冲区820)。在步骤S1204中,在缓冲存储器的第一缓冲区中,基于对应于第一数据的原始解码数据对原始数据执行第一类解码操作。在步骤S1205中,判断对应于原始数据的第一类解码操作是否成功。若是(即第一类解码操作成功),在步骤S1206中,输出解码成功的数据(也称为已解码数据)。若否(即第一类解码操作失败),则进入图13的步骤S1301。FIG. 12 and FIG. 13 are flowcharts showing decoding operations according to an exemplary embodiment of the present invention. Please refer to FIG. 12 , in step S1201 , the original data and the original decoded data corresponding to the first data (or original data) are read from the rewritable non-volatile memory module. In step S1202, the original data and the original decoded data corresponding to the first data are temporarily stored in a first buffer (eg,
请参照图13,在步骤S1301中,从可复写式非易失性存储器模块读取第一数据并将第一数据暂存至缓冲存储器的第一缓冲区。须注意的是,第一数据可不包括持续保存在第一缓冲区中的目标数据以及已于先前的第一类解码操作中更正的已更正数据。在步骤S1302中,将第二缓冲区中的解码数据复制到第一缓冲区中。在步骤S1303中,在第一缓冲区中,基于所复制的解码数据对第一数据与目标数据执行第一类解码操作。在步骤S1304中,判断第一类解码操作是否成功。若是,在步骤S1305中,输出已解码数据。若否,在步骤S1306中,判断是否有数据(或数据单元)在第一类解码操作中被更正。若否(即没有数据(或数据单元)在第一类解码操作中被更正),回到步骤S1301,重新执行下一次叠代解码。若有(即有数据(或数据单元)在第一类解码操作中被更正),在步骤S1307中,基于第二缓冲区中的解码数据对所更正的数据(即已更正数据)执行第二类解码操作,以更新第二缓冲区中的解码数据。基于已更正数据而更新的解码数据可持续保存于第二缓冲区中,以供下一次的叠代解码使用。在步骤S1307之后,步骤S1301可重复执行。此外,在图12与图13的范例实施例中,若所执行的解码操作的一执行次数达到一个次数临界值,则解码操作可被判定失败并且被停止。Please refer to FIG. 13 , in step S1301 , read first data from the rewritable non-volatile memory module and temporarily store the first data into a first buffer of the buffer memory. It should be noted that the first data may not include the target data persistently stored in the first buffer and the corrected data that has been corrected in the previous first type of decoding operation. In step S1302, copy the decoded data in the second buffer to the first buffer. In step S1303, in the first buffer zone, a first type of decoding operation is performed on the first data and the target data based on the copied decoded data. In step S1304, it is judged whether the first type of decoding operation is successful. If yes, in step S1305, output the decoded data. If not, in step S1306, it is determined whether any data (or data unit) is corrected in the first type of decoding operation. If not (that is, no data (or data unit) is corrected in the first type of decoding operation), go back to step S1301 and re-execute the next iterative decoding. If there is (that is, there is data (or data unit) that is corrected in the first type of decoding operation), in step S1307, based on the decoded data in the second buffer, a second operation is performed on the corrected data (that is, the corrected data) Decode-like operation to update the decoded data in the second buffer. The decoded data updated based on the corrected data is continuously stored in the second buffer for use in the next iterative decoding. After step S1307, step S1301 may be executed repeatedly. In addition, in the exemplary embodiments of FIG. 12 and FIG. 13 , if a number of execution times of the performed decoding operation reaches a threshold value, the decoding operation may be judged to be failed and stopped.
在一范例实施例中,步骤S1206和/或S1305还可包括将解码成功的数据(例如,目标数据)复制到其他的实体单元重新存储,并且将原先存储此数据(例如,目标数据)的实体抹除单元标记为损坏的实体抹除单元。此外,更多的错误处理手段也可在步骤S1206和/或S1305中执行,本发明不加以限制。In an exemplary embodiment, steps S1206 and/or S1305 may also include copying successfully decoded data (for example, target data) to other entity units for re-storage, and copying the entity that originally stored the data (for example, target data) The erase unit is marked as a damaged physical erase unit. In addition, more error handling means can also be executed in step S1206 and/or S1305, which is not limited by the present invention.
然而,图12与图13中各步骤已详细说明如上,在此便不再赘述。值得注意的是,图12与图13中各步骤可以实作为多个程序码或是电路,本发明不加以限制。此外,图12与图13的方法可以搭配以上范例实施例使用,也可以单独使用,本发明不加以限制。However, each step in FIG. 12 and FIG. 13 has been described in detail above, and will not be repeated here. It should be noted that each step in FIG. 12 and FIG. 13 can be implemented as a plurality of program codes or circuits, which is not limited in the present invention. In addition, the methods shown in FIG. 12 and FIG. 13 can be used together with the above exemplary embodiments, or can be used alone, which is not limited by the present invention.
综上所述,本发明可将解码过程中动态产生的解码数据持续保存在缓冲存储器中。当后续要重复解码目标数据时,保存在缓冲存储器中的解码数据可即时地被使用,而不需要重复从可复写式非易失性存储器模块读取相关数据并重复计算而获得。此外,本发明也可减少UNC错误对保存在缓冲存储器中的解码数据的影响。藉此,可在缓冲存储器的容量有限的状况下提高解码操作的效率。To sum up, the present invention can continuously save the decoded data dynamically generated during the decoding process in the buffer memory. When the target data is to be repeatedly decoded subsequently, the decoded data stored in the buffer memory can be used immediately without repeatedly reading relevant data from the rewritable non-volatile memory module and obtaining it repeatedly. In addition, the present invention can also reduce the influence of UNC errors on the decoded data stored in the buffer memory. Thereby, the efficiency of the decoding operation can be improved under the condition that the capacity of the buffer memory is limited.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视权利雅琪所界定者为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of an invention shall be subject to what is defined by the right Yaqi.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710825756.3A CN109509499B (en) | 2017-09-14 | 2017-09-14 | Decoding method, memory storage device and memory control circuit unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710825756.3A CN109509499B (en) | 2017-09-14 | 2017-09-14 | Decoding method, memory storage device and memory control circuit unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109509499A CN109509499A (en) | 2019-03-22 |
CN109509499B true CN109509499B (en) | 2023-02-28 |
Family
ID=65744371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710825756.3A Active CN109509499B (en) | 2017-09-14 | 2017-09-14 | Decoding method, memory storage device and memory control circuit unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109509499B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105653199A (en) * | 2014-11-14 | 2016-06-08 | 群联电子股份有限公司 | Data reading method, memory storage device and memory control circuit unit |
CN106873901A (en) * | 2015-12-11 | 2017-06-20 | 群联电子股份有限公司 | Memory management method, memory control circuit unit and memory storage device |
CN106970763A (en) * | 2016-01-14 | 2017-07-21 | 群联电子股份有限公司 | Memory management method, memory control circuit unit and memory storage device |
CN107025935A (en) * | 2016-01-29 | 2017-08-08 | 大心电子股份有限公司 | decoding method, memory storage device and memory control circuit unit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5042568B2 (en) * | 2006-09-07 | 2012-10-03 | 富士通株式会社 | MPEG decoder and MPEG encoder |
JP2010009643A (en) * | 2008-06-24 | 2010-01-14 | Toshiba Corp | Error correction system |
JP2011040136A (en) * | 2009-08-13 | 2011-02-24 | Toshiba Corp | Semiconductor memory device |
US9213600B2 (en) * | 2013-11-11 | 2015-12-15 | Seagate Technology Llc | Dynamic per-decoder control of log likelihood ratio and decoding parameters |
-
2017
- 2017-09-14 CN CN201710825756.3A patent/CN109509499B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105653199A (en) * | 2014-11-14 | 2016-06-08 | 群联电子股份有限公司 | Data reading method, memory storage device and memory control circuit unit |
CN106873901A (en) * | 2015-12-11 | 2017-06-20 | 群联电子股份有限公司 | Memory management method, memory control circuit unit and memory storage device |
CN106970763A (en) * | 2016-01-14 | 2017-07-21 | 群联电子股份有限公司 | Memory management method, memory control circuit unit and memory storage device |
CN107025935A (en) * | 2016-01-29 | 2017-08-08 | 大心电子股份有限公司 | decoding method, memory storage device and memory control circuit unit |
Also Published As
Publication number | Publication date |
---|---|
CN109509499A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI658463B (en) | Data access method,memory control circuit unit and memory storage device | |
TWI640865B (en) | Decoding method, memory storage device and memory control circuit unit | |
TWI628543B (en) | Decoding method, memory storage device and memory control circuit unit | |
TWI751620B (en) | Memory control method, memory storage device and memory control circuit unit | |
CN109491828B (en) | Decoding method, memory storage device, and memory control circuit unit | |
TWI634556B (en) | Decoding method, memory storage device and memory control circuit unit | |
CN109901784B (en) | Data access method, memory control circuit unit and memory storage device | |
CN113140253A (en) | Memory management method, memory storage device and memory control circuit unit | |
CN113724774B (en) | Decoding method, memory storage device and memory control circuit unit | |
CN107146638A (en) | Decoding method, memory storage device and memory control circuit unit | |
CN111580741B (en) | Data writing method, memory control circuit unit and memory storage device | |
TWI668699B (en) | Data storing method, memory controlling circuit unit and memory storage device | |
CN111538687B (en) | Memory control method, memory storage device, and memory control circuit unit | |
CN107305510B (en) | Data processing method, memory storage device and memory control circuit unit | |
CN109697134B (en) | Decoding method, memory storage device, and memory control circuit unit | |
TWI808483B (en) | Decoding method, memory storage device and memory control circuit unit | |
CN117079691A (en) | Decoding method, memory storage device and memory control circuit unit | |
CN112799874B (en) | Memory control method, memory storage device and memory control circuit unit | |
CN111326186B (en) | Memory control method, memory storage device and memory control circuit unit | |
CN110874282B (en) | Data access method, memory control circuit unit and memory storage device | |
CN109509499B (en) | Decoding method, memory storage device and memory control circuit unit | |
CN109710450B (en) | Data encoding method, memory control circuit unit, and memory storage device | |
TWI763310B (en) | Memory control method, memory storage device and memory control circuit unit | |
CN111143253A (en) | Data storage method, memory control circuit unit, and memory storage device | |
CN111258791B (en) | Memory control method, memory storage device and memory control circuit unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |