CN109508444B - Fast Tracking Method for Interactive Multimodal Generalized Label Multi-Bernoulli under Interval Measurement - Google Patents
Fast Tracking Method for Interactive Multimodal Generalized Label Multi-Bernoulli under Interval Measurement Download PDFInfo
- Publication number
- CN109508444B CN109508444B CN201811549885.5A CN201811549885A CN109508444B CN 109508444 B CN109508444 B CN 109508444B CN 201811549885 A CN201811549885 A CN 201811549885A CN 109508444 B CN109508444 B CN 109508444B
- Authority
- CN
- China
- Prior art keywords
- target
- particle
- particles
- time
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000005259 measurement Methods 0.000 title claims abstract description 44
- 230000002452 interceptive effect Effects 0.000 title claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 161
- 238000005070 sampling Methods 0.000 claims abstract description 73
- 238000004364 calculation method Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims abstract description 7
- 238000009826 distribution Methods 0.000 claims description 54
- 230000033001 locomotion Effects 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000012952 Resampling Methods 0.000 claims description 4
- 230000002085 persistent effect Effects 0.000 claims description 3
- 230000004083 survival effect Effects 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 39
- 238000001514 detection method Methods 0.000 abstract description 8
- 230000003993 interaction Effects 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 4
- 238000004088 simulation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 241001077810 Doberes Species 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Algebra (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Operations Research (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开一种区间量测下交互式多模广义标签多伯努利的快速跟踪方法,将交互式多模方法与快速算法思想相结合,首先在广义标签多伯努利滤波的框架下,针对目标采样粒子预测阶段,结合区间量测广义似然函数,实现所有粒子对于不同模型的转移预测,随后通过计算模型权概率对粒子进行模型交互,然后通过GLMB滤波更新方程对模型交互后的粒子进行更新。在此基础上结合快速实现方法,将预测与更新相结合,对于每个迭代只需要一个截断过程,降低了算法的计算量,最终解决了机动多目标的检测与跟踪问题。
The invention discloses a fast tracking method for interactive multi-mode generalized label multi-Bernoulli under interval measurement, which combines the interactive multi-mode method and fast algorithm idea. First, under the framework of generalized label multi-Bernoulli filtering, For the target sampling particle prediction stage, combined with the interval measurement generalized likelihood function, the transition prediction of all particles to different models is realized, and then the model interaction is performed on the particles by calculating the model weight probability, and then the particles after model interaction are updated through the GLMB filter update equation. to update. On this basis, combined with the fast implementation method, the prediction and the update are combined, and only one truncation process is needed for each iteration, which reduces the calculation amount of the algorithm, and finally solves the detection and tracking problem of maneuvering multi-targets.
Description
技术领域technical field
本发明涉及目标跟踪技术领域,具体涉及一种区间量测下交互式多模广义标签多伯努利的快速跟踪方法。The invention relates to the technical field of target tracking, in particular to a multi-Bernoulli fast tracking method for interactive multi-mode generalized labels under interval measurement.
背景技术Background technique
非机动目标运动可以用一个固定的模型来描述,但要描述机动目标的运动,可能需要结合具有不同机动特性的运动模型。随着机动目标跟踪技术受到越来越广泛的关注,对机动目标跟踪技术的要求也越来越高。多机动目标跟踪已经成为目标跟踪领域中一个极其困难的问题。The motion of a non-maneuvering target can be described by a fixed model, but to describe the motion of a maneuvering target, it may be necessary to combine motion models with different maneuvering characteristics. As the maneuvering target tracking technology has received more and more attention, the requirements for the maneuvering target tracking technology are also getting higher and higher. Multi-maneuvering target tracking has become an extremely difficult problem in the field of target tracking.
姬红兵在其发表的论文“箱粒子广义标签多伯努利滤波的目标跟踪算法”(西安交通大学学报,2017,51(10):107-112.)中提出了一种箱粒子广义标签多伯努利跟踪算法。该算法利用箱粒子滤波算法近似单目标状态的概率密度,即用一组带权值的均匀分布拟合单目标状态概率密度;最后通过广义标签多伯努利滤波对多目标状态的概率密度进行预测与更新,从更新后的多目标状态概率密度中估计单目标的位置与速度,并且由于单目标的标签互不相同可以实现航迹跟踪。该算法的不足之处在于,无法对强机动目标进行有效跟踪。In his paper "Target Tracking Algorithm of Box Particle Generalized Label Dobernoulli Filter" (Journal of Xi'an Jiaotong University, 2017, 51(10): 107-112.), Ji Hongbing proposed a box particle generalized label Dober Effort tracking algorithm. The algorithm uses the box particle filter algorithm to approximate the probability density of a single target state, that is, uses a set of uniform distributions with weights to fit the probability density of a single target state; Forecasting and updating, the position and velocity of a single target are estimated from the updated multi-target state probability density, and the track tracking can be realized because the labels of the single targets are different from each other. The disadvantage of this algorithm is that it cannot effectively track strong maneuvering targets.
Vo等人在其发表的论文“A Generalized Labeled Multi-Bernoulli Filter for Maneuvering Targets”(19th International Conference on Information Fusi on)中通过结合交互式多模概念和标签多伯努利随机有限集(RFS)理论,提出了一种广义标签多伯努利粒子滤波(GLMB)的机动目标跟踪算法,并给出了高斯混合(GM)的实现形式。该算法可以在估计多机动目标状态的同时跟踪不同目标的航迹。该算法的不足之处在于,由于强杂波和多目标环境下的组合爆炸问题,GLMB滤波器实现面临着巨大的计算复杂性。In their paper "A Generalized Labeled Multi-Bernoulli Filter for Maneuvering Targets" (19th International Conference on Information Fusion), Vo et al. combined the concept of interactive multimodality with the theory of labeled multi-Bernoulli random finite sets (RFS) , a maneuvering target tracking algorithm based on Generalized Labeled Multi-Bernoulli Particle Filter (GLMB) is proposed, and the implementation form of Gaussian Mixture (GM) is given. The algorithm can track the tracks of different targets while estimating the states of multiple maneuvering targets. The disadvantage of this algorithm is that GLMB filter implementation faces huge computational complexity due to the combinatorial explosion problem in strong clutter and multi-object environment.
Vo等人在其发表的论文“An Efficient Implementation of the GeneralizedLabeled Multi-Bernoulli Filter”(IEEE Transactions on Signal Processing,2017,65(8):1975-1987.)中提出了一种基于吉布斯采样的GLMB滤波密度截断算法,将预测和更新集成到一个步骤中,实现了GLMB滤波的高效实现。该算法的不足之处在于,在许多实际应用中,标准量测模型是不够的。虽然传感器检测报告是一个点测量值,但是实际测量会受到未知边界误差分布的影响,使得这种非标准测量需要以区间量测的形式进行。Vo et al. proposed a Gibbs sampling-based GLMB filter density truncation algorithm, which integrates prediction and update into one step, enables efficient implementation of GLMB filter. The disadvantage of this algorithm is that in many practical applications, standard measurement models are not sufficient. Although the sensor detection report is a point measurement value, the actual measurement will be affected by the unknown boundary error distribution, so that this non-standard measurement needs to be performed in the form of interval measurement.
发明内容Contents of the invention
本发明所要解决的是现有多机动目标跟踪方法在区间量测下目标发生较大机动时的目标失跟的问题,提供一种区间量测下交互式多模广义标签多伯努利的快速跟踪方法,其在广义标签多伯努利滤波的基础上结合交互式多模方法和快速算法思想,采用序贯蒙特卡洛(SMC)算法,实现对机动多目标的精准跟踪。What the present invention aims to solve is the problem that the target loses tracking when the target has a large maneuver under the interval measurement in the existing multi-maneuvering target tracking method, and provides an interactive multi-mode generalized tag multi-Bernoulli fast tracking method under the interval measurement. The tracking method combines interactive multi-mode methods and fast algorithm ideas on the basis of generalized label multi-Bernoulli filtering, and adopts sequential Monte Carlo (SMC) algorithm to achieve precise tracking of maneuvering multi-targets.
本发明的基本思路是:将交互式多模方法与快速算法思想相结合,首先在广义标签多伯努利滤波的框架下,针对目标采样粒子预测阶段,结合区间量测广义似然函数,实现所有粒子对于不同模型的转移预测,随后通过计算模型权概率对粒子进行模型交互,然后通过GLMB滤波更新方程对模型交互后的粒子进行更新。在此基础上结合快速实现方法,将预测与更新相结合,对于每个迭代只需要一个截断过程,降低了算法的计算量,最终解决了机动多目标的检测与跟踪问题。The basic idea of the present invention is: combine the interactive multi-mode method with the fast algorithm idea, firstly, under the framework of the generalized label multi-Bernoulli filter, aiming at the target sampling particle prediction stage, combined with interval measurement of the generalized likelihood function, to realize All particles are predicted for the transfer of different models, and then the model interaction is performed on the particles by calculating the model weight probability, and then the particles after the model interaction are updated through the GLMB filter update equation. On this basis, combined with the rapid implementation method, the prediction and update are combined, and only one truncation process is required for each iteration, which reduces the calculation amount of the algorithm, and finally solves the problem of maneuvering multi-target detection and tracking.
为解决上述问题,本发明是通过以下技术方案实现的:In order to solve the above problems, the present invention is achieved through the following technical solutions:
区间量测下交互式多模广义标签多伯努利的快速跟踪方法,包括步骤如下:The multi-Bernoulli fast-tracking method for interactive multimodal generalized labeling under interval measurement includes the following steps:
步骤1、根据目标运动场景,设定初始时刻目标粒子的状态参数,并用设定的状态参数作为目标粒子的初始分布,采样固定数目的初始分布目标粒子,并将其用标签多伯努利随机集的参数集形式表示,得到初始时刻目标采样粒子标签多伯努利随机集随机集的后验分布;Step 1. According to the target motion scene, set the state parameters of the target particles at the initial moment, and use the set state parameters as the initial distribution of the target particles, sample a fixed number of target particles with the initial distribution, and use the label multi-Bernoulli random The parameter set of the set is expressed in the form of a set, and the posterior distribution of the random set of the multi-Bernoulli random set of the target sampling particle label at the initial moment is obtained;
步骤2、利用前一时刻的目标采样粒子标签多伯努利随机集的后验分布和前一时刻的区间量测数据,用交互式多模方法对目标采样粒子进行预测,得到当前时刻预测的目标采样粒子标签多伯努利随机集的后验分布;
步骤3、利用当前时刻的区间量测数据,计算每个目标采样粒子的广义似然函数,并根据广义似然函数,使用广义标签多伯努利滤波器对当前时刻预测的目标采样粒子标签多伯努利随机集的后验分布进行更新,得到当前时刻更新的目标采样粒子标签多伯努利随机集的后验分布;Step 3. Use the interval measurement data at the current moment to calculate the generalized likelihood function of each target sampling particle, and according to the generalized likelihood function, use the generalized label multiple Bernoulli filter to predict the target sampling particle label multiple at the current moment. The posterior distribution of the Bernoulli random set is updated to obtain the posterior distribution of the multi-Bernoulli random set of target sampling particle labels updated at the current moment;
步骤4、从步骤4所得到的当前时刻更新的目标采样粒子标签多伯努利随机集的后验分布中,选出其标签权重大于给定阈值的当前时刻更新的目标采样粒子标签多伯努利随机集的后验分布,作为当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布;Step 4. From the posterior distribution of the multi-Bernoulli random set of the target sampling particle label updated at the current moment obtained in step 4, select the target sampling particle label Do-Bernoulli updated at the current moment whose label weight is greater than a given threshold The posterior distribution of the random set is used as the posterior distribution of the multi-Bernoulli random set of the target sampling particle label truncated at the current moment;
步骤5、分别计算步骤5所得到的当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布的势,并找出其中最大势所对应的指标N;从步骤5所得到的当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布中选出标签权重较大的N-1个当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布,作为当前时刻最终的目标采样粒子标签多伯努利随机集的后验分布;Step 5. Calculate the potential of the posterior distribution of the multi-Bernoulli random set of target sampling particle labels truncated at the current moment obtained in step 5, and find out the index N corresponding to the maximum potential; the current From the posterior distribution of multi-Bernoulli random sets of target sampling particle labels truncated at time, select N-1 posterior distributions of multi-Bernoulli random sets of target sampling particle labels truncated at the current moment with larger label weights, as the current Posterior distribution of multi-Bernoulli random set of target sampled particle labels at time;
步骤6、计算当前时刻最终的目标采样粒子标签多伯努利随机集的后验分布的加权和,并将该加权和结果作为当前时刻估计的目标状态;Step 6. Calculate the weighted sum of the posterior distribution of the final multi-Bernoulli random set of target sampling particle labels at the current moment, and use the weighted sum result as the estimated target state at the current moment;
步骤7、判断所有时刻是否处理完毕:若是,则输出当前时刻估计的目标状态;否则,执行步骤2,处理下一时刻。Step 7. Judging whether all moments have been processed: if yes, output the target state estimated at the current moment; otherwise, execute
与现有技术相比,本发明具有如下特点:Compared with prior art, the present invention has following characteristics:
1、将多模型概念和快速算法思想嵌入到广义标签多伯努利算法中,采用粒子滤波方法,不但能精确的跟踪目标的航迹和估计目标的数目,在算法的计算量上也远远小于交互式多模广义标签多伯努利算法,提高了运算性能。1. Embed the multi-model concept and fast algorithm idea into the generalized label multi-Bernoulli algorithm, and adopt the particle filter method, which can not only accurately track the track of the target and estimate the number of targets, but also greatly reduce the calculation amount of the algorithm. It is smaller than the interactive multi-mode generalized label multi-Bernoulli algorithm, which improves the operation performance.
2、结合了交互式多模,针对目标采样粒子预测阶段,实现所有粒子对于不同模型的转移预测,随后通过计算模型权概率对粒子进行模型交互,实现了对机动目标的检测跟踪,克服了现有技术跟踪机动目标存在的失跟问题。2. Combining interactive multi-mode, aiming at the target sampling particle prediction stage, it realizes the transfer prediction of all particles to different models, and then performs model interaction on the particles by calculating the model weight probability, realizing the detection and tracking of maneuvering targets, overcoming the current situation There is a problem of loss of tracking with technology to track maneuvering targets.
3、结合了快速算法思想,目标量测模型不采用传统传感器量测模型,传感器输出区间量测,区间量测以弥补任何点量测缺陷,全面的考虑到了机动目标的机动性不稳定等因素,快速算法整合预测和更新到一个步骤,对于每个迭代只需要一个截断过程,大大的降低了算法的计算量,有效的实现了区间量测下机动多目标的检测与跟踪。3. Combining the idea of fast algorithm, the target measurement model does not use the traditional sensor measurement model, the sensor output interval measurement, interval measurement to make up for any point measurement defects, fully considering factors such as the mobility instability of maneuvering targets , the fast algorithm integrates prediction and update into one step, and only needs one truncation process for each iteration, which greatly reduces the calculation amount of the algorithm, and effectively realizes the detection and tracking of maneuvering multi-targets under interval measurement.
附图说明Description of drawings
图1为区间量测下交互式多模广义标签多伯努利的快速跟踪方法的流程图。Figure 1 is a flow chart of the multi-Bernoulli fast-tracking method for interactive multimodal generalized labeling under interval measurement.
图2为本实施例的仿真图,其中(a)是目标运动轨迹图,(b)是目标航迹跟踪结果图,(c)是目标数目跟踪效果图,(d)是目标数目跟踪误差图,(e)是目标OSPA距离跟踪误差图,(f)是目标OSPA位置跟踪误差图,(g)是目标OSPA势跟踪误差图。Fig. 2 is the emulation diagram of the present embodiment, wherein (a) is target motion locus figure, (b) is target track tracking result figure, (c) is target number tracking effect figure, (d) is target number tracking error figure , (e) is the target OSPA distance tracking error map, (f) is the target OSPA position tracking error map, (g) is the target OSPA potential tracking error map.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific examples and with reference to the accompanying drawings.
针对区间量测的不确定性和目标机动性不确定的问题,本发明在广义标签多伯努利滤波器的基础上,使用交互式多模型方法对滤波器中每个目标状态的采样粒子进行预测,再将预测粒子通过引入广义似然函数结合GLMB滤波器更新策略来更新预测粒子。在此基础上结合快速实现方法,将预测与更新相结合,对于每个迭代只需要一个截断过程,降低了算法的计算量,本发明在区间量测环境下,能有效地检测跟踪机动多目标,且对目标状态和数目的估计更加精准。Aiming at the problems of interval measurement uncertainty and target mobility uncertainty, the present invention uses an interactive multi-model method to process the sampling particles of each target state in the filter on the basis of the generalized label multi-Bernoulli filter. Prediction, and then update the prediction particles by introducing the generalized likelihood function combined with the GLMB filter update strategy. On this basis, combined with a fast implementation method, combining prediction and update, only one truncation process is required for each iteration, which reduces the calculation amount of the algorithm. The present invention can effectively detect and track maneuvering multi-targets in the interval measurement environment , and the estimation of the target state and number is more accurate.
一种区间量测下交互式多模广义标签多伯努利的快速跟踪方法,其具体步骤如下:A fast-tracking method for multi-Bernoulli multimodal generalized labeling under interval measurement, the specific steps of which are as follows:
步骤1,初始化目标状态。Step 1, initialize the target state.
根据目标运动场景,设定初始时刻GLMB轨迹表,包括目标粒子(包括持续存活粒子和新生粒子)和状态参数,即目标位置、速度、权重、模型概率、轨迹标签以及轨迹关联历史。初始化GLMB分量假设权重、假设标签、假设势以及势分布。用上述设定的参数作为目标的初始分布,用高斯分布采样固定数目的初始存活粒子及新生粒子,并用标签多伯努利随机集的参数集形式表示。According to the target motion scene, set the GLMB trajectory table at the initial moment, including target particles (including persistent living particles and newborn particles) and state parameters, that is, target position, velocity, weight, model probability, trajectory label and trajectory association history. Initialize GLMB component hypothesis weights, hypothesis labels, hypothesis potentials, and potential distributions. Use the parameters set above as the initial distribution of the target, use a Gaussian distribution to sample a fixed number of initial surviving particles and newborn particles, and express it in the form of a parameter set with a labeled multi-Bernoulli random set.
初始粒子采样过程如下:The initial particle sampling process is as follows:
其中,P0为初始时刻目标状态的协方差,为状态x0对应的标签,为初始时刻的标签集合。Among them, P 0 is the covariance of the target state at the initial moment, is the label corresponding to state x 0 , is the set of labels at the initial moment.
令初始时刻k=0,目标初始分布用高斯粒子标签多伯努利随机集的参数集表示形式如下:Let the initial moment k=0, the initial distribution of the target is represented by the parameter set of the Gaussian particle label multi-Bernoulli random set as follows:
其中,H是指标空间,h是指标,表示初始时刻GLMB轨迹表假设标签的假设权重;表示初始时刻第j个目标采样粒子(标签为l)的模型权概率,p为模型个数;表示初始时刻第j个目标采样粒子的状态,x0表示初始时刻目标的横坐标,表示初始时刻目标的水平速度,y0表示初始时刻目标的纵坐标,表示初始时刻目标的垂直速度,T表示转置操作;表示初始时刻第j个目标采样粒子状态对应的状态权重;表示初始时刻的目标采样粒子数目。where H is the indicator space, h is the indicator, Indicates the assumed weight of the assumed label of the GLMB track table at the initial moment; Indicates the model weight probability of the jth target sampling particle (labeled as l) at the initial moment, p is the number of models; Indicates the state of the jth target sampled particle at the initial moment, x 0 represents the abscissa of the target at the initial moment, represents the horizontal velocity of the target at the initial moment, y 0 represents the vertical coordinate of the target at the initial moment, Indicates the vertical velocity of the target at the initial moment, and T indicates the transposition operation; Indicates the state weight corresponding to the state of the jth target sampled particle at the initial moment; Indicates the number of target sampling particles at the initial moment.
步骤2,预测和更新目标状态。
目标在k时刻的状态可以用一个4维向量表示,其中(xk,yk)、分别表示k时刻目标的位置、速度。目标为机动目标时,其运动模型随时间发生变化,运动方程为:The state of the target at time k can be represented by a 4-dimensional vector Indicates that (x k ,y k ), Respectively represent the position and velocity of the target at time k. When the target is a maneuvering target, its motion model changes with time, and the motion equation is:
xk=fk-1(xk-1,sk)+vk-1(sk)x k =f k-1 (x k-1 ,s k )+v k-1 (s k )
其中,fk-1表示k时刻目标的状态转移方程,sk表示k时刻的模型变量,vk-1表示状态噪声。Among them, f k-1 represents the state transition equation of the target at time k, s k represents the model variable at time k, and v k-1 represents the state noise.
假定k-1时刻的目标采样粒子标签多伯努利随机集后验分布为:Assume that the posterior distribution of the multi-Bernoulli random set of target sampling particle labels at time k-1 is:
则持续存活粒子标签多伯努利随机集表示为:Then the multi-Bernoulli random set of persistent surviving particle labels is expressed as:
k时刻新生粒子标签多伯努利随机集为则k时刻预测的目标采样粒子标签多伯努利随机集为:The multi-Bernoulli random set of newborn particle labels at time k is Then the multi-Bernoulli random set of target sampling particle labels predicted at time k is:
表示从k-1时刻到k时刻持续存活粒子在模型s下的状态预测,表示k时刻新生目标的采样粒子在模型s下的状态预测,表示k时刻持续存活粒子在模型s下的模型权概率,表示新生目标的采样粒子k时刻在模型s下的模型权概率,表示从k-1时刻到k时刻持续存活粒子在模型s下的权重预测,表示k时刻新生目标的采样粒子在模型s下的粒子权重预测。 Indicates the state prediction of persistently surviving particles under model s from time k-1 to time k, Represents the state prediction of the sampled particles of the newborn target at time k under the model s, Indicates the model weight probability of persistently surviving particles at time k under model s, Indicates the model weight probability of the sampling particle k of the newborn target under the model s, Indicates the weight prediction of persistently surviving particles under model s from time k-1 to time k, Represents the particle weight prediction of the sampled particles of the newborn target at time k under the model s.
具体预测方法可由下列步骤来完成。The specific prediction method can be completed by the following steps.
第2.1步,对k-1时刻更新后的目标采样粒子标签多伯努利随机集后验分布,进行重采样得到k-1时刻存活粒子的采样样本为:Step 2.1: Resampling the multi-Bernoulli random set posterior distribution of target sampling particle labels updated at time k-1 to obtain the sampling samples of surviving particles at time k-1 as follows:
第2.2步,根据高斯分布,设置4种出生粒子成分,共采样个新生粒子。Step 2.2, according to the Gaussian distribution, set 4 kinds of birth particle components, and sample them together newborn particles.
其中N(mi,P),i=1,2,3,4是目标k时刻的新生密度,具体过程表示如下:Among them, N(m i , P), i=1, 2, 3, 4 is the newborn density of the target at time k, and the specific process is expressed as follows:
根据每种出生粒子成分均值和方差大小,在周围均匀产生粒子,4中出生粒子成分共产生个新生粒子。According to the mean value and variance of each birth particle component, particles are uniformly generated around, and the 4 birth particle components are co-generated newborn particles.
第2.3步,将k-1时刻重采样得到的存活粒子采样样本,即结合交互式多模方法对存活粒子进行预测,具体方式表示如下:Step 2.3, resampling the surviving particle samples at time k-1, namely Combining the interactive multi-mode method to predict the surviving particles, the specific method is expressed as follows:
其中,Fs,k为模型s对应的状态转移方程,s=1,…,p,p为模型总个数,νk为状态噪声。Among them, F s,k is the state transition equation corresponding to model s, s=1,...,p, p is the total number of models, and ν k is the state noise.
模型权概率计算:Model weight probability calculation:
其中,是预测模型概率,Tr:,s为模型转移概率矩阵的第h列,是对应模型s的预测粒子区间量测广义似然函数。in, is the predictive model probability, T r:, s is the hth column of the model transition probability matrix, is the predicted particle interval measurement generalized likelihood function corresponding to model s.
由每个模型预测得到的粒子和模型权概率可以得到交互多模型混合粒子,其中具体计算如下:Particles predicted by each model and model weight probabilities Interactive multi-model hybrid particles can be obtained, where The specific calculation is as follows:
第2.4步,计算存活目标和出生目标的预测状态和权重:In step 2.4, calculate the prediction status and weights of the survival target and the birth target:
其中 in
第2.5步,合并带标签的权重粒子:Step 2.5, merge the weighted particles with labels:
第2.6步,更新目标状态。Step 2.6, update the target state.
假设k时刻预测的目标采样粒子表示为:Assuming that the predicted target sampling particles at time k are expressed as:
则更新的目标采样粒子后验分布为:Then the updated target sampling particle posterior distribution is:
其中,表示从k-1时刻到k时刻第j个目标采样粒子状态预测,表示k时刻第j个目标采样粒子状态的更新;表示从k-1时刻到k时刻第j个目标采样粒子的权重的预测,表示k时刻第j个目标采样粒子的权重的更新;表示k时刻预测的目标采样粒子数目,表k时刻的目标采样粒子数目。in, Indicates the state prediction of the jth target sampled particle from time k-1 to time k, Indicates the update of the state of the jth target sampled particle at time k; Represents the prediction of the weight of the jth target sample particle from time k-1 to time k, Represents the update of the weight of the jth target sampling particle at time k; Indicates the number of target sampling particles predicted at time k, Table k is the number of target sampling particles at time k.
利用k时刻目标随机集的广义似然函数,更新k时刻预测完成的目标采样粒子标签多伯努利随机集,得到k时刻目标采样粒子标签多伯努利随机集的后验分布。Using the generalized likelihood function of the target random set at time k, update the multi-Bernoulli random set of target sampling particle labels predicted at time k, and obtain the posterior distribution of the multi-Bernoulli random set of target sampling particle labels at k time.
具体的更新方法可由下列步骤来完成。The specific update method can be accomplished by the following steps.
第2.6.1步,利用当前时刻的区间量测数据,计算每个预测目标采样粒子对应的广义似然函数,假设,考虑到在Xk上,检测是独立的,并且杂波与检测无关,多目标似然具体计算如下:Step 2.6.1, using the interval measurement data at the current moment, calculate the generalized likelihood function corresponding to each predicted target sampling particle, assuming that, considering that on Xk , the detection is independent, and the clutter has nothing to do with the detection, The specific calculation of multi-objective likelihood is as follows:
其中是一个函数,使得当i=j时满足θk(i)=θk(j)>0,λ为杂波均值,本方法取λ=10。其中in is a function that satisfies θ k (i)=θ k (j)>0 when i=j, λ is the mean value of clutter, and this method takes λ=10. in
单目标广义似然函数为 The single objective generalized likelihood function is
其中N(y;μ,P)表示具有均值为μ和协方差为P的高斯概率密度函数。Σ表示量测噪声vk的协方差,即pv(v)=N(v;0,Σ)。此外z=[zl,zr]。where N(y;μ,P) denotes a Gaussian probability density function with mean μ and covariance P. Σ represents the covariance of the measurement noise v k , that is, p v (v) = N (v; 0, Σ). also z=[z l , z r ].
第2.6.2步,根据区间量测似然函数,对k时刻每个预测目标粒子的权重进行更新计算:Step 2.6.2, according to the interval measurement likelihood function, update and calculate the weight of each predicted target particle at time k:
其中,为每个预测目标粒子的预测权重,其中Ms,k表示在k时刻模型变量的一个集合,Ms,k={s1,…,sk}。in, is the prediction weight of each prediction target particle, where M s,k represents a set of model variables at time k, M s,k ={s 1 ,…,s k }.
步骤3,分量截断。Step 3, component truncation.
从当前时刻更新的目标采样粒子标签多伯努利随机集的后验分布中,选出其标签权重大于给定阈值的当前时刻更新的目标采样粒子标签多伯努利随机集的后验分布,作为当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布。From the posterior distribution of the multi-Bernoulli random set of target sampling particle labels updated at the current moment, select the posterior distribution of the multi-Bernoulli random set of target sampling particle labels updated at the current moment whose label weight is greater than a given threshold, Posterior distribution for a Multi-Bernoulli random set of particle labels sampled as targets truncated at the current moment.
通常情况下,GLMB算法中,前一时刻的假设轨迹的个数到下一时刻会被截断两次,分别是假设轨迹的预测和更新,都需要截断操作。为了提高算法运算效率,本发明算法整合预测和更新步骤,仅需一次截断,大大的提高了算法的运行速度。Usually, in the GLMB algorithm, the number of hypothetical trajectories at the previous moment will be truncated twice at the next moment, and the prediction and update of the hypothetical trajectories respectively require truncation operations. In order to improve the operation efficiency of the algorithm, the algorithm of the present invention integrates the prediction and updating steps, and only needs one truncation, which greatly improves the running speed of the algorithm.
假定k-1时刻的目标采样粒子标签多伯努利随机集后验分布为:Assume that the posterior distribution of the multi-Bernoulli random set of target sampling particle labels at time k-1 is:
则k时刻的目标采样粒子标签多伯努利随机集后验分布为:Then the posterior distribution of the multi-Bernoulli random set of target sampling particle labels at time k is:
其中H是指标空间,h是指标,从k-1时刻分量总数为Hk-1,到k时刻分量总数为Hk,只需要一个截断操作,大大降低了本发明算法的计算复杂度。Where H is the index space, h is the index, from the total number of components at time k-1 is H k-1 to the total number of components at time k is H k , only one truncation operation is needed, which greatly reduces the computational complexity of the algorithm of the present invention.
步骤4,状态估计。Step 4, state estimation.
我们使用边缘多目标估计的次优版本,最大势的后验估计。多目标状态的平均估计取决于估计的势,对更新后的目标粒子计算势分布。We use a suboptimal version of marginal multi-objective estimation, the posterior estimation of maximum potential. The average estimate of the multi-target state depends on the estimated potential, and the potential distribution is calculated for the updated target particles.
分别计算当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布的势,并找出其中最大势所对应的指标Nk+1;从当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布中选出标签权重较大的Nk个当前时刻截断的目标采样粒子标签多伯努利随机集的后验分布,作为当前时刻最终的目标采样粒子标签多伯努利随机集的后验分布。Calculate the potential of the posterior distribution of the multi-Bernoulli random set of target sampling particle labels truncated at the current moment, and find out the index N k +1 corresponding to the maximum potential; From the posterior distribution of the random set, select the posterior distribution of N k truncated target sampling particle labels at the current moment with a large label weight, and use it as the final target sampling particle label at the current moment. The posterior distribution for a random set.
根据当前时刻目标采样粒子标签多伯努利随机集的后验分布,采用加权法计算出目标采样粒子状态的加权和,作为当前时刻真实存在的目标状态。若此时估计出目标后验最大势对应的目标个数为Nk。状态估计具体计算如下:According to the posterior distribution of the multi-Bernoulli random set of target sampling particle labels at the current moment, the weighted sum of the target sampling particle states is calculated by using the weighting method, which is regarded as the real target state at the current moment. If it is estimated at this time that the target number corresponding to the target posterior maximum potential is N k . The specific calculation of state estimation is as follows:
其中,为后验最大势对应假设轨迹的目标采样粒子的更新粒子,表示对应更新粒子的更新权重。xk,i为当前时刻第i个目标的状态估计。in, is the update particle of the target sampling particle for the posterior maximum potential corresponding to the hypothesized trajectory, Indicates the update weight of the corresponding update particle. x k,i is the state estimation of the i-th target at the current moment.
步骤5,判断所有时刻是否处理完毕,若是,执行步骤6,否则,执行步骤2,处理下一时刻。Step 5, judge whether all time has been processed, if so, execute step 6, otherwise, execute
步骤6,结束。Step 6, end.
本发明在广义标签多伯努利滤波的基础上,使用交互式多模型方法对滤波器中每个目标状态的采样粒子进行预测,再将预测粒子代入到GLMB的算法中进行目标存在概率及分布密度的更新估计。本发明在区间量测环境情况下,能有效地检测跟踪机动多目标,实现对目标状态和数目的估计。Based on the generalized label multi-Bernoulli filter, the present invention uses an interactive multi-model method to predict the sampling particles of each target state in the filter, and then substitutes the predicted particles into the GLMB algorithm to perform target existence probability and distribution An updated estimate of the density. The invention can effectively detect and track maneuvering multi-targets under the condition of interval measurement environment, and realize the estimation of the status and number of the targets.
下面结合附图2的仿真图,对本发明的效果做进一步说明。The effect of the present invention will be further described in conjunction with the simulation diagram of accompanying drawing 2 below.
仿真条件:本发明在Intel(R)Core(TM)i3-2370M CPU@2.40GHz处理器的电脑上,采用MATLAB R2014a软件完成仿真。Simulation conditions: the present invention uses MATLAB R2014a software to complete the simulation on a computer with an Intel(R) Core(TM) i3-2370M CPU@2.40GHz processor.
仿真场景设置:为了验证本发明提出的一种区间量测下交互式多模广义标记多伯努利滤波器的快速实现算法能精确的检测和跟踪弱小机动目标,本发明的仿真实验场景为[-2000,2000]×[0,2000]m2二维空间内,整个仿真过程共持续100秒,共五个目标,每个目标的出生死亡时间以及运动状态如表1所述。Simulation scene setting: In order to verify that the rapid implementation algorithm of an interactive multimode generalized marker multi-Bernoulli filter under interval measurement proposed by the present invention can accurately detect and track weak and small maneuvering targets, the simulation experiment scene of the present invention is [ In the two-dimensional space of -2000,2000]×[0,2000]m 2 , the whole simulation process lasts for 100 seconds, and there are five targets in total. The birth, death time and motion state of each target are listed in Table 1.
表1Table 1
目标状态方程为:The target state equation is:
其中表示运动模型s对应的状态转移矩阵,s=1,2,3.均为零均值高斯白噪声。定义为匀速直线运动模型,为左转弯运动,为右转弯运动。in Indicates the state transition matrix corresponding to the motion model s, s=1,2,3. Both are zero-mean Gaussian white noise. definition is a uniform linear motion model, for a left turn movement, Movement for a right turn.
ω(2)=-0.04rad/s,ω(3)=0.1rad/s。为表示协方差矩阵为Qj的零均值高斯白噪声,T表示采样周期。其中σv=4m/s2,ω (2) = -0.04rad/s, ω (3) = 0.1rad/s. To represent zero-mean Gaussian white noise with covariance matrix Q j , T represents the sampling period. where σv = 4m/s 2 ,
量测方程为:The measurement equation is:
其中,表示量测似然函数,(xk,yk)表示目标的位置。其中ωk为零均值且协方差矩阵为的高斯白噪声,其中σr=2.5m和σθ=0.25°。这种传感器提供区间量测,具有区间长度为Δ=[Δr,Δθ]T,其中Δr=50m和Δθ=4°分别是范围和方位角的区间长度。in, represents the measurement likelihood function, and (x k , y k ) represents the position of the target. where ω k is zero mean and the covariance matrix is Gaussian white noise of , where σ r =2.5m and σ θ =0.25°. This sensor provides interval measurements with interval length Δ = [Δ r ,Δ θ ] T , where Δ r =50m and Δ θ =4° are the interval lengths for range and azimuth, respectively.
广义标签多伯努利滤波器初始化时给定五个目标的准确位置,目标初始状态为x1=[1000,-10,1500,-10],x2=[-250,20,1000,3],x3=[-1500,11,250,10],x4=[250,11,750,5],x5=[1000,-50,1500,0]。相关仿真参数设置为:pD,k=0.98和pS,k=0.99,杂波均值λ=10。目标初始模型权概率 The exact positions of five targets are given when the generalized label multi-Bernoulli filter is initialized, the initial state of the target is x 1 = [1000,-10,1500,-10], x 2 =[-250,20,1000,3 ], x 3 =[-1500,11,250,10], x 4 =[250,11,750,5], x 5 =[1000,-50,1500,0]. The relevant simulation parameters are set as: p D,k =0.98 and p S,k =0.99, and the mean value of clutter λ=10. target initial model weight probability
为了证明仿真效果,截断阈值Hth=1×10-15,在杂波率为λ=10的情况下,存活及新生粒子数目按照100个粒子进行100次蒙特卡洛实验。计算目标的OSPA(Optimal Sub-Pattern Assignment)距离,OSPA参数设置为c=100m,p=2。图2(a)和图2(b)分别表示杂波率为λ=10的情况下,目标的运动状态和航迹跟踪结果。图2(a)轨迹中的圆圈表示目标初始位置,三角形表示目标最终位置。图2(b)是目标的航迹跟踪结果;由图2(b)可知,本发明的方法能够处理目标机动问题,在目标发生转弯的时刻也能跟踪出目标的准确位置。图2(c)和图2(d)分别是目标势的跟踪效果图和势误差图;由图2(c)和图2(d)可知,在不考虑个别时刻情况下,本发明的方法表现出了相对优势,其对目标势的估计相对更准确一些,估计误差也相对稳定且小于IMM-GLMB算法(区间量测下交互式多模广义标签多伯努利滤波器)和IMM-LMB算法(区间量测下交互式多模标签多伯努利滤波器)。图2(e)、图2(f)和图2(g)分别表示存活及新生粒子数目均为100个的目标OSPA距离跟踪误差图、OSPA位置跟踪误差图和OSPA势跟踪误差图;由图2(e)可知,当目标个数增多的时候,本发明的方法对目标距离跟踪误差相对稳定且小于IMM-GLMB算法和IMM-LMB算法;由图2(f)可知,本发明的方法在估计目标位置时,跟踪性能得到了进一步的提升,减小了目标发生机动时刻的估计偏差,滤波性能较IMM-GLMB算法和IMM-LMB算法两种方法而言更加稳定;由图2(g)可知,本发明的方法在估计目标数目时,跟踪性能明显比IMM-GLMB算法和IMM-LMB算法要好,在目标个数增加时,也能够很好的追踪出目标的个数。In order to prove the simulation effect, the truncation threshold H th =1×10 -15 , under the condition of clutter rate λ=10, the number of surviving and newly born particles is 100 particles and 100 Monte Carlo experiments are carried out. Calculate the OSPA (Optimal Sub-Pattern Assignment) distance of the target, and set the OSPA parameters as c=100m, p=2. Figure 2(a) and Figure 2(b) respectively show the motion state and track tracking results of the target when the clutter rate is λ=10. The circle in the trajectory of Figure 2(a) represents the initial position of the target, and the triangle represents the final position of the target. Fig. 2(b) is the track tracking result of the target; as can be seen from Fig. 2(b), the method of the present invention can deal with the problem of target maneuvering, and can also track the exact position of the target when the target turns. Figure 2(c) and Figure 2(d) are respectively the tracking effect diagram and the potential error diagram of the target potential; from Figure 2(c) and Figure 2(d), it can be seen that, without considering individual moments, the method of the present invention It shows a relative advantage, its estimation of the target potential is relatively more accurate, and the estimation error is relatively stable and smaller than the IMM-GLMB algorithm (interactive multi-mode generalized label multi-Bernoulli filter under interval measurement) and IMM-LMB Algorithm (interactive multimodal label multi-Bernoulli filter under interval measurement). Fig. 2(e), Fig. 2(f) and Fig. 2(g) respectively show the target OSPA distance tracking error map, OSPA position tracking error map and OSPA potential tracking error map when the number of surviving and newly born particles is 100; 2(e) shows that when the number of targets increases, the method of the present invention is relatively stable to the target distance tracking error and is smaller than the IMM-GLMB algorithm and the IMM-LMB algorithm; it can be seen from Figure 2(f) that the method of the present invention is When estimating the target position, the tracking performance is further improved, reducing the estimation deviation of the target maneuvering moment, and the filtering performance is more stable than the IMM-GLMB algorithm and the IMM-LMB algorithm; Fig. 2(g) It can be seen that the tracking performance of the method of the present invention is obviously better than that of the IMM-GLMB algorithm and the IMM-LMB algorithm when estimating the number of targets, and it can also track the number of targets well when the number of targets increases.
综上所述,从仿真效果图的分析可知,本发明提出的一种区间量测下交互式多模广义标签多伯努利滤波器的快速实现跟踪方法,实现了对区间量测下机动多目标的检测和跟踪。目标跟踪精度高,跟踪性能良好,其性能相对优于交互式多模广义标签多伯努利滤波器、交互式多模标签多伯努利滤波器、交互式多模概率假设密度滤波器和交互式多模势概率假设密度滤波器,本发明的方法在处理机动目标跟踪问题时,在滤波性能上有明显优势,在现实工程应用中更有优势。In summary, from the analysis of the simulation effect diagram, it can be seen that a fast tracking method for the interactive multimode generalized label multi-Bernoulli filter under the interval measurement proposed by the present invention realizes the mobile multi-mode filter under the interval measurement. Target detection and tracking. The target tracking accuracy is high, and the tracking performance is good, and its performance is relatively better than the interactive multi-mode generalized label multi-Bernoulli filter, the interactive multi-mode label multi-Bernoulli filter, the interactive multi-mode probability hypothesis density filter and the interactive The multi-mode potential probability assumption density filter, the method of the invention has obvious advantages in filtering performance when dealing with the problem of maneuvering target tracking, and has more advantages in practical engineering applications.
需要说明的是,尽管以上本发明所述的实施例是说明性的,但这并非是对本发明的限制,因此本发明并不局限于上述具体实施方式中。在不脱离本发明原理的情况下,凡是本领域技术人员在本发明的启示下获得的其它实施方式,均视为在本发明的保护之内。It should be noted that although the above-mentioned embodiments of the present invention are illustrative, they are not intended to limit the present invention, so the present invention is not limited to the above specific implementation manners. Without departing from the principles of the present invention, all other implementations obtained by those skilled in the art under the inspiration of the present invention are deemed to be within the protection of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811549885.5A CN109508444B (en) | 2018-12-18 | 2018-12-18 | Fast Tracking Method for Interactive Multimodal Generalized Label Multi-Bernoulli under Interval Measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811549885.5A CN109508444B (en) | 2018-12-18 | 2018-12-18 | Fast Tracking Method for Interactive Multimodal Generalized Label Multi-Bernoulli under Interval Measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109508444A CN109508444A (en) | 2019-03-22 |
CN109508444B true CN109508444B (en) | 2022-11-04 |
Family
ID=65753547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811549885.5A Active CN109508444B (en) | 2018-12-18 | 2018-12-18 | Fast Tracking Method for Interactive Multimodal Generalized Label Multi-Bernoulli under Interval Measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109508444B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110084831B (en) * | 2019-04-23 | 2021-08-24 | 江南大学 | Multi-target detection and tracking method based on YOLOv3 multi-Bernoulli video |
US11094070B2 (en) * | 2019-04-23 | 2021-08-17 | Jiangnan University | Visual multi-object tracking based on multi-Bernoulli filter with YOLOv3 detection |
CN110532921B (en) * | 2019-08-21 | 2022-01-07 | 江南大学 | SSD-based generalized label detection multi-Bernoulli video multi-target tracking method |
CN110967690B (en) * | 2019-11-12 | 2023-06-16 | 江南大学 | A Multi-Bernoulli Distributed Multi-Sensor Multi-Target Tracking Method |
CN113409363B (en) * | 2020-03-17 | 2024-04-05 | 西安电子科技大学 | Multi-target tracking method based on BP-PMBM filtering algorithm |
CN111457916B (en) * | 2020-03-30 | 2021-05-07 | 中国人民解放军国防科技大学 | Space Debris Target Tracking Method and Device Based on Extended Marker Random Finite Set |
CN111504326B (en) * | 2020-04-30 | 2023-10-27 | 江苏理工学院 | Robust GLMB multi-target tracking method based on T distribution |
CN111812637B (en) * | 2020-06-02 | 2022-12-02 | 杭州电子科技大学 | L-RFS mixed target structure modeling and estimation method with type probability |
CN112113572B (en) * | 2020-09-18 | 2023-04-07 | 桂林电子科技大学 | Multi-target tracking method for solving distributed label fusion |
CN112305915B (en) * | 2020-10-28 | 2023-02-07 | 深圳大学 | Label multi-Bernoulli multi-target tracking method and system of TSK iterative regression model |
CN113917449B (en) * | 2021-09-30 | 2025-02-11 | 中国船舶集团有限公司第七二四研究所 | A multi-Bernoulli multi-target tracking method with multiple radar labels under low detection probability |
CN114493885A (en) * | 2022-03-30 | 2022-05-13 | 支付宝(杭州)信息技术有限公司 | Optimization method and device of strategy combination |
CN115097437B (en) * | 2022-06-06 | 2023-06-09 | 哈尔滨工程大学 | Underwater target tracking track approaching intersection solving method based on label multiple Bernoulli detection front tracking algorithm |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005165791A (en) * | 2003-12-03 | 2005-06-23 | Fuji Xerox Co Ltd | Object tracking method and tracking system |
CN106199581A (en) * | 2016-06-30 | 2016-12-07 | 电子科技大学 | A kind of multiple maneuver target tracking methods under random set theory |
CN106408594A (en) * | 2016-09-28 | 2017-02-15 | 江南大学 | Video multi-target tracking method based on multi-Bernoulli characteristic covariance |
CN106707272A (en) * | 2016-07-01 | 2017-05-24 | 电子科技大学 | Multi-target tracking method based on theory of random sets |
CN107765179A (en) * | 2017-06-26 | 2018-03-06 | 河海大学 | It is a kind of to be applied to measure the generator dynamic state estimator method lost |
CN111007880A (en) * | 2019-12-24 | 2020-04-14 | 桂林电子科技大学 | An Extended Target Tracking Method Based on Automotive Radar |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10310068B2 (en) * | 2014-12-08 | 2019-06-04 | Northrop Grumman Systems Corporation | Variational track management |
CN104766320B (en) * | 2015-04-02 | 2017-06-13 | 西安电子科技大学 | Many Bernoulli Jacob under thresholding is measured filter Faint target detection and tracking |
CN105354860B (en) * | 2015-08-26 | 2018-03-06 | 西安电子科技大学 | Extension target CBMeMBer trackings based on case particle filter |
CN106910205A (en) * | 2017-03-03 | 2017-06-30 | 深圳市唯特视科技有限公司 | A kind of multi-object tracking method based on the coupling of stochastic finite collection wave filter |
CN107102295A (en) * | 2017-04-13 | 2017-08-29 | 杭州电子科技大学 | The multisensor TDOA passive location methods filtered based on GLMB |
CN107145612B (en) * | 2017-06-23 | 2020-11-10 | 北京邮电大学 | A Topic-Related Influencer User Discovery and Tracking Method |
CN107677997B (en) * | 2017-09-28 | 2021-06-29 | 杭州电子科技大学 | An Extended Target Tracking Method Based on GLMB Filtering and Gibbs Sampling |
CN107730537B (en) * | 2017-09-29 | 2020-07-07 | 桂林电子科技大学 | Weak target detection and tracking method based on box particle probability hypothesis density filtering |
CN107703496B (en) * | 2017-10-12 | 2021-04-30 | 桂林电子科技大学 | Interactive multimode Bernoulli filtering maneuvering weak target tracking-before-detection method |
-
2018
- 2018-12-18 CN CN201811549885.5A patent/CN109508444B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005165791A (en) * | 2003-12-03 | 2005-06-23 | Fuji Xerox Co Ltd | Object tracking method and tracking system |
CN106199581A (en) * | 2016-06-30 | 2016-12-07 | 电子科技大学 | A kind of multiple maneuver target tracking methods under random set theory |
CN106707272A (en) * | 2016-07-01 | 2017-05-24 | 电子科技大学 | Multi-target tracking method based on theory of random sets |
CN106408594A (en) * | 2016-09-28 | 2017-02-15 | 江南大学 | Video multi-target tracking method based on multi-Bernoulli characteristic covariance |
CN107765179A (en) * | 2017-06-26 | 2018-03-06 | 河海大学 | It is a kind of to be applied to measure the generator dynamic state estimator method lost |
CN111007880A (en) * | 2019-12-24 | 2020-04-14 | 桂林电子科技大学 | An Extended Target Tracking Method Based on Automotive Radar |
Also Published As
Publication number | Publication date |
---|---|
CN109508444A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109508444B (en) | Fast Tracking Method for Interactive Multimodal Generalized Label Multi-Bernoulli under Interval Measurement | |
CN107045125B (en) | Interactive multi-model radar target tracking method based on predicted value measurement conversion | |
CN110503071B (en) | Multi-target tracking method based on variational Bayesian label multi-Bernoulli superposition model | |
CN107300698B (en) | Radar target track starting method based on support vector machine | |
CN111562571B (en) | A Maneuvering Multi-target Tracking and Track Maintenance Method with Unknown New Strength | |
CN111711432B (en) | Target tracking algorithm based on UKF and PF hybrid filtering | |
CN105354860B (en) | Extension target CBMeMBer trackings based on case particle filter | |
CN105405151A (en) | Anti-occlusion target tracking method based on particle filtering and weighting Surf | |
CN104199022B (en) | Target modal estimation based near-space hypersonic velocity target tracking method | |
CN107677997A (en) | Extension method for tracking target based on GLMB filtering and Gibbs samplings | |
CN106022340A (en) | Improved Gaussian mixed potential probability hypothesis density filtering method | |
CN106054167B (en) | More extension method for tracking target based on density filter | |
CN111693984B (en) | Improved EKF-UKF moving target tracking method | |
CN104833967A (en) | Radar target tracking method based on moving horizon estimation | |
CN110189362B (en) | Efficient target tracking method based on multi-branch self-coding countermeasure network | |
CN107797106A (en) | A kind of PHD multiple target tracking smooth filtering methods of the unknown clutter estimations of acceleration EM | |
CN115204212A (en) | Multi-target tracking method based on STM-PMBM filtering algorithm | |
CN105424043B (en) | It is a kind of based on judging motor-driven estimation method of motion state | |
CN108871365B (en) | State estimation method and system under course constraint | |
CN109934849A (en) | Online multi-target tracking method based on trajectory metric learning | |
Hou et al. | Bearing‐only underwater uncooperative target tracking for non‐Gaussian environment using fast particle filter | |
CN111325776A (en) | A PHD Multi-target Tracking Method Based on Variational Bayesian T-distributed Kalman Filter | |
Lan et al. | Variational nonlinear kalman filtering with unknown process noise covariance | |
Yun et al. | Variational Bayesian based adaptive PDA filter in scenarios with unknown detection probability and heavy-tailed process noise | |
CN113344970A (en) | Irregular multi-extended target joint tracking and classifying method based on multiple Bernoulli |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |