CN109507982A - 一种自动驾驶汽车线控底盘在环测试系统 - Google Patents

一种自动驾驶汽车线控底盘在环测试系统 Download PDF

Info

Publication number
CN109507982A
CN109507982A CN201811231621.5A CN201811231621A CN109507982A CN 109507982 A CN109507982 A CN 109507982A CN 201811231621 A CN201811231621 A CN 201811231621A CN 109507982 A CN109507982 A CN 109507982A
Authority
CN
China
Prior art keywords
steering
pxi
microautobox
control
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811231621.5A
Other languages
English (en)
Other versions
CN109507982B (zh
Inventor
季学武
王洪民
何祥坤
杨恺明
刘玉龙
丁伟
唐惟胜
武健
费聪
刘亚辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201811231621.5A priority Critical patent/CN109507982B/zh
Publication of CN109507982A publication Critical patent/CN109507982A/zh
Application granted granted Critical
Publication of CN109507982B publication Critical patent/CN109507982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明公开了一种自动驾驶汽车线控底盘在环测试系统,包括电控系统、线控液压制动系统、线控转向系统、显示屏;所述的电控系统分别与线控液压制动系统、线控转向系统双向连接,与显示屏单向连接;线控液压制动系统为无人驾驶制动和有人驾驶制动两种模式共存且随时可切换的系统,线控转向系统为无人驾驶转向和有人驾驶转向两种模式共存且两种模式随时可切换的系统,电控系统为带有两种模式切换开关的系统。本发明自动驾驶汽车线控底盘在环测试系统,通过设置无人驾驶和有人驾驶两种模式共存且随时可切换模式、实现了人机共驾的场景,从而解决了现实生活中酒后代驾、疲劳驾驶的问题,实现了智能化和人工驾驶的美妙结合,将人工驾驶和无人驾驶的优势发挥到了极致。

Description

一种自动驾驶汽车线控底盘在环测试系统
技术领域
本发明创造属于智能汽车与交通仿真技术领域,具体涉及一种自动驾驶汽车线控底盘在环测试系统。
背景技术
随着汽车主动安全技术的发展,工程师们对整车系统动力学控制也提出了更高的要求。传统的汽车底盘系统不具备主动控制功能,其底盘结构主要以机械、液压元件为主,并且缺乏灵活性,难以应对复杂多变的汽车行驶工况和不同的驾驶功能要求。由于机械和液压连接带来动力学上的强耦合特性,使得不同控制系统之间会产生干扰或制约,致使汽车的再生制动功能的能量回收效率并不是很理想。而汽车的转向系统和制动系统均是汽车驾驶系统中十分重要的组成部分,其中制动系统的功能是使行驶中的汽车减速甚至停车以及使下坡中行驶的汽车速度保持稳定,转向系统的功用是按照驾驶员的意愿操纵并控制汽车的行驶方向。传统燃油汽车的底盘制动系统采用真空助力装置,其缺点是结构较为复杂、体积较大、对发动机依赖程度大且制动压力控制也不精确,由于以上缺点,目前车辆产业中已经减少了对制动部分真空助力装置的使用。以上提及的传统制动、转向系统,由于其广泛采用机械结构链接,不能满足汽车智能驾驶时主动安全功能方面的需要,因此线控液压制动与线控转向的概念被人们提出。
显然,当今日益流行的线控液压制动与线控转向功能一般更加适用于无人驾驶汽车的情景,然而,无人驾驶目前国内外只是刚刚兴起,其应用范围具有局限性,尤其对于私家车的应用场合,大部分私家车主更加愿意享受自主驾驶带来的乐趣,然而在其享受驾驶乐趣的同时,也常常因为旅途的疲劳驾驶而倍尝危险,或者为了长途跋涉安全起见,不得不联合几个人共驾前行,以分担劳动,保证安全。
由此看来,当今无人驾驶车虽然制动、转向精准,但不能满足驾车者的体验;而有人驾驶车虽然能够满足用户体验,但不能避免因疲劳驾驶而发生的危险;存在的问题是:无人驾驶和有人驾驶二者不能成为有机的统一体,达到互相弥补和取长补短的目的。
发明内容
本发明针对现有技术存在的问题,提出一种基于人机共驾的自动驾驶汽车线控底盘在环测试系统,目的在于解决现有技术无人驾驶和有人驾驶二者不能成为有机的统一体,不能互相弥补和取长补短的问题。
本发明为解决其技术问题采用以下技术方案。
一种自动驾驶汽车线控底盘在环测试系统,其特征在于:包括电控系统、线控液压制动系统、线控转向系统、显示屏;所述的电控系统分别与线控液压制动系统、线控转向系统双向连接,与显示屏单向连接;其特征在于:所述线控液压制动系统为无人驾驶制动和有人驾驶制动两种模式共存且两种模式随时可切换的系统,所述线控转向系统为无人驾驶转向和有人驾驶转向两种模式共存且两种模式随时可切换的系统,所述电控系统为带有两种模式切换开关的系统。
所述电控系统包括带有两种模式切换开关及控制软件的上位机组、用于提供线控液压制动系统硬件底层控制的PXI、用于提供线控转向系统硬件底层控制的MicroAutoBox;所述上位机组与所述MicroAutoBox和所述PXI分别通过网线连接,所述MicroAutoBox和所述PXI通过CAN总线相互传输数据,所述MicroAutoBox通过CAN总线控制线控转向系统;所述PXI通过CAN总线控制线控液压制动系统;所述线控液压制动系统和线控转向系统将采集信息反馈给电控系统的上位机组。
所述上位机组包括:CarSim软件模块、Labview软件模块、 MatLab/Simulink软件模块;所述的CarSim用于将车辆道路系统模型显示于显示屏;所述的CarSim还接收Labview反馈的采集数据,根据采集数据进行动态测试,然后向Labview输出整车参数作为测试结果,Labview将接收的测试结果发送给PXI,PXI接收测试结果通过CAN总线将其传递给MicroAutoBox;所述MatLab/Simulink一方面计算理想的数据交给所述转向系统和所述制动系统执行,一方面通过MicroAutoBox接收来自PXI的测试结果,根据测试结果再计算出理想的数据,同时MatLab/Simulink还用于接收模式切换开关信号,启动不同的模式。
所述MicroAutoBox接收来自MatLab/Simulink的模式切换指令及计算的理想数据,当接收无人驾驶模式指令时,MicroAutoBox向PXI发出控制指令,并根据MatLab/Simulink计算的理想数据给转向电机控制器G31发出转角信号,从而控制所述线控转向系统;当接收来自MatLab/Simulink有人驾驶模式指令时,MicroAutoBox向路感电机控制器发出控制指令,路感电机控制器控制路感电机模拟阻力加载并作用于方向盘;同时,MicroAutoBox再将采集的转角信息发送给PXI,制动子系统通过压力传感器将采集的信息传给PXI, PXI最终将两路采集的数据发送给上位机组的CarSim软件单元,CarSim软件单元根据这些参数进行车辆模型的动态测试,CarSim还通过显示屏显示该车辆模型的动态测试动画。
所述PXI用于控制制动系统的底层硬件,PXI通过MicroAutoBox接收 MatLab/Simulink发出的无人驾驶或有人驾驶的指令,当接收无人驾驶指令时, PXI接收压力传感器采集的数据,同时,PXI启动阻力加载,将阻力加载电流发送给转向电机;当接收有人驾驶指令时,PXI只是接收压力传感器采集的数据而非启动阻力加载;所述PXI还用于通过MicroAutoBox接收转向系统的采集数据,包括有人驾驶和无人驾驶转向系统采集的数据;所述PXI还用于将两路采集数据通过Labview发送给CarSim,CarSim根据采集数据进行动态测试,然后向Labview输出整车参数作为测试结果,Labview将接收的测试结果发送给PXI;所述PXI还用于将两路采集后的测试结果通过MicroAutoBox发送给MatLab/Simulink,MatLab/Simulink根据采集后的测试结果再次计算理想数据。
所述的线控液压制动系统包括无人驾驶制动子系统、有人驾驶制动子系统;所述无人驾驶制动子系统包括带有电动主缸的电动建压装置、带有轮缸压力传感器的液压调节单元、制动轮缸;电动建压装置接收PXI控制指令通过液压调节单元ECU控制制动轮缸,轮缸压力传感器将采集的信息反馈给PXI;所述有人驾驶制动子系统包括人工制动踏板、电动主缸、带有轮缸压力传感器的液压调节单元,制动轮缸;电动主缸接收人工制动踏板的信息,通过液压调节单元ECU控制制动轮缸,制轮缸压力传感器将采集信息反馈给PXI。
所述的线控转向系统包括无人驾驶转向子系统,有人驾驶转向子系统;所述无人驾驶转向子系统包括转向电机控制器、转向电机、转角传感器,所述转向电机控制器接收MicroAutoBox转角控制指令并控制转向电机,转向电机输出信息给转角传感器,转角传感器将采集信息反馈给MicroAutoBox;所述有人驾驶转向子系统包括方向盘、转角-转矩传感器、路感电机控制器,路感电机,转向电机控制器、转向电机、转角传感器;所述转角-转矩传感器接收方向盘转角-转矩信息并发送给路感电机控制器,路感电机控制器控制路感电机模拟阻尼加载于方向盘;所述路感电机控制器当接收MicroAutoBox人工转向指令时、通过CAN总线控制转向电机控制器控制转向电机、并通过转向电机的转角传感器将采集信息反馈给MicroAutoBox。
本发明的优点效果
1.本发明自动驾驶汽车线控底盘在环测试系统,通过设置无人驾驶制动和有人驾驶制动两种模式共存且随时可切换模式、设置无人驾驶转向和有人驾驶转向两种模式共存且随时可切换模式、设置电控系统为带有两种模式切换开关的电控系统模式,实现了人机共驾的场景,驾驶员可以自驾也可以把方向盘交给无人驾驶系统,从而解决了现实生活中酒后代驾、疲劳驾驶的问题,给私家车插上了无人驾驶的翅膀,在满足驾驶员自驾体验的同时,采用分段无人驾驶的模式,实现了智能化和人工驾驶的美妙结合,将人工驾驶和无人驾驶的优势发挥到了极致。
2.本发明所述的自动驾驶汽车硬件在环测试系统实现了线控液压制动系统与线控转向系统的硬件在环,不仅为线控系统的硬件快速控制原型的开发提供了有利条件,同时还降低了线控液压制动系统和线控转向系统的研发成本。在进行硬件在环仿真分析时,驾驶员及路面环境都是由计算机模拟实现,可实现各种复杂的路面环境和工况设置,不但减少了人工成本,还增加了动态调整的灵活度。
3.本发明所述的自动驾驶汽车硬件在环测试系统能够用于线控液压制动执行机构、线控转向执行机构及ECU的开发测试,以及设计方法、控制技术和样机测试研究,通过本试验台,能够用于ABS/ACC/AEB/LKA/TCS/ESC等主动安全系统及其控制策略的仿真分析,具有精确测量线控制动油液压力功能,能够实现轮缸压力的快速调节;线控转向部分同时采用P-EPS和C-EPS 系统,方便进行不同转向系统构型控制器的开发,不仅可以研究线控转向系统的控制策略,还可单独研究P-EPS或C-EPS电动助力转向的助力性能,并且可以借助方向盘,实现人机共驾功能。
4.本发明所述的自动驾驶汽车制动部分硬件在环测试系统在验证算法、电磁阀响应特性和轮缸增减压动态响应特性的同时,通过修正参数完成参数优化,能够实现对控制算法的动态调整,电磁阀等执行机构的实物参数修正及重新设计过程。
附图说明
图1为本发明自动驾驶汽车底盘在环测试系统-总体框图;
图2为本发明自动驾驶汽车底盘在环测试系统-电控系统框图;
图3为本发明自动驾驶汽车底盘在环测试系统-电控系统上位机组框图;
图4a为本发明自动驾驶汽车底盘在环测试系统-无人驾驶制动系统、无人驾驶转向系统示意图;
图4b为本发明人机共驾在环测试系统-有人驾驶制动系统、有人驾驶转向系统示意图;
图5为本发明自动驾驶汽车底盘在环测试系统-总体平面图;
图6为本发明自动驾驶汽车底盘在环测试系统-线控液压制动系统示意图;
图7为本发明自动驾驶汽车底盘在环测试系统-线控转向系统示意图;
1-1:并联电控柜;1-2:平台底板;
2:自动驾驶车制动装置;2-0:人工制动踏板;2-0-0:脚踏板;2-0-1:位移传感器;2-1:电动建压装置;2-1-1-电动主缸;2-1-2-电机驱动器;2-2:制动轮缸:2-2-1:前轮刹车组;2-2-2:后轮刹车组;2-3:液压调节单元; 2-3-1:进油阀(高速开关阀);2-3-2:出油阀(高速开关阀);2-3-3:低压蓄能器;2-3-4:电机;2-3-5:柱塞泵;2-3-6:压力传感器;2-4:HCU控制器;
3:自动驾驶车转向装置;3-0:转向输入驱动调整组;3-1:接线端子支架;3-2:齿条安装组;3-3:P-EPS控制器;3-3-1-转角传感器;3-3-2-转向电机;3-3-3-转向电机控制器;3-4:阻力加载组;3-5:管柱安装组;3-6: C-EPS控制器;3-6-1:路感电机;3-6-2:路感电机控制器;3-6-3:转角- 转矩传感器;3-7:转向系统供电电源;3-8:转向输入驱动部分;3-9:座椅; 3-10:方向盘;3-11:CAN总线;
4:显示屏。
具体实施方式
本发明的设计原理
1.无人驾驶控制模式的设计。开关模式切换按钮通知上位机组单元的 MatLab/Simulink当前为无人驾驶模式,MatLab/Simulink通过MicroAutoBox 分别启动无人驾驶转向子系统、无人驾驶制动子系统,其中,MicroAutoBox 通过转向电机控制器启动无人驾驶转向子系统,MicroAutoBox通过PXI启动无人驾驶制动子系统;转向子系统通过转角传感器将采集的信息反馈给 MicroAutoBox,MicroAutoBox再将采集的转角信息发送给PXI,制动子系统通过压力传感器将采集的信息传给PXI,PXI最终将两路采集的数据发送给上位机组的CarSim软件单元,CarSim软件单元根据这些参数进行车辆模型的动态测试,CarSim还通过显示屏显示该车辆模型的动态测试动画。
2、有人驾驶控制模式的设计。开关模式切换按钮通知上位机组单元的 MatLab/Simulink当前为有人驾驶模式,MatLab/Simulink通过MicroAutoBox 分别接收有人驾驶转向子系统、有人驾驶制动子系统的数据。其中, MicroAutoBox通过路感电机控制器启动路感电机,路感电机将阻尼加载电流反馈给方向盘,同时,转向电机控制器通过转向电机、转角传感器将采集的信息反馈给MicroAutoBox,MicroAutoBox再将采集的转角信息发送给PXI,制动子系统通过压力传感器将采集的信息传给PXI,PXI最终将两路采集的数据发送给上位机组的CarSim软件单元,CarSim软件单元根据这些参数进行车辆模型的动态测试。
基于以上原理,本发明设计了一种自动驾驶汽车线控底盘在环测试系统。
一种自动驾驶汽车线控底盘在环测试系统如图1所示,其特点是:包括电控系统、线控液压制动系统、线控转向系统、显示屏;所述的电控系统分别与线控液压制动系统、线控转向系统双向连接,与显示屏单向连接;其特征在于:所述线控液压制动系统为无人驾驶制动和有人驾驶制动两种模式共存且两种模式随时可切换的系统,所述线控转向系统为无人驾驶转向和有人驾驶转向两种模式共存且两种模式随时可切换的系统,所述电控系统为带有两种模式切换开关的系统。
所述电控系统如图2所示,包括带有两种模式切换开关及控制软件的上位机组、用于提供线控液压制动系统硬件底层控制的PXI、用于提供线控转向系统硬件底层控制的MicroAutoBox;所述上位机组与所述MicroAutoBox和所述PXI分别通过网线连接,所述MicroAutoBox和所述PXI通过CAN总线相互传输数据,所述MicroAutoBox通过CAN总线控制线控转向系统;所述PXI通过CAN总线控制线控液压制动系统;所述线控液压制动系统和线控转向系统将采集信息反馈给电控系统的上位机组。
所述上位机组(图5的1-1:并联电控柜即为上位机组)如图3所示,包括:CarSim软件模块、Labview软件模块、MatLab/Simulink软件模块;所述的CarSim用于将车辆道路系统模型显示于显示屏;所述的CarSim还接收 Labview反馈的采集数据,根据采集数据进行动态测试,然后向Labview输出整车参数作为测试结果,Labview将接收的测试结果发送给PXI,PXI接收测试结果通过CAN总线将其传递给MicroAutoBox;所述MatLab/Simulink一方面计算理想的数据交给所述转向系统和所述制动系统执行,一方面通过 MicroAutoBox接收来自PXI的测试结果,根据测试结果再计算出理想的数据,同时MatLab/Simulink还用于接收模式切换开关信号,启动不同的模式。
所述MicroAutoBox接收来自MatLab/Simulink的模式切换指令及计算的理想数据,当接收无人驾驶模式指令时,MicroAutoBox向PXI发出控制指令,并根据MatLab/Simulink计算的理想数据给转向电机控制器发出转角信号,从而控制所述线控转向系统;当接收来自MatLab/Simulink有人驾驶模式指令时,MicroAutoBox向路感电机控制器发出控制指令,路感电机控制器控制路感电机模拟阻力加载并作用于方向盘;同时,MicroAutoBox再将采集的转角信息发送给PXI,制动子系统通过压力传感器将采集的信息传给PXI,PXI 最终将两路采集的数据通过Labview发送给上位机组的CarSim软件单元,CarSim软件单元根据这些参数进行车辆模型的动态测试,CarSim还通过显示屏显示该车辆模型的动态测试动画。
所述PXI用于控制制动系统的底层硬件,PXI通过MicroAutoBox接收 MatLab/Simulink发出的无人驾驶或有人驾驶的指令,当接收无人驾驶指令时, PXI接收压力传感器采集的数据,同时,PXI启动阻力加载,将阻力加载电流发送给转向电机;当接收有人驾驶指令时,PXI只是接收压力传感器采集的数据而非启动阻力加载;所述PXI还用于通过MicroAutoBox接收转向系统的采集数据,包括有人驾驶和无人驾驶转向系统采集的数据;所述PXI还用于将两路采集数据通过Labview发送给CarSim,CarSim根据采集数据进行动态测试,然后向Labview输出整车参数作为测试结果,Labview将接收的测试结果发送给PXI;所述PXI还用于将两路采集后的测试结果通过MicroAutoBox发送给MatLab/Simulink,MatLab/Simulink根据采集后的测试结果再次计算理想数据。
如图4a所示,左半边图为无人驾驶情景下的转向子系统,右半边图为无人驾驶情景下的制动子系统;
如图4b所示,左半边图为有人驾驶情景下的转向子系统,右半边图为有人驾驶情景下的制动子系统;
如图4a、4b、图6所示,所述的线控液压制动系统包括无人驾驶制动子系统、有人驾驶制动子系统;所述无人驾驶制动子系统包括带有电动主缸 2-1-2的电动建压装置、带有轮缸压力传感器2-3-6的液压调节单元ECU、制动轮缸2-2-1,2-2-2;电动建压装置接收PXI控制指令通过液压调节单元ECU 控制制动轮缸2-1-1,2-1-2,轮缸压力传感器2-3-6将采集的信息反馈给PXI;所述有人驾驶制动子系统包括人工制动踏板2-0、电动主缸2-1-1、带有轮缸压力传感器2-3-6的液压调节单元HCU,制动轮缸2-2-1,2-2-2;电动主缸 2-1-1接收人工制动踏板2-0的信息,通过液压调节单元HCU控制制动轮缸2-2-1,2-2-2,制轮缸压力传感器2-3-6将采集信息反馈给PXI。
关于线控制动系统的补充说明:在对电子制动踏板性能进行研究和测试时,往往需要对其输入一个阶跃踏板力或让踏板在不同初始速度下匀速运动等,但是人力输入基本上很难满足这些要求。通过本试验台可以实现电子制动踏板与系统的匹配测试。利用电动建压装置(2-1-1、2-1-2)作为踏板的输入,不仅控制精度高,还能模拟驾驶员的制动意图,间接地检测制动系统的特性,对所开发的控制策略如驾驶员的制动意图识别算法进行验证等。
关于线控制动系统的补充说明:参考图6可知,液压调节单元主要包括低压蓄能器2-3-3、柱塞泵2-3-4、电机2-3-5、高速开关阀(2-3-1、2-3-2)、压力传感器2-3-6,制动轮缸(2-2-1,2-2-2),功能要求:基于液压制动自主的ESC线控液压制动系统,能够实现ABS,AEB,TCS等系统主动增压、保压及减压功能,能够在全解耦模式下,在给驾驶员提供制动踏板感觉的同时,对制动轮缸压力进行精确调节。
如图4a、4b、图7所示,所述的线控转向系统包括无人驾驶转向子系统,有人驾驶转向子系统;所述无人驾驶转向子系统包括转向电机控制器、转向电机3-3-2、转角传感器3-3-1,所述转向电机控制器接收MicroAutoBox转角控制指令并控制转向电机3-3-2,转向电机3-3-2输出信息给转角传感器 3-3-1,转角传感器3-3-1将采集信息反馈给MicroAutoBox;所述有人驾驶转向子系统包括方向盘、转角-转矩传感器3-6-3、路感电机控制器,路感电机 3-6-1,转向电机控制器、转向电机3-3-2、转角传感器3-3-1;所述转角-转矩传感器3-6-3接收方向盘转角-转矩信息并发送给路感电机控制器,路感电机控制器控制路感电机3-6-1模拟阻力加载于方向盘;所述路感电机控制器当接收MicroAutoBox人工转向指令时,通过CAN总线控制转向电机控制器、进而控制转向电机,并通过转向电机3-3-2的转角传感器3-3-1将采集信息通过CAN总线反馈给电控系统的MicroAutoBox。
关于线控转向系统的补充说明:参考图7可知,转向单元主要包括路感模拟模块C-EPS(3-6-1、3-6-3、路感电机控制器)、转向执行模块P-EPS(3-3-1、 3-3-2、3-3-3)。
所述线控转向中的路感模拟模块C-EPS是用来给驾驶员提供真实路感,转向执行模块P-EPS用来控制前轮转向,信号检测与处理单元主要包括转角- 转矩传感器3-6-3、转角传感器3-3-1、压力传感器2-3-6、位移传感器2-0-1、和相应的处理电路等,其作用是采集数据并检测试验台当前状态,同时将状态值实时反馈给上位机组。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例。

Claims (7)

1.一种自动驾驶汽车线控底盘在环测试系统,其特征在于:包括电控系统、线控液压制动系统、线控转向系统、显示屏;所述的电控系统分别与线控液压制动系统、线控转向系统双向连接,与显示屏单向连接;其特征在于:所述线控液压制动系统为无人驾驶制动和有人驾驶制动两种模式共存且两种模式随时可切换的系统,所述线控转向系统为无人驾驶转向和有人驾驶转向两种模式共存且两种模式随时可切换的系统,所述电控系统为带有两种驾驶模式切换开关的系统。
2.根据权利要求1所述的一种自动驾驶汽车线控底盘在环测试系统,其特征在于:所述电控系统包括带有两种模式切换开关及控制软件的上位机组、用于提供线控液压制动系统硬件底层控制的PXI、用于提供线控转向系统硬件底层控制的MicroAutoBox;所述上位机组与所述MicroAutoBox和所述PXI分别通过网线连接,所述MicroAutoBox和所述PXI通过CAN总线相互传输数据,所述MicroAutoBox通过CAN总线控制线控转向系统;所述PXI通过CAN总线控制线控液压制动系统;所述线控液压制动系统和线控转向系统将采集信息反馈给电控系统的上位机组。
3.根据权利要求2所述的一种自动驾驶汽车线控底盘在环测试系统,其特征在于:所述上位机组包括:CarSim软件模块、Labview软件模块、MatLab/Simulink软件模块;所述的CarSim用于将车辆道路系统模型显示于显示屏;所述的CarSim还接收Labview反馈的采集数据,根据采集数据进行动态测试,然后向Labview输出整车参数作为测试结果,Labview将接收的测试结果发送给PXI,PXI接收测试结果通过CAN总线将其传递给MicroAutoBox;所述MatLab/Simulink一方面计算理想的数据交给所述转向系统和所述制动系统执行,一方面通过MicroAutoBox接收来自PXI的测试结果,根据测试结果再计算出理想的数据,同时MatLab/Simulink还用于接收驾驶模式切换开关信号,启动不同的驾驶模式。
4.根据权利要求2所述的一种自动驾驶汽车线控底盘在环测试系统,其特征在于:所述MicroAutoBox接收来自MatLab/Simulink的驾驶模式切换指令及计算的理想数据,当接收无人驾驶模式指令时,MicroAutoBox向PXI发出控制指令,并根据MatLab/Simulink计算的理想数据给转向电机控制器发出转角信号,从而控制所述线控转向系统;当接收来自MatLab/Simulink有人驾驶模式指令时,MicroAutoBox向路感电机控制器发出控制指令,路感电机控制器控制路感电机模拟阻力加载并作用于方向盘;同时,MicroAutoBox再将采集的转角信息发送给PXI,制动子系统通过压力传感器将采集的信息传给PXI,PXI最终将两路采集的数据发送给上位机组的CarSim软件单元,CarSim软件单元根据这些参数进行车辆模型的动态测试,CarSim还通过显示屏显示该车辆模型的动态测试动画。
5.根据权利要求2所述的一种自动驾驶汽车线控底盘在环测试系统,其特征在于:所述PXI用于控制制动系统的底层硬件,PXI通过MicroAutoBox接收MatLab/Simulink发出的无人驾驶或有人驾驶的指令,当接收无人驾驶指令时,PXI接收压力传感器采集的数据,同时,PXI启动阻力加载,将阻力加载电流发送给转向电机;当接收有人驾驶指令时,PXI只是接收压力传感器采集的数据而非启动阻力加载;所述PXI还用于通过MicroAutoBox接收转向系统的采集数据,包括有人驾驶和无人驾驶转向系统采集的数据;所述PXI还用于将两路采集数据通过Labview发送给CarSim,CarSim根据采集数据进行动态测试,然后向Labview输出整车参数作为测试结果,Labview将接收的测试结果发送给PXI;所述PXI还用于将两路采集后的测试结果通过MicroAutoBox发送给MatLab/Simulink,MatLab/Simulink根据采集后的测试结果再次计算理想数据。
6.根据权利要求1所述的一种自动驾驶汽车线控底盘在环测试系统,其特征在于:所述的线控液压制动系统包括无人驾驶制动子系统、有人驾驶制动子系统;所述无人驾驶制动子系统包括带有电动主缸的电动建压装置、带有轮缸压力传感器的液压调节单元、制动轮缸;电动建压装置接收PXI控制指令通过液压调节单元ECU控制制动轮缸,轮缸压力传感器将采集的信息反馈给PXI;所述有人驾驶制动子系统包括人工制动踏板、电动主缸、带有轮缸压力传感器的液压调节单元,制动轮缸;电动主缸接收人工制动踏板的信息,通过液压调节单元ECU控制制动轮缸,制轮缸压力传感器将采集信息反馈给PXI。
7.根据权利要求1所述的一种自动驾驶汽车线控底盘在环测试系统,其特征在于:所述的线控转向系统包括无人驾驶转向子系统,有人驾驶转向子系统;所述无人驾驶转向子系统包括转向电机控制器、转向电机、转角传感器,所述转向电机控制器接收MicroAutoBox转角控制指令并控制转向电机,转向电机输出信息给转角传感器,转角传感器将采集信息反馈给MicroAutoBox;所述有人驾驶转向子系统包括方向盘、转角-转矩传感器、路感电机控制器,路感电机,转向电机控制器、转向电机、转角传感器;所述转角-转矩传感器接收方向盘转角-转矩信息并发送给路感电机控制器,路感电机控制器控制路感电机模拟阻尼加载于方向盘;所述路感电机控制器当接收MicroAutoBox人工转向指令时、通过CAN总线控制转向电机控制器控制转向电机、并通过转向电机的转角-传感器将采集信息反馈给MicroAutoBox。
CN201811231621.5A 2018-10-22 2018-10-22 一种自动驾驶汽车线控底盘在环测试系统 Active CN109507982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811231621.5A CN109507982B (zh) 2018-10-22 2018-10-22 一种自动驾驶汽车线控底盘在环测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811231621.5A CN109507982B (zh) 2018-10-22 2018-10-22 一种自动驾驶汽车线控底盘在环测试系统

Publications (2)

Publication Number Publication Date
CN109507982A true CN109507982A (zh) 2019-03-22
CN109507982B CN109507982B (zh) 2020-02-07

Family

ID=65745885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811231621.5A Active CN109507982B (zh) 2018-10-22 2018-10-22 一种自动驾驶汽车线控底盘在环测试系统

Country Status (1)

Country Link
CN (1) CN109507982B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239618A (zh) * 2019-06-28 2019-09-17 南京安洋智能科技有限公司 一种无人驾驶电动车的线控底盘
CN110333730A (zh) * 2019-08-12 2019-10-15 安徽江淮汽车集团股份有限公司 自动驾驶算法预期功能安全的验证方法、平台及存储介质
CN111016686A (zh) * 2019-12-25 2020-04-17 梁山通亚重工机械有限公司 一种无人驾驶纯电动环卫车底盘及底盘网络系统
CN111208801A (zh) * 2020-01-14 2020-05-29 重庆大学 汽车线控转向系统经济型硬件在环平台及测试方法
CN111272448A (zh) * 2020-03-25 2020-06-12 天津清智科技有限公司 线控底盘测试台架
CN111458167A (zh) * 2020-04-14 2020-07-28 上汽依维柯红岩商用车有限公司 用于获取电控动力转向系统性能参数的测试系统及方法
WO2020220248A1 (zh) * 2019-04-30 2020-11-05 深圳市大疆创新科技有限公司 自动驾驶车辆的仿真测试方法、系统、存储介质和车辆
CN111994086A (zh) * 2020-07-14 2020-11-27 南京天航智能装备研究院有限公司 一种智能线控底盘系统及解耦控制方法
CN112519793A (zh) * 2020-12-09 2021-03-19 南京航空航天大学 一种基于数字孪生的智能线控底盘架构及其主动容错方法
CN112810602A (zh) * 2021-02-01 2021-05-18 南京航空航天大学 基于聚类的智能线控底盘个性化稳定性控制方法及系统
CN113928402A (zh) * 2021-11-29 2022-01-14 安徽合力股份有限公司 一种自动驾驶车辆人机共驾转向装置以及控制方法
CN114354228A (zh) * 2022-01-07 2022-04-15 苏州挚途科技有限公司 线控转向系统的测试方法及系统
CN118157528A (zh) * 2024-03-06 2024-06-07 江苏超力电器有限公司 一种线控转向系统及其双三相电机容错控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078556A1 (en) * 2015-04-09 2016-10-12 Ford Global Technologies, LLC Method of controlling a brake-by-wire system
CN106347449A (zh) * 2016-09-21 2017-01-25 江苏大学 一种人机共驾型电动助力转向系统及模式切换方法
CN106706345A (zh) * 2016-11-25 2017-05-24 合肥工业大学 一种线控转向系统路感模拟硬件在环仿真平台及仿真方法
CN107239069A (zh) * 2017-06-12 2017-10-10 奇瑞汽车股份有限公司 一种智能车线控制动系统、制动装置及测试台
CN206627825U (zh) * 2017-03-28 2017-11-10 吉林大学 电动客车集成控制硬件在环测试平台
CN206920121U (zh) * 2017-06-15 2018-01-23 吉林大学 一种电子机械制动助力器硬件在环仿真试验台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078556A1 (en) * 2015-04-09 2016-10-12 Ford Global Technologies, LLC Method of controlling a brake-by-wire system
CN106347449A (zh) * 2016-09-21 2017-01-25 江苏大学 一种人机共驾型电动助力转向系统及模式切换方法
CN106706345A (zh) * 2016-11-25 2017-05-24 合肥工业大学 一种线控转向系统路感模拟硬件在环仿真平台及仿真方法
CN206627825U (zh) * 2017-03-28 2017-11-10 吉林大学 电动客车集成控制硬件在环测试平台
CN107239069A (zh) * 2017-06-12 2017-10-10 奇瑞汽车股份有限公司 一种智能车线控制动系统、制动装置及测试台
CN206920121U (zh) * 2017-06-15 2018-01-23 吉林大学 一种电子机械制动助力器硬件在环仿真试验台

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220248A1 (zh) * 2019-04-30 2020-11-05 深圳市大疆创新科技有限公司 自动驾驶车辆的仿真测试方法、系统、存储介质和车辆
CN110239618A (zh) * 2019-06-28 2019-09-17 南京安洋智能科技有限公司 一种无人驾驶电动车的线控底盘
CN110333730A (zh) * 2019-08-12 2019-10-15 安徽江淮汽车集团股份有限公司 自动驾驶算法预期功能安全的验证方法、平台及存储介质
CN110333730B (zh) * 2019-08-12 2020-08-21 安徽江淮汽车集团股份有限公司 自动驾驶算法预期功能安全的验证方法、平台及存储介质
CN111016686A (zh) * 2019-12-25 2020-04-17 梁山通亚重工机械有限公司 一种无人驾驶纯电动环卫车底盘及底盘网络系统
CN111208801B (zh) * 2020-01-14 2021-08-31 重庆大学 汽车线控转向系统经济型硬件在环平台及测试方法
CN111208801A (zh) * 2020-01-14 2020-05-29 重庆大学 汽车线控转向系统经济型硬件在环平台及测试方法
CN111272448A (zh) * 2020-03-25 2020-06-12 天津清智科技有限公司 线控底盘测试台架
CN111458167A (zh) * 2020-04-14 2020-07-28 上汽依维柯红岩商用车有限公司 用于获取电控动力转向系统性能参数的测试系统及方法
CN111994086A (zh) * 2020-07-14 2020-11-27 南京天航智能装备研究院有限公司 一种智能线控底盘系统及解耦控制方法
CN112519793A (zh) * 2020-12-09 2021-03-19 南京航空航天大学 一种基于数字孪生的智能线控底盘架构及其主动容错方法
CN112519793B (zh) * 2020-12-09 2021-12-21 南京航空航天大学 一种基于数字孪生的智能线控底盘架构及其主动容错方法
CN112810602A (zh) * 2021-02-01 2021-05-18 南京航空航天大学 基于聚类的智能线控底盘个性化稳定性控制方法及系统
CN112810602B (zh) * 2021-02-01 2022-04-08 南京航空航天大学 基于聚类的智能线控底盘个性化稳定性控制方法及系统
CN113928402A (zh) * 2021-11-29 2022-01-14 安徽合力股份有限公司 一种自动驾驶车辆人机共驾转向装置以及控制方法
CN114354228A (zh) * 2022-01-07 2022-04-15 苏州挚途科技有限公司 线控转向系统的测试方法及系统
CN118157528A (zh) * 2024-03-06 2024-06-07 江苏超力电器有限公司 一种线控转向系统及其双三相电机容错控制方法

Also Published As

Publication number Publication date
CN109507982B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN109507982A (zh) 一种自动驾驶汽车线控底盘在环测试系统
CN206406908U (zh) 一种改进主缸的电机驱动电子液压制动系统
CN102815301B (zh) 一种纯电动汽车巡航控制的方法
CN105799549B (zh) 一种用于电动轮汽车eps与dyc集成控制系统及其方法
CN101559772B (zh) 一种混合动力汽车的下坡辅助控制方法
CN101168365B (zh) 车辆的制动控制装置和车辆的制动控制方法
CN101228054B (zh) 停车辅助控制装置和停车辅助控制系统
CN103754206B (zh) 一种机械电子液压制动系统
CN103419676B (zh) 一种用于电动汽车的轮式驱动分层控制系统及方法
CN104802777B (zh) 一种踏板感觉主动模拟式电子液压制动系统
CN102490617B (zh) 具有主动辅助制动功能的混合制动系统及控制方法
Meng et al. A survey of brake-by-wire system for intelligent connected electric vehicles
CN107145139A (zh) 电动汽车整车分层控制系统硬件在环测试平台及测试方法
CN108162941A (zh) 一种ehb电液制动系统制动控制方法
CN103754208A (zh) 一种双电机驱动的电子液压制动系统
CN112356817B (zh) 一种具有备份模式的无人驾驶汽车制动系统及其控制方法
CN104949842A (zh) 一种车辆混合制动系统测试开发试验台
CN110001609A (zh) 一种四轮轮毂驱动电动汽车线控电制动控制装置
CN113147704A (zh) 一种车辆线控制动系统及其制动方法
CN104816639B (zh) 一种新能源商用车能量高效回收系统
CN108657268A (zh) 实验平台车及其控制系统
CN103754204A (zh) 一种踏板位移主动控制的电子液压制动系统
CN206254996U (zh) 电动助力制动系统
CN107044147A (zh) 一种电喷发动机轮式液压挖掘机行驶控制系统及控制方法
CN113104014B (zh) 一种车辆全解耦电液伺服制动装置及其制动方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant